

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 4, Issue 4, Article 78, 2003

SOME NEW INEQUALITIES FOR TRIGONOMETRIC POLYNOMIALS WITH SPECIAL COEFFICIENTS

ŽIVORAD TOMOVSKI

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS SKOPJE 1000 MACEDONIA. tomovski@iunona.pmf.ukim.edu.mk

Received 21 July, 2003; accepted 14 November, 2003 Communicated by H. Bor

ABSTRACT. Some new inequalities for certain trigonometric polynomials with complex semiconvex and complex convex coefficients are given.

Key words and phrases: Petrović inequality, Complex trigonometric polynomial, Complex semi-convex coefficients, Complex convex coefficients.

2000 Mathematics Subject Classification. 26D05, 42A05.

1. INTRODUCTION AND PRELIMINARIES

Petrović [4] proved the following complementary triangle inequality for sequences of complex numbers $\{z_1, z_2, \ldots, z_n\}$.

Theorem A. Let α be a real number and $0 < \theta < \frac{\pi}{2}$. If $\{z_1, z_2, \ldots, z_n\}$ are complex numbers such that $\alpha - \theta \leq \arg z_{\nu} \leq \alpha + \theta, \nu = 1, 2, \ldots, n$, then

$$\left|\sum_{\nu=1}^{n} z_{\nu}\right| \ge (\cos \theta) \sum_{\nu=1}^{n} |z_{\nu}|.$$

For $0 < \theta < \frac{\pi}{2}$ denote by $K(\theta)$ the cone $K(\theta) = \{z : |\arg z| \le \theta\}$. Let $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$, for $n = 1, 2, 3, \ldots$, where $\{\lambda_n\}$ is a sequence of complex numbers. Then,

$$\Delta^2 \lambda_n = \Delta \left(\Delta \lambda_n \right) = \Delta \lambda_n - \Delta \lambda_{n+1} = \lambda_n - 2\lambda_{n+1} + \lambda_{n+2}, \quad n = 1, 2, 3, \dots$$

The author Tomovski (see [5]) proved the following inequality for cosine and sine polynomials with complex-valued coefficients.

Theorem B. Let $x \neq 2k\pi$ for $k = 0, \pm 1, \pm 2, ...$

ISSN (electronic): 1443-5756

^{© 2003} Victoria University. All rights reserved.

¹⁰¹⁻⁰³

(1) Let $\{b_k\}$ be a positive nondecreasing sequence and $\{u_k\}$ a sequence of complex numbers such that $\Delta\left(\frac{u_{k}}{b_{k}}\right) \in K\left(\theta\right)$. Then

$$\left|\sum_{k=n}^{m} u_k f\left(kx\right)\right| \le \frac{1}{\left|\sin\frac{x}{2}\right|} \left[\left(1 + \frac{1}{\cos\theta}\right) |u_m| + \frac{1}{\cos\theta} \frac{b_m}{b_n} |u_n|\right], \quad (\forall n, m \in \mathbb{N}, \ m > n).$$

(2) Let $\{b_k\}$ be a positive nondecreasing sequence and $\{u_k\}$ a sequence of complex numbers such that $\Delta(u_k b_k) \in K(\theta)$. Then

$$\left|\sum_{k=n}^{m} u_k f\left(kx\right)\right| \le \frac{1}{\left|\sin\frac{x}{2}\right|} \left[\left(1 + \frac{1}{\cos\theta}\right) |u_n| + \frac{1}{\cos\theta} \frac{b_m}{b_n} |u_m|\right], \quad (\forall n, m \in \mathbb{N}, \ m > n).$$

Here
$$f(x) = \sin x$$
 or $f(x) = \cos x$.

Similarly, the results of Theorem B were given by the author in [5] for sums of type $\sum_{k=n}^{m} (-1)^{k} u_{k} f(kx), \text{ where again } f(x) = \sin x \text{ or } f(x) = \cos x.$ Mitrinović and Pečarić (see [2, 3]) proved the following inequalities for cosine and sine poly-

nomials with nonnegative coefficients.

