A REFINEMENT OF HÖLDER'S INEQUALITY AND APPLICATIONS

XUEMEI GAO, MINGZHE GAO AND XIAOZHOU SHANG

Department of Mathematics and Computer Science
Normal College, Jishou University
Jishou Hunan 416000,
People's Republic of China
EMail: mingzhegao@163.com

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

Acknowledgements.

10 February, 2007
10 June, 2007
S.S. Dragomir

26D15, 46C99.
Inner product space, Gram matrix, Variable unit-vector, Minkowski's inequality, Fan Ky's inequality, Hardy's inequality.

In this paper, it is shown that a refinement of Hölder's inequality can be established using the positive definiteness of the Gram matrix. As applications, some improvements on Minkowski's inequality, Fan Ky's inequality and Hardy's inequality are given.

The authors would like to thank the anonymous referee for valuable comments that have been implemented in the final version of this paper.

A Project Supported by scientific Research Fund of Hunan Provincial Education Department (06C657).

Hölder's Inequality
and Applications
Xuemei Gao, Mingzhe Gao and Xiaozhou Shang
vol. 8, iss. 2, art. 44, 2007

Title Page

Contents

Page 1 of 19
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
 issn: l443-575b

Contents

1 Introduction 3
2 Main Results 5
3 Applications 9
3.1 A Refinement of Minkowski's Inequality 9
3.2 A Strengthening of Fan Ky's Inequality 12
3.3 An Improvement of Hardy's Inequality 15

Hölder's Inequality and Applications Xuemei Gao, Mingzhe Gao and Xiaozhou Shang vol. 8, iss. 2, art. 44, 2007

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 2 of 19	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

For convenience, we need to introduce the following notations which will be frequently used throughout the paper:

$$
\begin{gathered}
\left(a^{r}, b^{s}\right)=\sum_{n=1}^{\infty} a_{n}^{r} b_{n}^{s}, \quad\|a\|_{r}=\left(\sum_{n=1}^{\infty} a_{n}^{r}\right)^{\frac{1}{r}}, \quad\|a\|_{2}=\|a\| \\
\left(f^{r}, g^{s}\right)=\int_{0}^{\infty} f^{r}(x) g^{s}(x) d x, \quad\|f\|_{r}=\left(\int_{0}^{\infty} f^{r}(x) d x\right)^{\frac{1}{r}}, \quad\|f\|_{2}=\|f\|
\end{gathered}
$$

and

$$
S_{r}(\alpha, y)=\left(\alpha^{r / 2}, y\right)\|\alpha\|_{r}^{-r / 2}
$$

where $a=\left(a_{1}, a_{2}, \ldots\right)$ are sequences of real numbers, $f:[0, \infty) \rightarrow[0, \infty)$ are measurable functions and α and y are elements of an inner product space E of real sequences.

Let $a=\left(a_{1}, a_{2}, \ldots\right)$ and $b=\left(b_{1}, b_{2}, \ldots\right)$ be sequences of real numbers in \mathbb{R}^{n}. Then Hölder's inequality can be written in the form:

$$
\begin{equation*}
(a, b) \leq\|a\|_{p}\|b\|_{q} \tag{1.1}
\end{equation*}
$$

The equality in (1.1) holds if and only if $a_{i}^{p}=k b_{i}^{q}, i=1,2, \ldots$, where k is a constant.

This inequality is important in function theory, functional analysis, Fourier analysis and analytic number theory, etc. However, there are drawbacks in this inequality. For example, let

$$
a=\left(a_{1}, a_{2}, \ldots, a_{n}, 0, \ldots, 0\right), \quad b=\left(0,0, \ldots, b_{n+1}, b_{n+2}, \ldots, b_{2 n}\right), \quad a, b \in \mathbb{R}^{2 n}
$$

Hölder's Inequality and Applications Xuemei Gao, Mingzhe Gao and Xiaozhou Shang
vol. 8, iss. 2, art. 44, 2007

Title Page
Contents

Page 3 of 19

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

If we let $a_{i}=b_{j}=1, i=1,2, \ldots, n ; j=n+1, n+2, \ldots, 2 n$, and substitute them into (1.1), then we have $0 \leq n$. In this case, Hölder's inequality is meaningless.

In the present paper we establish a new inequality that improves Hölder's inequality and remedies the defect pointed out above. At the same time, some significant refinements for a number of the classical inequalities can be established. As space is limited, only several applications of the new inequality are given.

