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ABSTRACT. The Heisenberg-Pauli-Weyl inequality is established for the Fourier transform con-
nected with the Riemann-Liouville operator.Also, a generalization of this inequality is proved.
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1. INTRODUCTION

Uncertainty principles play an important role in harmonic analysis and have been studied by
many authors and from many points of view [8].These principles state that a furfcao
its Fourier transformf cannot be simultaneously sharply localized. The theorems of Hardy,
Morgan, Beurling, ... are established for several Fourier transforms in [4], [9], [13]anhd [14]. In
this context, a remarkable Heisenberg uncertainty principle [10] states, according ta Weyl [25]
who assigned the result to Pauli, that for all square integrable funcfiondR™ with respect to
the Lebesgue measure, we have

([ asera) ([ sifiorde) =5 ([ |f(9:)|2dx)2, je . n}

This inequality is called the Heisenberg-Pauli-Weyl inequality for the classical Fourier trans-
form.

Recently, many works have been devoted to establishing the Heisenberg-Pauli-Weyl inequal-
ity for various Fourier transforms, Roslér [21] and Shimeno [22] have proved this inequality for
the Dunkl transform, in [20] Résler and Voit have established an analogue of the Heisenberg-
Pauli-Weyl inequality for the generalized Hankel transform. In the same context, Battle [3] has
proved this inequality for wavelet states, and WolIf|[26], has studied this uncertainty principle
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2 S. OvRI AND L.T. RACHDI

for Gelfand pairs. We cite also De Bruijnl [5] who has established the same result for the classi-
cal Fourier transform by using Hermite Polynomials, and Rassias [17, 18, 19] who gave several
generalized forms for the Heisenberg-Pauli-Weyl inequality.

In [2], the second author with others considered the singular partial differential operators
defined by

— 9
Al_a:w

Ay = 53_; 4 20410 o2 (r,z) €]0, +oo[xR; a > 0.

r OT_W;

and they associated 1o, andA, the following integral transform, called the Riemann-Liouville
operator, defined o#, (R?) (the space of continuous functions BA, even with respect to the
first variable) by

a (U flrsV/T =82,z +rt) (1 —12)273(1 — s2)* Ldtds; if a > 0,
L F(rVT=2 0+ rt) 2 if o = 0.

(1-2)’

Ka([)(r, ) =

In addition, a convolution product and a Fourier transfaiinconnected with the mapping,,
have been studied and many harmonic analysis results have been established for the Fourier
transform.#, (Inversion formula, Plancherel formula, Paley-Winer and Plancherel theorems,

)

Our purpose in this work is to study the Heisenberg-Pauli-Weyl uncertainty principle for the
Fourier transform#,, connected witl¥%Z,,.More precisely, using Laguerre and Hermite polyno-
mials we establish firstly the Heisenberg-Pauli-Weyl inequality for the Fourier trans#ym
that is

e Forall f € L*(dv,), we have

(/OM/RM + )| f(r,2) 2dva(r, g;>>é

(/] 2 2Z 0 W P V)

a oo
222 (7 [ oPanno),

f(r,z)=Ce *% ;C€C, ty>0,

1
2

with equality if and only if

where
e dv,(r,x) is the measure defined @, x R by
T2a+1
dvy(r,z) = dr @ dx.
(r.) 20T (a + 1)V/27

e dv,(u, A) is the measure defined on the set

Iy =Ry x RU{(it,); (t,z) € Ry xR; ¢t < |z|},
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by

//F+ 9, Ndva(p, A) = 2C“F(oz—|1—1 Ton </+OO/ g, M) (1 + N)* udpdA

JF/R/OlA g(ip, N)(X* = uz)“uducﬂ) :

Next, we give a generalization of the Heisenberg-Pauli-Weyl inequality, that is

e Forall f € L*(dv,), a,b € R; a,b > 1 andn € R such thatja = (1 — n)b, we have
1—n

(r2 + 220 £ (r, @) 2dva (1, 7) 3
(L )
x (/ /M(MQ+2)\2)b!ﬁa(f)(u,)\)|2d%(m )\))2
> (2a+3) (/*‘X’/Ura; )| dVar;c)) |

with equality if and only if

_ 7‘2+12

a=b=1 and f(r,z)=Ce > ; CcC; t;>0.
In the last section of this paper, building on the ideas of Faris [7], and Price [15, 16], we
develop a family of inequalities in their sharpest forms, which constitute the principle of local

uncertainty.
Namely, we have established the following main results

e For all real numbers; 0 < £ < 2“—;3 there exists a positive constafit, . such that for
all f € L*(dv,), and for all measurable subsdisc T';; 0 < 7,(E) < +o0, we have

//u MPdra(, ) < Kag(va(E)) =5 /+Oo/ (2 + 22| £ (r, 2) Pdva(r, 7).

e For all real numbet; ¢ > @ there exists a positive constait, . such that for all
f € L*(dv,), and for all measurable subséfsc T';; 0 < v,(E) < 400, we have

26—2a—3

[ [ 12010 0 Parai3) < Moo (/Oo [1akina)

([T [err i)

wherel/, ¢ is the best (the smallest) constant satisfying this inequality.
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2. THE FOURIER TRANSFORM ASSOCIATED WITH THE RIEMANN -LIOUVILLE
OPERATOR