Theorem C. Let $x \neq 2k\pi$ for $k = 0, \pm 1, \pm 2, ...$

(1) Let $\{b_k\}$ be a positive nondecreasing sequence and $\{a_k\}$ a nonnegative sequence such that $\{a_k b_k^{-1}\}$ is a decreasing sequence. Then

$$\left|\sum_{k=n}^{m} a_k f(kx)\right| \le \frac{a_n}{\left|\sin\frac{x}{2}\right|} \left(\frac{b_m}{b_n}\right), \quad (\forall n, m \in \mathbb{N}, \ m > n).$$

(2) Let $\{b_k\}$ be a positive nondecreasing sequence and $\{a_k\}$ a nonnegative sequence such that $\{a_k b_k\}$ is an increasing sequence. Then

$$\left|\sum_{k=n}^{m} a_k f\left(kx\right)\right| \le \frac{a_m}{\left|\sin\frac{x}{2}\right|} \left(\frac{b_m}{b_n}\right), \quad (\forall n, m \in \mathbb{N}, \ m > n).$$

Here $f(x) = \sin x$ or $f(x) = \cos x$.

The special cases of these inequalities were proved by G.K. Lebed for $b_k = k^s$, $s \ge 0$ (see [1]). Similarly, the results of Theorem C, were given by Mitrinović and Pečarić in [2, 3] for sums of type $\sum_{k=n}^{m} (-1)^k a_k f(kx)$, where again $f(x) = \sin x$ or $f(x) = \cos x$. The sequence $\{u_k\}$ is said to be *complex semiconvex* if there exists a cone $K(\theta)$, such that

 $\Delta^2 \left(\frac{u_k}{b_k}\right) \in K(\theta) \text{ or } \Delta^2 \left(u_k b_k\right) \in K(\theta)$, where $\{b_k\}$ is a positive nondecreasing sequence. For $b_k = 1$, the sequence $\{u_k\}$ shall be called a *complex convex sequence*.

In this paper we shall give some estimates for cosine and sine polynomials with complex semi-convex and complex convex coefficients.

2. MAIN RESULTS

Theorem 2.1. Let $\{z_k\}$ be a sequence of complex numbers such that $A = \max_{\substack{n \leq p \leq q \leq m}} \left| \sum_{j=p}^{q} \sum_{k=i}^{j} z_k \right|$. Further, let $\{b_k\}$ be a positive nondecreasing sequence. If $\{u_k\}$ is a sequence of complex numbers such that $\Delta^2 \left(\frac{u_k}{b_k}\right) \in K(\theta)$, then

$$\left|\sum_{k=n}^{m} u_k z_k\right| \le A \left[|u_m| + b_m \left(1 + \frac{1}{\cos \theta} \right) \left| \Delta \left(\frac{u_{m-1}}{b_{m-1}} \right) \right| + \frac{b_m}{\cos \theta} \left| \Delta \left(\frac{u_n}{b_n} \right) \right| \right],$$

$$(\forall n, m \in \mathbb{N}, \ m > n).$$

Proof. Let us estimate the sum $\sum_{k=n}^{m} b_k z_k$. Since

$$\left|\sum_{k=n}^{m} z_k\right| \le \sum_{j=n+1}^{m} \left|\sum_{k=n}^{j} z_k\right| \le A,$$

we obtain

$$\left|\sum_{k=n}^{m} b_k z_k\right| = \left|b_n \sum_{k=n}^{m} z_k + \sum_{j=n+1}^{m} \left(\sum_{k=j}^{m} z_k\right) (b_j - b_{j-1})\right|$$
$$\leq b_n \left|\sum_{k=n}^{m} z_k\right| + \sum_{j=n+1}^{m} \left|\sum_{k=j}^{m} z_k\right| (b_j - b_{j-1})$$
$$\leq A (b_n + b_m - b_n) = Ab_m.$$