Hölder's Inequality and Applications Xuemei Gao, Mingzhe Gao and Xiaozhou Shang
vol. 8, iss. 2, art. 44, 2007

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 4 of 19	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics

2. Main Results

Let α and β be elements of an inner product space E. Then the inner product of α and β is denoted by (α, β) and the norm of α is given by $\|\alpha\|=\sqrt{(\alpha, \alpha)}$. In our previous papers ([1], [2]), the following result has been obtained by means of the positive definiteness of the Gram matrix.
Lemma 2.1. Let α, β and γ be three arbitrary vectors of E. If $\|\gamma\|=1$, then

$$
\begin{equation*}
|(\alpha, \beta)|^{2} \leq\|\alpha\|^{2}\|\beta\|^{2}-(\|\alpha\||x|-\|\beta\||y|)^{2} \tag{2.1}
\end{equation*}
$$

where $x=(\beta, \gamma), y=(\alpha, \gamma)$. The equality in (2.1) holds if and only if α and β are linearly dependent, or γ is a linear combination of α and β, and $x y=0$ but x and y are not simultaneously equal to zero.

For the sake of completeness, we give here a short proof of (2.1), which can also be found in [2].

Proof of Lemma 2.1. Consider the Gram determinant constructed by the vectors α, β and γ :

$$
G(\alpha, \beta, \gamma)=\left|\begin{array}{ccc}
(\alpha, \alpha) & (\alpha, \beta) & (\alpha, \gamma) \\
(\beta, \alpha) & (\beta, \beta) & (\beta, \gamma) \\
(\gamma, \alpha) & (\gamma, \beta) & (\gamma, \gamma)
\end{array}\right|
$$

According to the positive definiteness of Gram matrix we have $G(\alpha, \beta, \gamma) \geq 0$, and $G(\alpha, \beta, \gamma)=0$ if and only if the vectors α, β and γ are linearly dependent.

Expanding this determinant and using the condition $\|\gamma\|=1$ we obtain

$$
\begin{aligned}
G(\alpha, \beta, \gamma) & =\|\alpha\|^{2}\|\beta\|^{2}-(\alpha, \beta)^{2}-\left\{\|\alpha\|^{2} x^{2}-2(\alpha, \beta) x y+\|\beta\|^{2} y^{2}\right\} \\
& \leq\|\alpha\|^{2}\|\beta\|^{2}-(\alpha, \beta)^{2}-\left\{\|\alpha\|^{2} x^{2}-2|(\alpha, \beta) x y|+\|\beta\|^{2} y^{2}\right\} \\
& \leq\|\alpha\|^{2}\|\beta\|^{2}-(\alpha, \beta)^{2}-\{\|\alpha\||x|-\|\beta\||y|\}^{2}
\end{aligned}
$$

Hölder's Inequality and Applications Xuemei Gao, Mingzhe Gao and Xiaozhou Shang
 vol. 8, iss. 2, art. 44, 2007

Title Page
Contents

Page 5 of 19

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where $x=(\beta, \gamma)$ and $y=(\alpha, \gamma)$. It follows that the equality holds if and only if the vectors α and β are linearly dependent; or the vector γ is a linear combination of the vector α and β, and $x y=0$ but x and y are not simultaneously equal to zero.

Applying Lemma 2.1, we can now establish the following refinement of Hölder's inequality.

Theorem 2.2. Let $a_{n}, b_{n} \geq 0,(n=1,2, \ldots), \frac{1}{p}+\frac{1}{q}=1$ and $p>1$. If $0<\|a\|_{p}<$ $+\infty$ and $0<\|b\|_{q}<+\infty$, then

$$
\begin{equation*}
(a, b) \leq\|a\|_{p}\|b\|_{q}(1-r)^{m} \tag{2.2}
\end{equation*}
$$

Hölder's Inequality and Applications Xuemei Gao, Mingzhe Gao and Xiaozhou Shang
vol. 8, iss. 2, art. 44, 2007

Title Page
Contents

Page 6 of 19

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& \leq\left(\sum_{k=1}^{\infty}\left(a_{k} b_{k}^{q / p}\right)^{R}\right)^{\frac{1}{R}}\left(\sum_{k=1}^{\infty}\left(b_{k}^{1-q / p}\right)^{Q}\right)^{\frac{1}{Q}} \\
& =\left(a^{p / 2}, b^{q / 2}\right)^{2 / p}\|b\|_{q}^{q(1-2 / p)} .
\end{aligned}
$$