It is well known [2] that for all(i, ) € C?, the system
Ayu(r,z) = —idu(r, z),
Aou(r, ) = —pu(r, x),
u(0,0) =1, 24(0,x) =0, Vz € R,
admits a unique solutiop,, 5, given by
(2.1) V(r,z) € R%  ua(r, @) = ja <r\/m> e T

where

a+n+1)

andJ, is the Bessel function of the first kind and indeX6, (11,/12/ 24].
The modified Bessel functiop, has the following integral representation [1) 11], for all
1 € C, andr € R we have

Ja(z) =2°T(ax + 1) J(;(ax) =T(a+1) Z n!I‘((_l)n ({)2"7

2I( a+1) f )o~ %cos(r Adt. if _ 1.

' " 0 pt)dt, if a > 5
Ja(rp) = v (oth - 1
cos(T’,u), if o = —3.

In particular, for allr, s € R, we have

M(aw+1) [! 2vaml
Ja(rs)] < m/ (1—1t%) | cos(rst)|dt

2’ 1
< <O‘—+2/ (1— ) 2dt = 1.
ﬁF(a + 5) 0
From the properties of the Bessel function, we deduce that the eigenfurgtiopatisfies
the following properties
[

(2.3) sup |eua(r,z)| =1,

(r,z)€R2

(2.2)

if and only if (i, \) belongs to the set
I =R*U{(it,2); (t,x) € R [t < |z]}.
e The eigenfunctiorp, , has the following Mehler integral representation
%f_ll f_ll cos(prsy/1 — £2)e=Matri) (1 — 2)o=3 (1 — §2)Ldpds; if a > 0,
%fjl cos(rpy/1 — 12)eA@trt) Tdit?; if a =0.

In [2], using this integral representation, the authors have defined the Riemann-Liouville
integral transform associated witky, A, by

a [t F(rsVT— 82z +rt) (1 - 2)*2(1 — ) Ldtds; if a >0,
1 f f(rV1 =8,z +rt)

@u,A(Tv ZE) =

Ao )(r,7) = -

W=zt
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wheref is a continuous function oR?, even with respect to the first variable.
The transforn¥Z,, generalizes the "mean operator” defined by

27
RHo(f)(r,z) = o /. f(rsin®, x + rcosf)db.

In the following we denote by

e dv, the measure defined @&, x R, by

F20+1
dvy(r,z) = dr ® dx.
(r.) 2°T (a4 1)v27

e [?(dv,) the space of measurable functiohsnR, x R such that

“+o00 %
Hpr,uaz(/o / |f<r,x>\Pdua<r,x>) < o0, I pel,+o0],

”f”OO,Va = ©€8Sssup |f(ra ZE)| < 00, if p = +00.
(rx)eRL xR

e ( / ), theinner product defined at¥(dv,) by
+oo
(f/9)v. / /fr:v g(r, z)dvg(r, ).

o I'. =Ry x RU{(it,2); (t,z) e Ry x R; ¢ < |z|}.
e %r. theco-algebra defined ofi;. by

Fr. ={67'(B), B € B(R, xR)},
wheref is the bijective function defined on the dét by
(2.4) O, \) = (\/p? a2, >\> .
e dv, the measure defined ¢, by
(25) v A S %FJr; 'Va(A) = Va(e(A))
e [”(dv,) the space of measurable functiq;ﬁsn I',, such that
Pl = ([ [ 150 0P100)" <0, i pe 1420,
| flloore = esssup | f(u, A)| < oo, if p=+o0.

(Mv)‘) el'y

e ( / ). theinner product defined at¥(d~,) by
/b= [ [ H0 5T N0l A)
Ly

Then, we have the following properties.

Proposition 2.1.
i) For all non negative measurable functiopenI',, we have

@8 [ [ st nrete) = g ([ om0 07t

A
+/R/O g(in, A)(AQ—MQ)“ududA)
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In particular

(27) d%x—l—l(:“? )‘) = md’}/a(yﬁ )‘)

i) For all measurable functiong on R, x R, the functionf o 6 is measurable on, .
Furthermore, iff is non negative or an integrable function &1 x R with respect to
the measurdv,,, then we have

(2.8) //F+ £ 00) (1, Ndva (e, \) /+Oo/frxdl/arx)

In the following, we shall define the Fourier transforfA), associated with the operatéf,,
and we give some properties that we use in the sequel.

Definition 2.1. The Fourier transforn#, associated with the Riemann-liouville operatay,
is defined onl! (dv,,) by

+oo
(2.9) YN €T Z NN = [ [ Fraou o))
0 R
By the relation[(2.B), we deduce that the Fourier transfofmis a bounded linear operator
from L'(dv,) into L*°(d~,,), and that for allf € L'(dv,,), we have
(2.10) [ Za () llsora < M1 fl10a-

Theorem 2.2 (Inversion formula) Let f € L'(dv,) such thatZ,(f) € L'(dv.), then for
almost everyr, z) € R, x R, we have

for) = [ / + N o (s 2 a1 ).

