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Abstract

Some new inequalities for certain trigonometric polynomials with complex semi-
convex and complex convex coefficients are given.
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1. Introduction and Preliminaries
Petrovíc [4] proved the following complementary triangle inequality for se-
quences of complex numbers{z1, z2, . . . , zn} .

Theorem A. Let α be a real number and0 < θ < π
2
. If {z1, z2, . . . , zn} are

complex numbers such thatα− θ ≤ arg zν ≤ α + θ, ν = 1, 2, . . . , n, then∣∣∣∣∣
n∑

ν=1

zν

∣∣∣∣∣ ≥ (cos θ)
n∑

ν=1

|zν |.

For0 < θ < π
2

denote byK (θ) the coneK (θ) = {z : |arg z| ≤ θ} .

Let ∆λn = λn − λn+1, for n = 1, 2, 3, . . . , where{λn} is a sequence of
complex numbers. Then,

∆2λn = ∆ (∆λn) = ∆λn −∆λn+1 = λn − 2λn+1 + λn+2, n = 1, 2, 3, . . .

The author Tomovski (see [5]) proved the following inequality for cosine and
sine polynomials with complex-valued coefficients.

Theorem B. Letx 6= 2kπ for k = 0,±1,±2, . . .

1. Let {bk} be a positive nondecreasing sequence and{uk} a sequence of

complex numbers such that∆
(

uk

bk

)
∈ K (θ) . Then∣∣∣∣∣

m∑
k=n

ukf (kx)

∣∣∣∣∣ ≤ 1∣∣sin x
2

∣∣
[(

1 +
1

cos θ

)
|um|+

1

cos θ

bm

bn

|un|
]

,

(∀n, m ∈N, m > n) .
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2. Let {bk} be a positive nondecreasing sequence and{uk} a sequence of
complex numbers such that∆ (ukbk) ∈ K (θ) . Then∣∣∣∣∣

m∑
k=n

ukf (kx)

∣∣∣∣∣ ≤ 1∣∣sin x
2

∣∣
[(

1 +
1

cos θ

)
|un|+

1

cos θ

bm

bn

|um|
]

,

(∀n,m ∈N, m > n) .

Heref (x) = sin x or f (x) = cos x.

Similarly, the results of TheoremB were given by the author in [5] for sums
of type

∑m
k=n (−1)k ukf (kx) , where againf (x) = sin x or f (x) = cos x.

Mitrinovi ć and Pěcaríc (see [2, 3]) proved the following inequalities for co-
sine and sine polynomials with nonnegative coefficients.

Theorem C. Letx 6= 2kπ for k = 0,±1,±2, ..

1. Let {bk} be a positive nondecreasing sequence and{ak} a nonnegative
sequence such that

{
akb

−1
k

}
is a decreasing sequence. Then∣∣∣∣∣

m∑
k=n

akf (kx)

∣∣∣∣∣ ≤ an∣∣sin x
2

∣∣
(

bm

bn

)
, (∀n, m ∈N, m > n) .

2. Let {bk} be a positive nondecreasing sequence and{ak} a nonnegative
sequence such that{akbk} is an increasing sequence. Then∣∣∣∣∣

m∑
k=n

akf (kx)

∣∣∣∣∣ ≤ am∣∣sin x
2

∣∣
(

bm

bn

)
, (∀n, m ∈N, m > n) .

Heref (x) = sin x or f (x) = cos x.
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The special cases of these inequalities were proved by G.K. Lebed forbk =
ks, s ≥ 0 (see [1]). Similarly, the results of TheoremC, were given by Mitri-
nović and Pěcaríc in [2, 3] for sums of type

∑m
k=n (−1)k akf (kx) , where again

f (x) = sin x or f (x) = cos x.