(*) Then,

$$\begin{aligned} \left| \sum_{k=n}^{m} u_{k} z_{k} \right| &= \left| \sum_{k=n}^{m} \frac{u_{k}}{b_{k}} \left(b_{k} z_{k} \right) \right| \\ &= \left| \frac{u_{m}}{b_{m}} \sum_{k=n}^{m} b_{k} z_{k} + \sum_{j=n}^{m-1} \left(\sum_{k=n}^{j} b_{k} z_{k} \right) \Delta \left(\frac{u_{j}}{b_{j}} \right) \right| \\ &= \left| \frac{u_{m}}{b_{m}} \sum_{k=n}^{m} b_{k} z_{k} + \Delta \left(\frac{u_{m-1}}{b_{m-1}} \right) \sum_{j=n}^{m-1} \sum_{k=n}^{j} b_{k} z_{k} + \sum_{r=n}^{m-2} \Delta^{2} \left(\frac{u_{r}}{b_{r}} \right) \sum_{j=n}^{r} \sum_{k=n}^{j} b_{k} z_{k} \right| \\ &\leq \frac{|u_{m}|}{b_{m}} \left| \sum_{k=n}^{m} b_{k} z_{k} \right| + \left| \Delta \left(\frac{u_{m-1}}{b_{m-1}} \right) \right| \left| \sum_{j=n}^{m-1} \sum_{k=n}^{j} b_{k} z_{k} \right| + \sum_{r=n}^{m-2} \left| \Delta^{2} \left(\frac{u_{r}}{b_{r}} \right) \right| \left| \sum_{j=n}^{r} \sum_{k=n}^{j} b_{k} z_{k} \right| \\ &\leq A b_{m} \frac{|u_{m}|}{b_{m}} + A b_{m} \left| \Delta \left(\frac{u_{m-1}}{b_{m-1}} \right) \right| + \frac{A b_{m}}{\cos \theta} \left| \sum_{r=n}^{m-2} \Delta^{2} \left(\frac{u_{r}}{b_{r}} \right) \right| \\ &= A \left[\left| u_{m} \right| + b_{m} \left| \Delta \left(\frac{u_{m-1}}{b_{m-1}} \right) \right| + \frac{b_{m}}{\cos \theta} \left| \Delta \left(\frac{u_{n}}{b_{n}} \right) - \Delta \left(\frac{u_{m-1}}{b_{m-1}} \right) \right| \right] \\ &\leq A \left[\left| u_{m} \right| + b_{m} \left(1 + \frac{1}{\cos \theta} \right) \left| \Delta \left(\frac{u_{m-1}}{b_{m-1}} \right) \right| + \frac{b_{m}}{\cos \theta} \left| \Delta \left(\frac{u_{n}}{b_{n}} \right) \right| \right]. \end{aligned}$$

Theorem 2.2. Let $\{z_k\}$ and $\{b_k\}$ be defined as in Theorem 2.1. If $\{u_k\}$ is a sequence of complex numbers such that $\Delta^2(u_kb_k) \in K(\theta)$, then

$$\left|\sum_{k=n}^{m} u_k z_k\right| \le A \left[|u_n| + b_n^{-1} \left(1 + \frac{1}{\cos \theta} \right) \left(|\Delta (u_n b_n)| + |\Delta (u_{m-1} b_{m-1})| \right) \right],$$

$$(\forall n, m \in \mathbb{N}, \ m > n).$$

Proof. The sequence $\{b_k^{-1}\}_{k=n}^m$ is nonincreasing, so from (*) we get

$$\left|\sum_{k=n}^{m} b_k^{-1} z_k\right| \le A b_n^{-1}.$$

Now, we have:

$$\begin{split} \left| \sum_{k=n}^{m} u_{k} z_{k} \right| &= \left| \sum_{k=n}^{m} \left(u_{k} b_{k} \right) b_{k}^{-1} z_{k} \right| \\ &= \left| u_{n} b_{n} \sum_{k=n}^{m} b_{k}^{-1} z_{k} + \sum_{j=n+1}^{m} \left(\sum_{k=j}^{m} b_{k}^{-1} z_{k} \right) \left(u_{j} b_{j} - u_{j-1} b_{j-1} \right) \right| \\ &= \left| u_{n} b_{n} \sum_{k=n}^{m} b_{k}^{-1} z_{k} - \sum_{j=n+1}^{m-1} \Delta^{2} \left(u_{j-1} b_{j-1} \right) \sum_{r=n}^{j} \sum_{k=r}^{m} b_{k}^{-1} z_{k} \right| \\ &+ \Delta \left(u_{n} b_{n} \right) \sum_{k=n}^{m} b_{k}^{-1} z_{k} - \Delta \left(u_{m-1} b_{m-1} \right) \sum_{r=n}^{m} \sum_{k=r}^{m} b_{k}^{-1} z_{k} \right| \\ &\leq \left| u_{n} \right| b_{n} \left| \sum_{k=n}^{m} b_{k}^{-1} z_{k} \right| + \sum_{j=n+1}^{m-1} \left| \Delta^{2} \left(u_{j-1} b_{j-1} \right) \right| \left| \sum_{r=n}^{m} \sum_{k=r}^{m} b_{k}^{-1} z_{k} \right| \\ &+ \left| \Delta \left(u_{n} b_{n} \right) \right| \left| \sum_{k=n}^{m} b_{k}^{-1} z_{k} \right| + \left| \Delta \left(u_{m-1} b_{m-1} \right) \right| \left| \sum_{r=n}^{m} \sum_{k=r}^{m} b_{k}^{-1} z_{k} \right| \\ &\leq \left| u_{n} \right| b_{n} A b_{n}^{-1} + A b_{n}^{-1} \sum_{j=n+1}^{m-1} \left| \Delta^{2} \left(u_{j-1} b_{j-1} \right) \right| + A b_{n}^{-1} \left| \Delta \left(u_{n} b_{n} \right) \right| \\ &+ A b_{n}^{-1} \left| \Delta \left(u_{m-1} b_{m-1} \right) \right| \\ &\leq A \left[\left| u_{n} \right| + \frac{b_{n}^{-1}}{\cos \theta} \right| \sum_{j=n+1}^{m-1} \Delta^{2} \left(u_{j-1} b_{j-1} \right) \right| \\ &+ b_{n}^{-1} \left| \Delta \left(u_{n} b_{n} \right) \right| + b_{n}^{-1} \left| \Delta \left(u_{m-1} b_{m-1} \right) \right| \\ &+ b_{n}^{-1} \left| \Delta \left(u_{n} b_{n} \right) \right| + b_{n}^{-1} \left| \Delta \left(u_{m-1} b_{m-1} \right) \right| \\ &= A \left[\left| u_{n} \right| + \frac{b_{n}^{-1}}{\cos \theta} \left| \Delta \left(u_{n} b_{n} \right) - \Delta \left(u_{m-1} b_{m-1} \right) \right| \\ &\leq A \left[\left| u_{n} \right| + b_{n}^{-1} \left| \Delta \left(u_{n} b_{n} \right) \right| + b_{n}^{-1} \left| \Delta \left(u_{m-1} b_{m-1} \right) \right| \\ &= A \left[\left| u_{n} \right| + b_{n}^{-1} \left| \Delta \left(u_{n} b_{n} \right) \right| + b_{n}^{-1} \left| \Delta \left(u_{m-1} b_{m-1} \right) \right| \\ &\leq A \left[\left| u_{n} \right| + b_{n}^{-1} \left(\left(1 + \frac{1}{\cos \theta} \right) \left(\left| \Delta \left(u_{n} b_{n} \right) \right| + \left| \Delta \left(u_{m-1} b_{m-1} \right) \right| \right) \right]. \end{aligned}$$

Lemma 2.3. For all $p, q \in \mathbb{N}$, p < q, the following inequalities hold

(2.1)
$$\left|\sum_{j=p}^{q}\sum_{k=l}^{j}e^{ikx}\right| \le \frac{q-p+2}{2\sin^2\frac{x}{2}}, \ x \ne 2k\pi, \ k=0,\pm 1,\pm 2,\dots,$$

(2.2)
$$\left| \sum_{j=p}^{q} \sum_{k=l}^{j} (-1)^{k} e^{ikx} \right| \leq \frac{q-p+2}{2\cos^{2}\frac{x}{2}}, \ x \neq (2k+1)\pi, \ k = 0, \pm 1, \pm 2, \dots$$

Proof. It is sufficient to prove the first inequality, since the second inequality can be proved analogously.

$$\begin{vmatrix} \sum_{j=p}^{q} \sum_{k=l}^{j} e^{ikx} \end{vmatrix} = \begin{vmatrix} \sum_{j=p}^{q} e^{ilx} \frac{e^{i(j-l+1)x} - 1}{e^{ix} - 1} \end{vmatrix}$$
$$= \frac{1}{|e^{ix} - 1|} \left| \frac{1}{e^{i(l-1)x}} \sum_{j=p}^{q} e^{ijx} - (q-p+1) \right|$$
$$\leq \frac{1}{|2\sin\frac{x}{2}|} \frac{|e^{i(q-p+1)} - 1|}{|e^{ix} - 1|} + \frac{q-p+1}{|2\sin\frac{x}{2}|}$$
$$\leq \frac{2}{4\sin^2\frac{x}{2}} + \frac{q-p+1}{2\sin^2\frac{x}{2}} = \frac{q-p+2}{2\sin^2\frac{x}{2}}.$$

By putting $z_k = \exp(ikx)$ in Theorem 2.1 and Theorem 2.2 and using the inequality (2.1) of the above lemma, we have:

Theorem 2.4. (i) Let $\{b_k\}$ and $\{u_k\}$ be defined as in Theorem 2.1. Then

(ii) Let $\{b_k\}$ and $\{u_k\}$ be defined as in Theorem 2.2. Then

In both cases $x \neq 2k\pi$, $k = 0, \pm 1, \pm 2, \ldots$

Applying the known inequalities $\operatorname{Re} z \leq |z|$ and $\operatorname{Im} z \leq |z|$ for $z \in \mathbb{C}$, we obtain the following result:

Theorem 2.5. Let $x \neq 2k\pi$ for $k = 0, \pm 1, \pm 2, ...$

(i) Let $\{b_k\}$ and $\{u_k\}$ be defined as in Theorem 2.1. Then

$$\left|\sum_{k=n}^{m} u_k f\left(kx\right)\right| \le \frac{m-n+2}{2\sin^2 \frac{x}{2}} \left[\left|u_m\right| + b_m \left(1 + \frac{1}{\cos \theta}\right) \left|\Delta\left(\frac{u_{m-1}}{b_{m-1}}\right)\right| + \frac{b_m}{\cos \theta} \left|\Delta\left(\frac{u_n}{b_n}\right)\right|\right],$$

$$\left(\forall n, m \in \mathbb{N}, \ m > n\right).$$

(ii) Let $\{b_k\}$ and $\{u_k\}$ be defined as in Theorem 2.2. Then

$$\left| \sum_{k=n}^{m} u_k f(kx) \right| \le \frac{m-n+2}{2\sin^2 \frac{x}{2}} \left[|u_n| + b_n^{-1} \left(1 + \frac{1}{\cos \theta} \right) \left(|\Delta (u_n b_n)| + |\Delta (u_{m-1} b_{m-1})| \right) \right], \quad (\forall n, m \in \mathbb{N}, \ m > n).$$

Applying inequality (2.2) of Lemma 2.3, we obtain the following results:

Theorem 2.6. Let $x \neq (2k+1) \pi$ for $k = 0, \pm 1, \pm 2, \ldots$ and let $x \mapsto f(x)$ be defined as in *Theorem 2.5.*

(i) If $\{b_k\}$ and $\{u_k\}$ are defined as in Theorem 2.1, then

(ii) If $\{b_k\}$ and $\{u_k\}$ are defined as in Theorem 2.2, then

For $b_k = 1$, we obtain the following theorem.

Theorem 2.7. Let $\{u_k\}$ be a complex convex sequence.

(i) If $x \neq 2k\pi$ for $k = 0, \pm 1, \pm 2, ...,$ then we have:

$$\left|\sum_{k=n}^{m} u_k f\left(kx\right)\right| \le \frac{m-n+2}{2\sin^2 \frac{x}{2}} \left[\left|u_m\right| + \left(1 + \frac{1}{\cos \theta}\right) \left|\Delta u_{m-1}\right| + \frac{1}{\cos \theta} \left|\Delta u_n\right|\right], \quad (\forall n, m \in \mathbb{N}, \ m > n).$$

(ii) If $x \neq (2k+1) \pi$ for $k = 0, \pm 1, \pm 2, ...$, then we have:

$$\left| \sum_{k=n}^{m} (-1)^{k} u_{k} f(kx) \right| \leq \frac{m-n+2}{2\cos^{2} \frac{x}{2}} \left[|u_{n}| + \left(1 + \frac{1}{\cos \theta} \right) (|\Delta u_{n}| + |\Delta u_{m-1}|) \right], \quad (\forall n, m \in \mathbb{N}, \ m > n)$$

- [1] G.K. LEBED, On trigonometric series with coefficients which satisfy some conditions (Russian), *Mat. Sb.*, **74** (116) (1967), 100–118
- [2] D.S. MITRINOVIĆ AND J.E. PEČARIĆ, On an inequality of G. K. Lebed', *Prilozi MANU, Od. Mat. Tehn. Nauki*, **12** (1991), 15–19
- [3] J.E. PEČARIĆ, Nejednakosti, 6 (1996), 175–179 (Zagreb).
- [4] M. PETROVIĆ, Theoreme sur les integrales curvilignes, *Publ. Math. Univ. Belgrade*, 2 (1933), 45– 59
- [5] Ž. TOMOVSKI, On some inequalities of Mitrinović and Pečarić, *Prilozi MANU, Od. Mat. Tehn. Nauki*, **22** (2001), 21–28.