Theorem 2.3(Plancherel) The Fourier transform?, can be extended to an isometric isomor-
phism fromZL?(dv,,) onto L?(d~,,).

In particular, for allf, g € L*(dv,), we have the following Parseval's equality

(2.11) //F+ Zo(9) (1, N dya g, A /+oo/f (r,x)g(r, z)dva(r, z).

3. HILBERT BASIS OF THE SPACES L?(dv,,), AND L*(dv,)

In this section, using Laguerre and Hermite polynomials, we construct a Hilbert basis of the
spaced.?(dv,) and L*(dv,), and establish some intermediate results that we need in the next
section.

It is well known [11,[23] that for everw > 0, the Laguerre polynomials?, are defined by
the following Rodriguez formula

(03 1 rT,.,—Q dm m-+o _—T
Lm('r’):%er dr—m(r e, m € N.
Also, the Hermite polynomials are defined by the Rodriguez formula
2 d”

H,(x) = (=1)"e" %(6_12); n € N.

Moreover, the families
m! 1
S — } and { —Hn}
m o |
{ Fla+m+1) e 2rnl\/T en

J. Inequal. Pure and Appl. Math9(3) (2008), Art. 88, 23 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

HEISENBERGPAULI-WEYL UNCERTAINTY PRINCIPLE 7

are respectively a Hilbert basis of the Hilbert spatb&&R . , e "r*dr) and L3 (R, e~ dz).
Therefore the families

20+1T m! _.2 1 o2
(a+ m e~z L2 (r?) and e T H,
Fa+m+1) . 2nnly/m .
me ne

are respectively a Hilbert basis of the Hilbert spaﬁés(R+, sk ) and L2 (R, %)

20T (a+1)
hence the famlly{ m,n}( e defined by
m,n)EN?

1
Qo+1T 1)m)! 2 2L,
e (ra) = [ et Dml ATt e oy (o,
’ 2" epll'(m+a+1)

is a Hilbert basis of the spadé(dv,,).
Using the relatio8), we deduce that the fan{i&;‘w} , defined by

(m,n)EN?

20D (a + 1)m
22T (m + o + 1)

man (s A) = (eq,, 0 0) (1, A) = ( ) e o (17 + N2 Hp(N),

is a Hilbert basis of the spad€(d-,), whered is the function defined by the relatidn (2.4).
In the following, we agree that the Laguerre and Hermite polynomials with negative index
are zero.

Proposition 3.1. For all (m,n) € N?, (r,z) € R, x Rand(u, \) € 'y, we have

+1
@) 065,7) = " (120) a2,

o n —l— 1
(32) )‘é'm,n(ljﬁ /\) = gm ,n+1 ,u, f&mn 1 M?

(3.3) T2€a+1 (r,x) = \/2(a + 1) (a+m+ ey, . (r,7) — \/2(a +1)(m + e, 4y, (r, ).

(3.4) (12 + M)E (1, A) = V2(a+ 1) (a+m+ 1)EL (1, A)
—V2(a+1)(m+ 1) 1, (1, A).

Proof. We know [11] that the Hermite polynomials satisfy the following recurrence formula

Hy1(z) —22H,(x) + 2nH, () =0; neN,
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Therefore, for al(r, z) € R, x R, we have

Le (r®)xH,(z)

m

1
22T (a4 m! \* 2
(&
2m=an(m + a + 1)

1
U e NG L Ry AT
2 272 (n+ 1)IT(m 4 a + 1) "

1
201 (o + 1)m! P e
n ( (a+1)m ) LI () H, 1 (x)

xe%’n(r, x) = (

2\ 2" 2(n— DI (m+a +1)

/In+1 n
= Tem,n+1 (7”, ill') + \/;em,n—l<r7 l’)

and it is obvious that the same relation holds for the elenmgnis
On the other hand

202 2)m!
et ) = (e 2m
’ 2" znll(m + a + 2)

1
) e 2L (r?)H, (7).

However, the Laguerre polynomials satisfy the following recurrence formulas
(m4+1)Ly ((r)+(r—a—=2m—1)Ly(r) +(m+ o)Ly, _(r) =0, meN,
and
Ly (r) = Ly (r) = Ly (r); m €N,
Hence, we deduce that

e (1 2)

2a+2r 2 | 2 12402
= - (a+2)m ef%Hn(x)
2" 2!l (m + a + 2)
x ((a+2m+2) Lot (1) — (m+ DL (%) — (e +m + 1) L3 (7))

2042 (o + 2)m! | 2442
_ (TR Dm0 L () H)
2" 2pll'(m + a + 2)

1

2027 )m! \° 1202

(et 2)m (m+1)e= "5 Lo, (r2) o)
2" 2!l (m + o+ 2)

= \/2(a + (a+m+ 1)efmn(r, x) — \/2(04 + 1)(m + 1)6%4_17”(7“, x).