The equality in (2.3) holds if and only if $a^{p / 2}$ and $b^{q / 2}$ are linearly dependent. In fact, the equality in (2.3) holds if and only if for any k, there exists $c_{0}\left(c_{0} \neq 0\right)$ such that

$$
\left(a_{k} b_{k}^{q / p}\right)^{R}=c_{0}\left(b_{k}^{1-q / p}\right)^{Q} .
$$

It is easy to deduce that $a_{k}^{p / 2}=c_{0} b_{k}^{q / 2}$.
If α, β and γ in (2.1) are replaced by $a^{p / 2}, b^{q / 2}$ and c respectively, then we have

$$
\begin{equation*}
\left(a^{p / 2}, b^{q / 2}\right)^{2} \leq\|a\|_{p}^{p}\|b\|_{q}^{q}(1-r), \tag{2.4}
\end{equation*}
$$

where $r=\left(S_{p}(a, c)-S_{q}(b, c)\right)^{2}$. Substituting (2.4) into (2.3), we obtain after simplifications

$$
\begin{equation*}
(a, b) \leq\|a\|_{p}\|b\|_{q}(1-r)^{\frac{1}{p}} \tag{2.5}
\end{equation*}
$$

It is known from Lemma 2.1 that the equality in (2.5) holds if and only if $a^{p / 2}$ and

Page 7 of 19

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
of a and b, and $(a, c)(b, c)=0$, but (a, c) and (b, c) are not simultaneously equal to zero.

The proof of the theorem is thus completed.
Consider the example given in the Introduction. Let $c=\left(c_{1}, c_{2}, \ldots, c_{2 n}\right), c \in$ $\mathbb{R}^{2 n}$, where $c_{i}=\frac{1}{\sqrt{n}}, i=1,2, \ldots, n$ and $c_{j}=0, j=n+1, n+2, \ldots, 2 n$. It is easy to deduce that $\|c\|=1$ and $r=1$. Substituting them into (2.2), it follows that the equality is valid.

The following theorem provides a similar result to Theorem 2.2.
Theorem 2.3. Let $f(x), g(x) \geq 0(x \in(0,+\infty)), \frac{1}{p}+\frac{1}{q}=1$ and $p>1$. If $0<\|f\|_{p}<+\infty$ and $0<\|g\|_{q}<+\infty$, then

$$
\begin{equation*}
(f, g) \leq\|f\|_{p}\|g\|_{q}(1-r)^{m} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{gathered}
r=\left(S_{p}(f, h)-S_{q}(g, h)\right)^{2}, \quad m=\min \left\{\frac{1}{p}, \frac{1}{q}\right\} \\
\|h\|=1, \quad \text { i.e. } \quad\|h\|=\left(\int_{0}^{\infty} h^{2}(x) d x\right)^{\frac{1}{2}}=1
\end{gathered}
$$

and

$$
\left(f^{p / 2}, h\right)\left(g^{q / 2}, h\right) \geq 0
$$

The equality in (2.3) holds if and only if $f^{p / 2}$ and $g^{q / 2}$ are linearly dependent; or the vector h is a linear combination of $f^{p / 2}$ and $g^{q / 2}$, and $\left(f^{p / 2}, h\right)\left(g^{q / 2}, h\right)=0$, but the vector h is not simultaneously orthogonal to $f^{p / 2}$ and $g^{q / 2}$.

Its proof is similar to that of Theorem 2.2. Hence it is omitted.

Hölder's Inequality and Applications Xuemei Gao, Mingzhe Gao and Xiaozhou Shang
vol. 8, iss. 2, art. 44, 2007

Title Page
Contents

Page 8 of 19

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics

3. Applications

3.1. A Refinement of Minkowski's Inequality

We firstly give a refinement of Minkowski's inequality for the discrete form.
Theorem 3.1. Let $a_{k}, b_{k} \geq 0, p>1$. If $0<\|a\|_{p}<+\infty$ and $0<\|b\|_{p}<+\infty$, then

$$
\begin{equation*}
\|a+b\|_{p}<\left(\|a\|_{p}+\|b\|_{p}\right)(1-r)^{m} \tag{3.1}
\end{equation*}
$$

Hölder's Inequality
and Applications
Xuemei Gao, Mingzhe Gao and
Xiaozhou Shang
vol. 8, iss. 2, art. 44, 2007