The sequence{uk} is said to becomplex semiconvexif there exists a cone

K (θ), such that∆2
(

uk

bk

)
∈ K (θ) or ∆2 (ukbk) ∈ K (θ) , where{bk} is a

positive nondecreasing sequence. Forbk = 1, the sequence{uk} shall be called
acomplex convex sequence.

In this paper we shall give some estimates for cosine and sine polynomials
with complex semi-convex and complex convex coefficients.
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2. Main Results
Theorem 2.1. Let {zk} be a sequence of complex numbers such thatA =

max
n≤p≤q≤m

∣∣∣∑q
j=p

∑j
k=i zk

∣∣∣ . Further, let {bk} be a positive nondecreasing se-

quence. If{uk} is a sequence of complex numbers such that∆2
(

uk

bk

)
∈ K (θ) ,

then∣∣∣∣∣
m∑

k=n

ukzk

∣∣∣∣∣
≤ A

[
|um|+ bm

(
1 +

1

cos θ

) ∣∣∣∣∆(um−1

bm−1

)∣∣∣∣+ bm

cos θ

∣∣∣∣∆(un

bn

)∣∣∣∣] ,

(∀n, m ∈N, m > n) .

Proof. Let us estimate the sum
∑m

k=n bkzk.
Since ∣∣∣∣∣

m∑
k=n

zk

∣∣∣∣∣ ≤
m∑

j=n+1

∣∣∣∣∣
j∑

k=n

zk

∣∣∣∣∣ ≤ A,

we obtain ∣∣∣∣∣
m∑

k=n

bkzk

∣∣∣∣∣ =

∣∣∣∣∣bn

m∑
k=n

zk +
m∑

j=n+1

(
m∑

k=j

zk

)
(bj − bj−1)

∣∣∣∣∣
≤ bn

∣∣∣∣∣
m∑

k=n

zk

∣∣∣∣∣+
m∑

j=n+1

∣∣∣∣∣
m∑

k=j

zk

∣∣∣∣∣ (bj − bj−1)

≤ A (bn + bm − bn) = Abm.(*)
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Then,∣∣∣∣∣
m∑

k=n

ukzk

∣∣∣∣∣ =

∣∣∣∣∣
m∑

k=n

uk

bk

(bkzk)

∣∣∣∣∣
=

∣∣∣∣∣um

bm

m∑
k=n

bkzk +
m−1∑
j=n

(
j∑

k=n

bkzk

)
∆

(
uj

bj

)∣∣∣∣∣
=

∣∣∣∣∣um

bm

m∑
k=n

bkzk + ∆

(
um−1

bm−1

)m−1∑
j=n

j∑
k=n

bkzk

+
m−2∑
r=n

∆2

(
ur

br

) r∑
j=n

j∑
k=n

bkzk

∣∣∣∣∣
≤ |um|

bm

∣∣∣∣∣
m∑

k=n

bkzk

∣∣∣∣∣+
∣∣∣∣∆(um−1

bm−1

)∣∣∣∣
∣∣∣∣∣
m−1∑
j=n

j∑
k=n

bkzk

∣∣∣∣∣
+

m−2∑
r=n

∣∣∣∣∆2

(
ur

br

)∣∣∣∣
∣∣∣∣∣

r∑
j=n

j∑
k=n

bkzk

∣∣∣∣∣
≤ Abm

|um|
bm

+ Abm

∣∣∣∣∆(um−1

bm−1

)∣∣∣∣+ Abm

cos θ

∣∣∣∣∣
m−2∑
r=n

∆2

(
ur

br

)∣∣∣∣∣
= A

[
|um|+ bm

∣∣∣∣∆(um−1

bm−1

)∣∣∣∣+ bm

cos θ

∣∣∣∣∆(un

bn

)
−∆

(
um−1

bm−1

)∣∣∣∣]
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≤ A

[
|um|+ bm

(
1 +

1

cos θ

) ∣∣∣∣∆(um−1

bm−1

)∣∣∣∣+ bm

cos θ

∣∣∣∣∆(un

bn

)∣∣∣∣] .