Proposition 3.2. For all (m,n) € N?, and(u, \) € Ty, we have

(3.5) Foemn) (11, ) = (=0)"™ 7, (1, A).
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Proof. It is clear that for all(m,n) € N?, the functione, , belongs to the spack'(dv,) N
L?(dv,), hence by using Fubini's theorem, we get

1
29T (e + 1)m! ’
2" an!D(m + a + 1)

+o0 .2 7,2a+1
X (/ e 2 L (1) ] (TV/F - )\2) T dr)
0

(a+1)

and then the required result follows from the following equalities [11]:

Fa(€mn) (1, A) = (

+o0o
Vin € N / ¢S L, (r) Jul PGS dr = (—1)™2e~ 4y 3 12, (3),
0
and
) 22 o2
Vn e N; / e™e 7 Hy(v)dx =i"V2me = H,(y),
R

whereJ, denotes the Bessel function of the first kind and indedefined for allx > 0 by

oo —1) I 2n+ta
Ja(x):;n!mij)nﬂ) (5) -

O

Proposition 3.3. Let f € L*(dv,) N L*(dvay1) such thatZ,(f) € L*(dv.+1), then for all
(m,n) € N?, we have

o _ja+m+1 o [ m+1
(36) <f/6 +1 Va+1_ 2(0{—|—1) <f/6 CE—|—1 f/ m+1n Vo)

and
ar a+1 _ a+m+1_i2mn ea
(37) <‘/Oé(f)/§ " >’Ya+1 - 2(0&+1) ( ) * <f/ m,n)l’a
m -+ 1 -\ 2m—4n a
2((1/—|— 1)(_1) * <f/6m+1,n>Va

Proof. We have

ey, / +°° / £ )& (1, 2)dvaa (1, @)

+o0
— +1/ /fra: yriest(r, @) dug(r, )
(a

2 _a+1
_2(a+1)< /7" b
hence by using the relation (3.3), we deduce that

N /a+m+1 /m+1
<f/e+1l/a+1 Oé—l—l f/mn +1 f/m—i—ln
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In the same manner, and by virtue of the relat[on|(2.7), we have

(Zal )€ s = // Ve (1 A (1)
- T / /F 2 4 A)ETH (1, N (1, V),
using the relations (3.4) an@ 5), we deduce that
<ya<f)/ a+1>’7a+1 = m// <\/Oé +m+1 %n(pﬁ )

—mngrl,n(M? ))d,ya(/“’t7)\>

a+m+1

m<9a(f)/(i)2m+n35a(€?n,n)>%

m+1
2(a+1)

hence, according to the Parseval’s equality (2.11), we obtain

(Fa(N)] @) 2 Fal€h 1))

(Fol D)6 =[S GO e
m_l—l 2m+n
2(0é+1)( ) +<f/ m+1n>

4. HEISENBERG-PAULI -WEYL INEQUALITY FOR THE FOURIER TRANSFORM %,

In this section, we will prove the main result of this work, that is the Heisenberg-Pauli-Weyl
inequality for the Fourier transforn¥, connected with the Riemann-Liouville operata, .
Next we give a generalization of this result, for this we need the following important lemma.

Lemma4.1. Let f € L*(dv,), such that

110 @)1 fllap < +00 and [|(4” + 2X%)2 Za( )2, < +00,

then
1 =
@1 ) fI3,, + 1+ 222 Za (O35, = D 20+ 4m + 20+ 3) |amal,
m,n=0

wherea,, , = (f/e% Jva;  (m,n) € N2,
Proof. Let f € L?*(dv,,), such that

V(r,z) e Ry xR;  f(r,x) = Zamnemnrw

m,n=0

and assume that

110, 2)| fllawe < +o0 and [[(1% +2X2)2 Zo(f)]l27a < +00,
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then the functiongr, x) — rf(r,z) and(r,z) — zf(r, z) belong to the spacg?(dv,), in
particularf € L?(dv,) N L*(dv4+1)- In the same manner, the functions

(11, 2) — (1 + N2 Za ()1, ), and - (1, A) — AZa( ) (1, V)

belong to the spacé?(dy,). In particular, by the relatior@.?), we deduce thgt(f) €
L3(dvs) N L*(dvay1), and we have

+oo
Il = [ [ P Go)

- 2 OZ+ ]‘ ||f“2ya+1

Z ‘ f/ea+l Va+1| )

m,n=0

hence, according to the relatign (3.6), we obtain

“+o0o
(4.2) rfl2,. = > [Vatm+ L, — Vi + Lana|™
m,n=0

Similarly, we have

+o0o
eI, = / / 2| (r.2)Pdvy (1, )

Z (@ f /€ m)vel Z [(f /zemn

m,n=0 m,n=0

/n+1 \/7
amn—‘rl_l' amn 1

By the same arguments, and using the relatipng (3.2), (3.7) and the Parseval’s €quality (2.11),
we obtain

?

and by the relatior] (3]1), we get

(4.3) /13,0, =

+oo
m,n= O

@.4) |+ N )R, = Z‘\/&+—m+1amn+\/71am+1n|,

m,n=0

+oo
n+1
mn+1 amn 1
m,n= O

Combining now the relation§ (4.2), (4.3), (4.4) ahd(4.5), we deduce that

(@) £113,., + 1(12 + 2)2)2 Za ()13,
= I f13,, + 12+ N2 Zal D3, + N1, + IAFal NI,

and

(4.5) N a(PlIzn =

J. Inequal. Pure and Appl. Matt9(3) (2008), Art. 88, 23 pp. http://jipam.vu.edu.au/
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_9 Z <a+m+1 lmn|? + (m+1)|am+17n|2>

m,n=0
n+1 n
2 m,n 2 o [Ymn— 2
v mz( e+ Slamai?)
+o0o +oo +oo n “+oo n+1
— 2 2 i 2 2
=2 > (a+m+ Dlamal* +2 D mlamal* +2 > 5 amal* +2 > 5|l
m,n=0 m,n=0 m,n=0 m,n=0
+oo
- Z (2ac + 4m + 2n + 3)|am.|*.
m,n=0