Title Page
Contents

Page 9 of 19

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

By Theorem 2.2, we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k}\left(a_{k}+b_{k}\right)^{p-1} \leq\|a\|_{p}\left(\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)^{p}\right)^{1-\frac{1}{p}}(1-r(a))^{m} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{\infty} b_{k}\left(a_{k}+b_{k}\right)^{p-1} \leq\|b\|_{p}\left(\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)^{p}\right)^{1-\frac{1}{p}}(1-r(b))^{m} \tag{3.3}
\end{equation*}
$$

$$
\begin{gathered}
\|a+b\|_{p}^{p / 2}=\left(\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)^{p}\right)^{\frac{1}{2}} \\
\left((a+b)^{p / 2}, c\right)=\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)^{p / 2} c_{k}
\end{gathered}
$$

and c is a variable unit-vector.
Adding (3.5) and (3.3) we obtain, after simplifying:

$$
\begin{equation*}
\|a+b\|_{p} \leq\|a\|_{p}(1-r(a))^{m}+\|b\|_{p}(1-r(b))^{m} . \tag{3.4}
\end{equation*}
$$

Let $r=\min \{r(a), r(b)\}$, then the inequality (3.1) follows. This completes the proof of Theorem 3.1.

Hölder's Inequality and Applications

 Xuemei Gao, Mingzhe Gao and Xiaozhou Shangvol. 8, iss. 2, art. 44, 2007

Title Page
Contents
\qquad

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 10 of 19	
Go Back	

Full Screen

```
Close
```

journal of inequalities in pure and applied mathematics
issn: 1443-575b

If we choose a unit-vector c such that its i th component is 1 and the rest is zero, i.e. $c=(0,0, \ldots, 0,1,0, \ldots)$, then

$$
r(x)=\left\{\frac{x_{i}^{p / 2}}{\|x\|_{p}^{p / 2}}-\frac{\left(a_{i}+b_{i}\right)^{p / 2}}{\|a+b\|_{p}^{p / 2}}\right\}^{2} \quad x=a, b
$$

Similarly, we can establish a refinement of Minkowski's integral inequality.
Theorem 3.2. Let $f(x), g(x) \geq 0, p>1$. If $0<\|f\|_{p}<+\infty$ and $0<\|g\|_{p}<$ $+\infty$, then

$$
\begin{equation*}
\|f+g\|_{p}<\left(\|f\|_{p}+\|g\|_{p}\right)(1-r)^{m} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{gathered}
\|f+g\|_{p}=\left(\int_{0}^{\infty}(f(x)+g(x))^{p} d x\right)^{\frac{1}{p}} \\
r=\min \{r(f), r(g)\}, \quad m=\min \left\{\frac{1}{p}, 1-\frac{1}{p}\right\} \\
r(t)=\left\{\frac{\left(t^{p / 2}, h\right)}{\|t\|_{p}^{p / 2}}-\frac{\left((f+g)^{p / 2}, h\right)}{\|f+g\|_{p}^{p / 2}}\right\}, \quad t=f, g \\
\left((f+g)^{p / 2}, h\right)=\int_{0}^{\infty}(f(x)+g(x))^{p / 2} h(x) d x
\end{gathered}
$$

and h is a variable unit-vector, i.e.

$$
\|h\|=\left\{\int_{0}^{\infty} h^{2}(x) d x\right\}^{\frac{1}{2}}=1
$$

[^0]Title Page
Contents
\square
Page 11 of 19

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Its proof is similar to that of Theorem 3.1. Hence it is omitted.
Remark 1. The variable unit-vector h can be chosen in accordance with our requirements. For example, we may choose h such that

$$
h(x)=\sqrt{\frac{2}{\pi\left(1+x^{2}\right)}} .
$$

3.2. A Strengthening of Fan Ky's Inequality

Theorem 3.3. Let A, B and C be three positive definite matrices of order $n, 0 \leq$ $\lambda \leq 1$. Then
(3.6) $|A|^{\lambda}|B|^{1-\lambda}$

$$
\leq|\lambda A+(1-\lambda) B|\left(1-\left(\frac{|A C|^{\frac{1}{4}}}{\left|\frac{1}{2}(A+C)\right|^{\frac{1}{2}}}-\frac{|B C|^{\frac{1}{4}}}{\left|\frac{1}{2}(B+C)\right|^{\frac{1}{2}}}\right)^{2}\right)^{m}
$$

where $|C|=\pi^{n}, \quad m=\min \{\lambda, 1-\lambda\}$.
Page 12 of 19
Proof. When $\lambda=0,1$, the inequality (3.3) is obviously valid. Hence we need only consider the case $0<\lambda<1$.