Theorem 2.2. Let {zk} and {bk} be defined as in Theorem2.1. If {uk} is a
sequence of complex numbers such that∆2 (ukbk) ∈ K (θ) , then∣∣∣∣∣

m∑
k=n

ukzk

∣∣∣∣∣ ≤ A

[
|un|+ b−1

n

(
1 +

1

cos θ

)
(|∆ (unbn)|+ |∆ (um−1bm−1)|)

]
,

(∀n, m ∈N, m > n) .

Proof. The sequence
{
b−1
k

}m

k=n
is nonincreasing, so from (*) we get∣∣∣∣∣

m∑
k=n

b−1
k zk

∣∣∣∣∣ ≤ Ab−1
n .

Now, we have:∣∣∣∣∣
m∑

k=n

ukzk

∣∣∣∣∣ =

∣∣∣∣∣
m∑

k=n

(ukbk) b−1
k zk

∣∣∣∣∣
=

∣∣∣∣∣unbn

m∑
k=n

b−1
k zk +

m∑
j=n+1

(
m∑

k=j

b−1
k zk

)
(ujbj − uj−1bj−1)

∣∣∣∣∣
=

∣∣∣∣∣unbn

m∑
k=n

b−1
k zk −

m−1∑
j=n+1

∆2 (uj−1bj−1)

j∑
r=n

m∑
k=r

b−1
k zk
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+ ∆ (unbn)
m∑

k=n

b−1
k zk −∆ (um−1bm−1)

m∑
r=n

m∑
k=r

b−1
k zk

∣∣∣∣∣
≤ |un| bn

∣∣∣∣∣
m∑

k=n

b−1
k zk

∣∣∣∣∣+
m−1∑

j=n+1

∣∣∆2 (uj−1bj−1)
∣∣ ∣∣∣∣∣

j∑
r=n

m∑
k=r

b−1
k zk

∣∣∣∣∣
+ |∆ (unbn)|

∣∣∣∣∣
m∑

k=n

b−1
k zk

∣∣∣∣∣+ |∆ (um−1bm−1)|

∣∣∣∣∣
m∑

r=n

m∑
k=r

b−1
k zk

∣∣∣∣∣
≤ |un| bnAb−1

n + Ab−1
n

m−1∑
j=n+1

∣∣∆2 (uj−1bj−1)
∣∣+ Ab−1

n |∆ (unbn)|

+ Ab−1
n |∆ (um−1bm−1)|

≤ A

[
|un|+

b−1
n

cos θ

∣∣∣∣∣
m−1∑

j=n+1

∆2 (uj−1bj−1)

∣∣∣∣∣
+ b−1

n |∆ (unbn)|+ b−1
n |∆ (um−1bm−1)|

]
= A

[
|un|+

b−1
n

cos θ
|∆ (unbn)−∆ (um−1bm−1)|

+ b−1
n |∆ (unbn)|+ b−1

n |∆ (um−1bm−1)|
]

≤ A

[
|un|+ b−1

n

(
1 +

1

cos θ

)
(|∆ (unbn)|+ |∆ (um−1bm−1)|)

]
.
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Lemma 2.3. For all p, q ∈ N, p < q, the following inequalities hold

(2.1)

∣∣∣∣∣
q∑

j=p

j∑
k=l

eikx

∣∣∣∣∣ ≤ q − p + 2

2 sin2 x
2

, x 6= 2kπ, k = 0,±1,±2, . . . ,

(2.2)

∣∣∣∣∣
q∑

j=p

j∑
k=l

(−1)k eikx

∣∣∣∣∣ ≤ q − p + 2

2 cos2 x
2

, x 6= (2k + 1) π,

k = 0,±1,±2, . . . .