Remark 1. From the relation (4]1), we deduce that for Al L?(dv,), we have

(4.6) 1(r, )| £113,. + 142 + 2))2 Za( N3, > 20+ 3 fI12,..,
with equality if and only if

'r2+z2

Vir,z) e Ry xR;  f(r,x)=Ce” 2 ; CeC.
Lemma 4.2. Let f € L*(dv,) such that,

11, 2)[Fllaw, < 400 and [|(4” +2X°)2 Zu(f) |2, < +00,
then
1) Forall t >0,

1 1

Sl D)5, + 10 + 282 Fa (N, = (20 +3)[£115,,
2) The following assertions are equivalent
D) 1) 2012 +2X°)2 Za( )20 =
i1) There existg, > 0, such that

Gy )1 oI5 + 11+ 22%)2 Zal fi) 5, = 2o+ 3) 1 fuo 3,
wheref;, (r,z) = f(tor, tox).

Proof. 1) Let f € L*(dv,) satisfy the hypothesis.For alt> 0 we putf,(r, z) = f(tr,tz), and
then by a simple change of variables, we get

2a—|—3

11150, -

1

(4.7) 1fell3,0., = ﬁmllﬂliya,
and
4.8 2 2 5
(4.8) NG @) el = a0 @) f 20,
Forall (u, \) € T,

1 A
@9) Ful 80N = s Zal) (4.3).
and by using the relation (2.6), we deduce that
(4.10) 102+ 2022 Zu FB, = sz I + 2803 Zal DI,
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Then, the desired result follows by replacifidpy f; in the relation[(4.).

2) Let f € L*(dv,,); f # 0.
e Assume that

2a+3
1, 2)| llawall (12 + 202)2 Za(Fll2re = —5— 1113 1.,

By Theore , we havig(1 + 20?)2.%,(f)|l2.. # 0, then for

[ (r, \szua
(42 +222)2 Za ()2

m\»—t

we have )
t—g\H(r,x)\in,yﬁtﬁl\( + 202 20 (N34, = Ca+3)f5,.,
0

and this is equivalent to

110, 2)] fro I3, + 117 +2X%)2 Za(fio) 13, = (20 + 3)| fuol3,0,-
e Conversely, suppose that there exists- 0, such that

1
1, 2)] fia M50, + 11(1% + 202 Fa(fo) 2, = 20+ 3)I1fur 13,0,
This is equivalent to

(4.11) 2|H(r D13, + B0 + 2002 Za(HI3,. = Qa+3)[ £13,..
However, leth be the function defined df, +oc[, by

ht) = 5 H!(?” D)3, + Cll(H + 2022 Z0 ()34,

then, the minimum of the functiohis attained at the point

I[(r, |f||2ua
1042 +2X%)2 Za (f) |24

and
h(to) = 2[[1(r, )| f |2l (1" + 23%) 2 Fa (f) 1270 -
Thus by1) of this lemma, we have

h(tr) > h(to) = 2[[|(r, @) o | (1 +2X°)2 Za(f) |20 = (20 + 3|3,

According to the relatiorj (4.11), we deduce that

h(t) = h(to) = 2)||(r, )| Fllow | (1> + 2X2)2 Za )|z = (20 + 3) £I3,...-

Theorem 4.3(Heisenbeg-Pauli-Weyl inequalityfor all f € L?*(dv,), we have

(4.12) o 22+ 202 Za(D) o, > PP g1,

with equality if and only if

_ r2+a:2

V(r,z) € Ry x R; f(r,z)=Ce %% ; t,>0,CeC.
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Proof. It is obvious that iff = 0, or if |||(, z)|f||lan. = 400, Or [|(1% + 2X2)2.Z4(f) |2, =
+00, then the inequality (4.12) holds.

Let us suppose thdt (7, 2)| fll2.. + |(12 + 232)2.Z0(f)||24. < +oo, andf # 0.
By 1) of Lemmd 4.2, we have for all> 0

1 1
t—2H|(7“,x)|fH§,Va+t2H( + 22022703, = Ca+3)|If13,.

and the result follows if we pick

i
(2 + 2023 Za( )2,

By 2) of Lemmd 4.2, we have

s 20+ 3
10, @) fll2we | (17 + 22)2 Za(F)ll200 = —5— (H £

if and only if there existg,, such that

(s )1 fao 15,0, + 11+ 2X%)2 Fa(fio) 13, = 2o+ 3)| fio 5,0,
and according to Remalk 1, this is equivalent to

7‘2+12

fro(r,xz)y=Ce” 2 ; CeC,
which means that Y
_rftx
fr,z)=Ce 2% ; Ce€C.
L]

The following result gives a generalization of the Heisenberg-Pauli-Weyl inequality.