If D is a positive definite matrix of order n, then it is known from [4] that

$$
\begin{equation*}
J_{n}=\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} e^{-(x, D x)} d x=\frac{\pi^{n / 2}}{|D|^{\frac{1}{2}}} \tag{3.7}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and $d x=d x_{1} d x_{2} \cdots d x_{n}$.

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics

Let $F(x)=e^{-\lambda(x, A x)}$ and $G(x)=e^{-(1-\lambda)(x, B x)}$. If $p=\frac{1}{\lambda}$ and $q=\frac{1}{1-\lambda}$, according to (3.4) and (2.7) we have

$$
\begin{align*}
& \frac{\pi^{n / 2}}{|\lambda A+(1-\lambda) B|^{\frac{1}{2}}} \tag{3.8}\\
& =\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} F(x) G(x) d x \\
& \leq\left\{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} F^{p}(x) d x\right\}^{\frac{1}{p}}\left\{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} G^{q}(x) d x\right\}^{\frac{1}{q}}(1-r)^{m} \\
& =\frac{\pi^{n / 2}(1-r)^{m}}{\left(|A|^{\lambda}|B|^{1-\lambda}\right)^{\frac{1}{2}}}
\end{align*}
$$

Hölder's Inequality and Applications

 Xuemei Gao, Mingzhe Gao and Xiaozhou Shangvol. 8, iss. 2, art. 44, 2007

Title Page
Contents

$$
\begin{aligned}
r & =\left(S_{\frac{1}{\lambda}}(F, H)-S_{\frac{1}{1-\lambda}}(G, H)\right)^{2} \\
& =\left\{\left(F^{\frac{1}{2 \lambda}}, H\right)\|F\|_{\frac{1}{\lambda}}^{-\frac{1}{2 \lambda}}-\left(G^{\frac{1}{2(1-\lambda)}}, H\right)\|G\|_{\frac{1}{1-\lambda}}^{-\frac{1}{2(-\lambda)}}\right\},
\end{aligned}
$$

where $H=e^{-\frac{1}{2}(x, C x)}, C$ is a positive definite matrix of order n, and

$$
\|H\|=\left\{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} H^{2}(x) d x\right\}^{\frac{1}{2}}=1
$$

By the definition of the variable unit-vector H, it is easy to deduce that $|C|=\pi^{n}$.
where

Page 13 of 19

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

Hence we have

$$
\begin{aligned}
\left(F^{\frac{1}{2 \lambda}}, H\right) & =\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} F^{\frac{1}{2 \lambda}}(x) H(x) d x \\
& =\frac{\pi^{n / 2}}{\left|\frac{1}{2}(A+C)\right|^{\frac{1}{2}}}=\left\{\frac{|C|}{\left|\frac{1}{2}(A+C)\right|}\right\}^{\frac{1}{2}}
\end{aligned}
$$

and

$$
\|F\|_{1 / \lambda}^{1 / 2 \lambda}=\left\{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} F^{1 / \lambda}(x) d x\right\}^{\frac{1}{2}}=\left\{\frac{\pi^{n / 2}}{|A|^{1 / 2}}\right\}^{\frac{1}{2}}=\left\{\frac{|C|}{|A|}\right\}^{\frac{1}{4}}
$$

whence

$$
S_{1 / \lambda}(F, H)=\frac{|A C|^{\frac{1}{4}}}{\left|\frac{1}{2}(A+C)\right|^{\frac{1}{2}}}
$$

Similarly,

$$
S_{1 /(1-\lambda)}(G, H)=\frac{|B C|^{\frac{1}{4}}}{\left|\frac{1}{2}(B+C)\right|^{\frac{1}{2}}},
$$

therefore we obtain

$$
\begin{equation*}
r=\left(\frac{|A C|^{\frac{1}{4}}}{\left|\frac{1}{2}(A+C)\right|^{\frac{1}{2}}}-\frac{|B C|^{\frac{1}{4}}}{\left|\frac{1}{2}(B+C)\right|^{\frac{1}{2}}}\right)^{2} . \tag{3.9}
\end{equation*}
$$

It follows from (3.8) and (3.9) that the inequality (3.3) is valid.