Theorem 4.4.Leta,b > 1 andn € R such thatya = (1 — n)b, then for all f € L?(dv,,) we
have

s T N + 28 20D 2 (2252) 1,

with equality if and only it = b =1 and

_ r2+z2

V(ir,z) € Ry X R; f(r,x)=Ce *% ; t,>0, CeC.
Proof. Let f € L?*(dv,,), f # 0, such that
b
1, ) Fllae + (17 +2X%)2 ()20 < +00.

Then for alla > 1, we have

I(ry )| ngyaHszya = 1. 2) P N L1 12

whered' is defined as usual by = . By Holder’s inequality we get

a—

H»ﬂ

) 13 7150, > 110 2) e

The strict inequality here is justified by the fact thaffit4 0, then the function$(r, z)[**| f|?
and| f|? cannot be proportional.Thus for all> 1, we have

@13) lier 71, > W e
I715..

with equality if and only ifa = 1.
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In the same manner and using Plancherel’s Theprem 2.3, we havefor all
(12 + 22%)2 Zo()ll210
| Za(f )Hz%
162+ 222 Fa() e
B 111,

(4.14) (1% + 222 Zo(P)]l5, >

with equality if and only ifb = 1.
Letn = -5, then by the relation$ (4.1.3), (4]14) and foralb > 1, we have

b
a+b’
na

, 222)2.Z,
G (ry 2) [ f 2,001 (12 ib/ )2 Za(f)ll27a |

1, @)A1, (2 4 232)5 2
1715

with equality if and only ifa = b = 1.
Applying Theorenj 4]3, we obtain

b 200+ 3\
s T N+ 228252 = (2572) e
with equality if and only ifa = b =1 and

_ r'2+a:2

V(r,z) € Ry x R; f(r,z)=Ce %% ; t,>0,CeC.

O

Remark 2. In the particular case when= b = 2, the previous result gives us the Heisenberg-
Pauli-Weyl inequality for the fourth moment of Heisenberg

10 2 Al | 62 4+ 20%) Za () > (2‘”3) 112,

5. THE LoCcAL UNCERTAINTY PRINCIPLE

Theorem 5.1. Let¢ be a real number such that< £ < 2a2+3, thenforallf € L?(dv,), f # 0,
and for all measurable subset®8 C I';; 0 < v,(F) < +o0, we have

(5.1) / / 2 (F) (s NP el A) < Kong (1 ()25 (1, 2) 11

where

Kyom ( 2 +3 2% )“‘33 ( 20 + 3 )2'
’ 220437 (o + 2) 200+ 3 — 2¢
Proof. For all s > 0, we put
By ={(r,z) e Ry xR; r* +2° < s°}.
Let f € L*(dv,). By Minkowski's inequality, we have

(5.2) (//V |d7a(/~b,k))2

= | Za(f)1El24,
<N Fa(f1)1El2h. + | Fa(f1B:)1E ]2,

< (1a(E)) 1 Za(f15.) oo + - FalF15:)

27711 N
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Applying the relation[(2.10), we deduce that for every 0, we have

(5.3) ( | [ !d%(u,k));S(%(E))éHles

On the other hand, by Hoélder’s inequality we have
(5.4) 1£ 15 ll1we < (@) fllzw Il (r )]~ 1,

Ly T H'g[a(le?)

2,Va

20+3—2€
S 2

(5.5) = 10, )£ (7, 2) |2, T
(22737 (a+3) 20 +3-29))

By Plancherel’s theorefn 2.3, we have also

(5.6) [Fa(f 1B l20 = [/ 1
< G @) f o ()4 L
= s~ [I1(r, 2)[* |20

Combining the relation$ (5.3], (5.5) and (5.6), we deduce that faralD we have

00,Ve

5.7) ( [ [17ahiw dw,»)% < Guc N> L0, 2) 2

whereg, ¢ is the function defined o}, +oco[ by

E) 200+3—2¢
atlS) = s+ i o s 2.
Gt 273 (a + 3) (20 + 3 — 2€)

Thus, the inequality (5]7) holds for

. ( 2741 (0 + ) )
0 — ) )

7a(B) (20 + 3 — 2¢

N

however
ga,ﬁ(SO) - (VQ(E)) 2a+3 KOQC £

_26
oo [ 20432 2“*3( 20 + 3 >2
“0 T\ @20+i0(a + 2) da+3-26)

Let us prove that the equality ip ($.1) cannot hold. Indeed, suppose that

where

_2¢
[ 1700 VP r0(03) = Kol D) 1,2 s,
Then
/ / 7005 NP1 ) = 501 D)
and therefore by the relatlor'.maS) gnd](5.4), we get
(5.8) 17a(£15,,)1Ell200 = (Va(E))* [ Fal(f15,) oo
(5.9) 1180 e = [ 7a(fLa,)lloonas
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and
(5.10) 1F 152, e = 10 2)* Fllzw (. 2) 15,
However, if f satisfies the equality (5.]10), then there ex(ts- 0, such that
|(T7 Jf)|2£f(7’, I)Z = C’(n m)’72513507

2,vq

hence
(5.11) V(r,z) € Ry x R;  f(r,z) = Ce®™|(r,z)|"*15p

where® is a real measurable function @& x R.
Butif f satisfies the relatiof (5.9), then there exigig \¢) € I';, such that

1l = 1Za(Flloona = [Falf) (1o, Mo)|-
So, there existg, € R satisfying

Fa()(Ho: Ao) = €| fll 1

B

and therefore

—+00
Oei@a/ / |(r,z)| 15, (r,z) (e@(m)_im_woja (T\/ 11 + /\3> - 1> dve(r,z) = 0.
0 R

This implies that for almost everly, z) € R, x R,

ei@(T,{L’)—i}xox—ieoja (,r, /M% + )\%) — 1

Hence, we deduce that for alle R, ,

Ja (r\/uﬁ +A3)‘ =1

Using the relation[ (2]2), it follows that2 + A2 = 0, or ug = i|\o|, and then

ei@(r,x) _ eieo +ilox ]

Replacing in[(5.1]1), we get
f(r,@) = C"0|(r,2)|7*1p,, (r,2).
Now, the relation[(5J8) means that for almost every\) € E, we have
| Za(D) (1N = [ Za(Nllsona = [Falf) (10, 20)|.
which implies that for almost everfy;, \) € E, we have

ffa(f)(,u, )\) = eiw(m}\)ya(f)(y’()? /\0>7
wherey is a real measurable function @i and therefore

—+00
C”W’(“’A)/ / |(r, :10)|_2£IBS0 (r,x) (e_i’\m“’\oz_wm”\)jar\//m — 1> dv,(r,z) = 0.
0 R
Consequently for alfr, z) € R, x R,

efi)\:t/‘«#i)\oxfiw(u,)\)ja <7" /,U2 + )\2> — 1’

which implies that\ = \g andu = 1.
However, sincey, (FE) > 0, this contradicts the fact that for almost evéry \) € E,

|‘gza<f)(:ua )‘)‘ - |ya<f)(,u0, )\0)
and shows that the inequality in (5.1) is strictly satisfied.

)
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Lemma 5.2. Let¢ be a real number such that> 2“;3, then for all measurable functiofion
R, x R we have

5 2 (2a+3) ¢ (2a+3)
(5.12) 1f0, < Magllfllan, & N2 fllan
where
T
Mavg = —2a o N
2043 (a+32) (26 —2a— 3)2£ % (20 + 3)% sin <7r (2‘;?)’))

with equality in [(5.1P) if and only if there exigtb > 0 such that
()l = (a+b](r, 2)[*) .

Proof. We suppose naturally thgt # 0. It is obvious that the inequality (5.12) holds if
[ fll2,e = 400 OF [[|(r, 2) | fll2,0,, = +00.

Assume that| f|l2.... + |l|(r, 2)[* f]l2.., < +o00.From the hypothesig¢ > 2« + 3, we deduce
that for alla, b > 0, the function

(r,2) — (a+b(r,2)*) ™"
belongs taL!(dv,) N L?*(dv,) and by Hélder’s inequality, we have

(5.13) 171, < [ +1eaP9 ], [la+ieap 3|,

2,V

2

2,V
_1?

< (U130, + MG @)A1, || 1+ 1) )3

However, by standard calculus, we have

2
|+ 1e2pe 3 .
20 ¢2045T (a + £) sin <7r <20§z3>>

2,Va

™

Thus

(5.14) £, <

T 2T (ot D) sin (r (222

with equality in [5.14) if and only if we have equality in (5]13), that is there exists- 0
satisfying

™

>) (A1 + G 2) £l

(L4 |(r,2) )2 f(r, )| = C(1+ |(r,0)) 2,

or
(5.15) ()] = C+|(r,)[)
Fort > 0, we put as abovef;(r, z) = f(tr, tz), then we have
1
(516) HftHil/a = t4a+6 Hf”iuoﬂ
and
1
(5.17) 1, 2)[* fell3,., = erzara Il 2)[* fl130.-

Replacingf by f; in the relation[(5.14), we deduce that for alt 0, we have
113, < ))GMﬂu@%+ﬂw3%mmmvmh)

T

f2a+%1" (a + %) sin (71' (265—?
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In particular, for

R | GOV
(20 +3)[fI3... |
we get

(2a+3) (2a+3)

1£1200 < Magl Fllan, © 11052 Fllts

where
Mo =

™
2§

2HIT (a+3) (26 —20—-3) % (20+3) % sin (” <%>>

Now suppose that we have equality in the last inequality. Then we have equality ih (5.14) for
fi, and by means of (5.15), we obtain

| fio (ry )| = C(1+ |(r, 2)[*) 7,
and then
()| = (a+bl(r, 2)[*) !
O

Theorem 5.3. Let ¢ be a real number such that > 20‘2—”’ Then for allf € L*(dv,), f # 0,
and for all measurable subsets C I'; 0 < 7,(F) < 400, we have

(5.18) / / Fa ) Vel N) < Maera(E) I © N 2) s,

where

Moe =

20+3 T (+32) (26 —2a— 3)2£ (2a + 3) % sin <7r (%)) .
Moreover,M,, . is the best (the smallest) constant satisfy[ng (5.18).