Hölder's Inequality and Applications

 Xuemei Gao, Mingzhe Gao and Xiaozhou Shangvol. 8, iss. 2, art. 44, 2007

Title Page
Contents

Page 14 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3.3. An Improvement of Hardy's Inequality

We give firstly a refinement of Hardy's inequality for the discrete form.
Theorem 3.4. Let $a_{n} \geq 0, \quad \beta_{n}=\frac{1}{n} \sum_{k=1}^{n} a_{k}, \frac{1}{p}+\frac{1}{q}=1$ and $p>1$. If $0<\|a\|_{p}<$ $+\infty$, then

$$
\begin{equation*}
\|\beta\|_{p} \leq\left(\frac{p}{p-1}\right)\|a\|_{p}(1-r)^{m} \tag{3.10}
\end{equation*}
$$

where

$$
r=\left(\frac{\left(a^{p / 2}, c\right)}{\|a\|_{p}^{p / 2}}-\frac{\left(\beta^{p / 2}, c\right)}{\|\beta\|_{p}^{p / 2}}\right)^{2}
$$

c is a variable unit-vector and $m=\min \left\{\frac{1}{p}, \frac{1}{q}\right\}$.
Proof. Firstly, we estimate the difference of the following two terms:

$$
\begin{align*}
\beta_{n}^{p}-\frac{p}{p-1} \beta_{n}^{p-1} a_{n} & =\beta_{n}^{p}-\frac{p}{p-1}\left(n \beta_{n}-(n-1) \beta_{n-1}\right) \beta_{n}^{p-1} \tag{3.11}\\
& =\beta_{n}^{p}\left(1-\frac{n p}{p-1}\right)+\frac{(n-1) p}{p-1}\left(\left(\beta_{n}^{p}\right)^{p-1} \beta_{n-1}^{p}\right)^{\frac{1}{p}} .
\end{align*}
$$

Applying the arithmetic-geometric mean inequality to the second term on the righthand side of (3.11) we get

$$
\begin{equation*}
\left(\left(\beta_{n}^{p}\right)^{p-1} \beta_{n-1}^{p}\right)^{\frac{1}{p}} \leq \frac{1}{p}\left((p-1) \beta_{n}^{p}+\beta_{n-1}^{p}\right) . \tag{3.12}
\end{equation*}
$$

M

Hölder's Inequality and Applications Xuemei Gao, Mingzhe Gao and

 Xiaozhou Shangvol. 8, iss. 2, art. 44, 2007

Title Page
Contents

Page 15 of 19

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

It follows from (3.11) and (3.12) that

$$
\begin{aligned}
\beta_{n}^{p}-\frac{p}{p-1} \beta_{n}^{p-1} a_{n} & \leq \beta_{n}^{p}\left(1-\frac{n p}{p-1}\right)+\frac{(n-1)}{p-1}\left((p-1) \beta_{n}^{p}+\beta_{n-1}^{p}\right) \\
& =\frac{1}{p-1}\left((n-1) \beta_{n-1}^{p}-n \beta_{n}^{p}\right) .
\end{aligned}
$$

Summing the above inequality with respect to n, we have

$$
\sum_{n=1}^{N} \beta_{n}^{p}-\frac{p}{p-1} \sum_{n=1}^{N} \beta_{n}^{p-1} a_{n} \leq-\frac{1}{p-1}\left(N \beta_{N}^{p}\right) \leq 0
$$

Hence

$$
\sum_{n=1}^{N} \beta_{n}^{p} \leq \frac{p}{p-1} \sum_{n=1}^{N} \beta_{n}^{p-1} a_{n} .
$$

Title Page
Contents
Letting $N \rightarrow \infty$, we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} \beta_{n}^{p} \leq \frac{p}{p-1} \sum_{n=1}^{\infty} \beta_{n}^{p-1} a_{n} \tag{3.13}
\end{equation*}
$$

Page 16 of 19

Go Back

Full Screen

```
Close
```

journal of inequalities in pure and applied mathematics
where $r=\left(S_{p}(a, c)-S_{q}\left(\beta^{p-1}, c\right)\right)^{2}, c$ is a variable unit-vector and $m=\min \left\{\frac{1}{p}, \frac{1}{q}\right\}$.