Proof. e Suppose that the right-hand side[of (5.18) is finite. Then, according to Lemma 5.2,
the functionf belongs tal!(dv,) and we have

// 2 () (1 M) P, ) < el B Fa ()%

S 704( )Hf”l,ua

9 (2a+3) (2a+3)

< ValB)Magll fllan, © M0 2) fllaws

where
Mo =

™

25T (o 3) (26 — 20— 3) 5 (20 +3) 5 sin (r (2822))

e Let us prove that the equality ip (5]18) cannot hold.
Indeed, suppose that

[ [ 120N dralin ) = Magra B, T 116 0L,
Then

(5.19) / 2D a2 = 10BN Z D),

(5.20) [Za(Plloora = IFl1vas

J. Inequal. Pure and Appl. Matt9(3) (2008), Art. 88, 23 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

20 S. QURI AND L.T. RACHDI

and
5 ¢ (2a+3)
(5.21) 1Y va = angHm )] Fllaw,
Applying Lemmg 5.P and the relation (5]21), we deduce that
(5.22) V(r,z) € Ry xRy f(r,2) = p(r,a)(a+b|(r,2)|*) 7,

with |p(r, z)| = 1;a,b > 0.
On the other hand, there exisi%, \¢) € [';. such that

(5.23) 1 Za(Fllora = [Falf) (o Ao)| = €™ Fal ) (1o, Xo); o € R.
Combining now the relation§ (5.20), (5122) ahd (5.23), we get

This |mpI|es that for almost every, z) € R, x R,

™™o (r, 2)ja (r\/uﬁ + A%) =1

Since|p(r, z)| = 1, we deduce that for all € R,

Ja (r\/ug +A3>’ = 1.

Using the relation[(2]2), it follows that + A2 = 0, or ug = i|A|, and therefore

—1i6g ei)\ox ]

p(r,z) =e
Replacing in[(5.22), we get
fr,z) = Ce™(a +b|(r, 2)|*) |C| = 1.
Now, the relation[(5.19) means that

[ [ U2, =120t Y (1.3) = 0.
Hence, for almost everf, \) € E,

(5.24) [ Za () (11, M| = 1 Za(P o = €% Falf) (10, Mo).
Let U(u, ) € R, such that

| ZalF) (1 )] = eI (F) (1, ).
Then from |(5.24), for almost evefy:, \) € E,
e T o)1 N) = €% Fa(f) (10, M),
and therefore

+oo
/ /(a + b|(r, z)[*) 7! [1 — o= N i¥lnd) ;0 <r\/,u2 + )\QH dvy(r,x) = 0.
0 R
Consequently, for allr, z) € R, x R,

(10— Nz () (r /12 + )\2> —1,

which implies that\ = \q andu = 1.
However, sincey, (F) > 0, this contradicts the fact that for almost every \) € £

N Z(F) (1, A) = €0 Fo () (o, M),
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and shows that the inequality in (5]18) is strictly satisfied.

e Let us prove that the constait, . is the best one satisfyinp (5]18).
Let A be a positive constant, such that for AlE L?(dv,,),

2a+3
625) [ [ 12000 Nt ) < B, )L,
We assume tha|(r, 2)[¢ f|2,.. < +oc. Then by Lemma@ 5]2f belongs tal!(dv,).
Replacingf by f;(r,z) = f(tr,tz) in (5.28), and using the relatiorjs (#.7), (4.9) and (5.17), we

deduce that for alt > 0
2a+3

A 2
[ (5.3)] dalne ) < AU W15

Using the dominate convergence theorem and the relafions @.7), {2-3), (2.9) and (2.10), we
deduce that
2
z.(f) (L2
n(%3)

Consequently, for alf € L?(dv,), such that||(r, )|* f]l2..., < +oo,

dya(pt, ) = | Za(£)(0,0)*7a(E).

t——+o0

2a+3

9_2a+43 2a+3
(5.26) [ Za(£)0,0)] < All fllzn, N 2)I*fllas, -
Now, let f € L*(dv,), such that||(r, z)|* f|l2.. < +oc, and let(u, \) € T. Putting

g(r,x) = ja <7“\/ p* + V) e~ f(r,x),

theng € L*(dv,), and|||(r, z)|*g||2... < +oo. Moreover,Z#,(g)(0,0) = Z,(f)(u, A), and by
(5.286), it follows that

2a+3

[ Za () (1 NI <A||f||2yag e ) f Iz, -

Thus, for allf € L?(dv,) such that||(r, z)|* f|l2... < 400, we have

2a+3

9_2a+3 2a+3
(5.27) 10 < Alfllaw © M 2) [ flla, -
Taking fo(r,z) = (1 + |(r,z)|**)~!, we have

2
:  _ T
H (f())Hoo')/a ||f0”1,ua (§2a+gr (a 4 %) sin (ﬂ' (2c;£3>>) ’

ol = e =20
T gatip (o + 2) sin (71 <2§—23>) 7
(200 + 3)w

1(r, @) foll3.,, =

240 (a+ 3)sin (7 (232))

Replacingf by f; in the relation|[(5.27), we obtaid > M.
This completes the proof of Theor¢gm|5.3. O
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