We obtain from (3.13) and (3.14) after simplification

$$
\begin{equation*}
\|\beta\|_{p} \leq\left(\frac{p}{p-1}\right)\|a\|_{p}(1-r)^{m} \tag{3.15}
\end{equation*}
$$

It is easy to deduce that

$$
S_{p}(a, c)=\frac{\left(a^{p / 2}, c\right)}{\|a\|_{p}^{p / 2}} \quad \text { and } \quad S_{q}\left(\beta^{p-1}, c\right)=\frac{\left(\beta^{(p-1) q / 2}, c\right)}{\left\|\beta^{p-1}\right\|_{q}^{q / 2}}=\frac{\left(\beta^{p / 2}, c\right)}{\|\beta\|_{p}^{p / 2}}
$$

Hence

$$
r=\left(\left(a^{p / 2}, c\right)\|a\|_{p}^{-p / 2}-\left(\beta^{p / 2}, c\right)\|\beta\|_{p}^{-p / 2}\right)^{2}
$$

where c is a variable unit-vector. The proof of the theorem is completed.
A variable unit-vector c can be chosen in accordance with our requirements. For example, we may choose $c \in \mathbb{R}^{\infty}$ such that $c=(1,0,0, \ldots)$. Obviously, $\|c\|=1$ and

$$
r=a_{1}^{p}\left(\|a\|_{p}^{-p / 2}-\|\beta\|_{p}^{-p / 2}\right)^{2}
$$

Similarly, we can establish a refinement of Hardy's integral inequality.
Theorem 3.5. Let $f(x) \geq 0, g(x)=\frac{1}{x} \int_{0}^{x} f(t) d t, \frac{1}{p}+\frac{1}{q}=1$ and $p>1$. If $0<\int_{0}^{\infty} f(t) d t<+\infty$, then

$$
\begin{equation*}
\|g\|_{p}<\frac{p}{p-1}\|f\|_{p}(1-r)^{m} \tag{3.16}
\end{equation*}
$$

where

$$
r=\left(\frac{\left(f^{p / 2}, h\right)}{\|f\|_{p}^{p / 2}}-\frac{\left(g^{p / 2}, h\right)}{\|g\|_{p}^{p / 2}}\right)^{2}
$$

Hölder's Inequality and Aplications Xuemei Gao, Mingzhe Gao and Xiaozhou Shang vol. 8, iss. 2, art. 44, 2007
Title Page
Contents
$\mathbf{4 4}$
$\mathbf{4}$
Page 17 of 19
Go Back
Full Screen
Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
h is a variable unit-vector, i.e.

$$
\|h\|=\left(\int_{0}^{\infty} h^{2}(t) d t\right)^{\frac{1}{2}}=1 \quad \text { and } \quad m=\min \left\{\frac{1}{p}, \frac{1}{q}\right\}
$$

Proof. Using integration by parts and then applying (2.2) we obtain that

$$
\begin{align*}
\|g\|_{p}^{p} & =\int_{0}^{\infty} g^{p}(t) d t=\frac{p}{p-1}\left(f, g^{p-1}\right) \tag{3.17}\\
& \leq \frac{p}{p-1}\|f\|_{p}\left\|g^{p-1}\right\|_{q}(1-r)^{m} \\
& =\frac{p}{p-1}\|f\|_{p}\|g\|_{p}^{p-1}(1-r)^{m}
\end{align*}
$$

Hölder's Inequality and Applications

 Xuemei Gao, Mingzhe Gao and Xiaozhou Shangvol. 8, iss. 2, art. 44, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 18 of 19	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics

References

[1] MINGZHE GAO, On Heisenberg's inequality, J. Math. Anal. Appl., 234(2) (1999), 727-734.
[2] TIAN-XIAO HE, J.S. SHIUE AND ZHONGKAI LI, Analysis, Combinatorics and Computing, Nova Science Publishers, Inc. New York, 2002, 197-204.
[3] JICHANG KUANG, Applied Inequalities, Hunan Education Press, 2nd ed. 1993. MR 95j: 26001.
[4] E.F. BECKENBACK AND R. BELLMAN, Inequalities, 2nd ed., Springer, 1965.

> Hölder's Inequality and Applications Xuemei Gao, Mingzhe Gao and Xiaozhou Shang
> vol. 8, iss. 2, art. 44, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 19 of 19	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

[^0]: Hölder's Inequality and Applications Xuemei Gao, Mingzhe Gao and Xiaozhou Shang
 vol. 8, iss. 2, art. 44, 2007