Proof. It is sufficient to prove the first inequality, since the second inequality
can be proved analogously.∣∣∣∣∣

q∑
j=p

j∑
k=l

eikx

∣∣∣∣∣ =

∣∣∣∣∣
q∑

j=p

eilx ei(j−l+1)x − 1

eix − 1

∣∣∣∣∣
=

1

|eix − 1|

∣∣∣∣∣ 1

ei(l−1)x

q∑
j=p

eijx − (q − p + 1)

∣∣∣∣∣
≤ 1∣∣2 sin x

2

∣∣
∣∣ei(q−p+1) − 1

∣∣
|eix − 1|

+
q − p + 1∣∣2 sin x

2

∣∣
≤ 2

4 sin2 x
2

+
q − p + 1

2 sin2 x
2

=
q − p + 2

2 sin2 x
2

.
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By puttingzk = exp (ikx) in Theorem2.1 and Theorem2.2 and using the
inequality (2.1) of the above lemma, we have:

Theorem 2.4. (i) Let{bk} and{uk} be defined as in Theorem2.1. Then∣∣∣∣∣
m∑

k=n

uk exp (ikx)

∣∣∣∣∣
≤ m− n + 2

2 sin2 x
2

[
|um|+ bm

(
1 +

1

cos θ

) ∣∣∣∣∆(um−1

bm−1

)∣∣∣∣+ bm

cos θ

∣∣∣∣∆(un

bn

)∣∣∣∣] ,

(∀n, m ∈N, m > n) .

(ii) Let{bk} and{uk} be defined as in Theorem2.2. Then∣∣∣∣∣
m∑

k=n

uk exp (ikx)

∣∣∣∣∣
≤ m− n + 2

2 sin2 x
2

[
|un|+ b−1

n

(
1 +

1

cos θ

)
(|∆ (unbn)|+ |∆ (um−1bm−1)|)

]
,

(∀n, m ∈N, m > n) .

In both casesx 6= 2kπ, k = 0,±1,±2, . . .

Applying the known inequalitiesRe z ≤ |z| andIm z ≤ |z| for z ∈ C, we
obtain the following result:

Theorem 2.5.Letx 6= 2kπ for k = 0,±1,±2, . . . .
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(i) Let{bk} and{uk} be defined as in Theorem2.1. Then∣∣∣∣∣
m∑

k=n

ukf (kx)

∣∣∣∣∣
≤ m− n + 2

2 sin2 x
2

[
|um|+ bm

(
1 +

1

cos θ

) ∣∣∣∣∆(um−1

bm−1

)∣∣∣∣+ bm

cos θ

∣∣∣∣∆(un

bn

)∣∣∣∣] ,

(∀n, m ∈N, m > n) .

(ii) Let{bk} and{uk} be defined as in Theorem2.2. Then∣∣∣∣∣
m∑

k=n

ukf (kx)

∣∣∣∣∣
≤ m− n + 2

2 sin2 x
2

[
|un|+ b−1

n

(
1 +

1

cos θ

)
(|∆ (unbn)|+ |∆ (um−1bm−1)|)

]
,

(∀n, m ∈N, m > n) .

Applying inequality (2.2) of Lemma2.3, we obtain the following results:

Theorem 2.6.Letx 6= (2k + 1) π for k = 0,±1,±2, . . . and letx 7→ f (x) be
defined as in Theorem2.5.

(i) If {bk} and{uk} are defined as in Theorem2.1, then∣∣∣∣∣
m∑

k=n

(−1)k ukf (kx)

∣∣∣∣∣
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≤ m− n + 2

2 cos2 x
2

[
|um|+ bm

(
1 +

1

cos θ

) ∣∣∣∣∆(um−1

bm−1

)∣∣∣∣+ bm

cos θ

∣∣∣∣∆(un

bn

)∣∣∣∣] ,

(∀n, m ∈N, m > n) .

(ii) If {bk} and{uk} are defined as in Theorem2.2, then∣∣∣∣∣
m∑

k=n

(−1)k ukf (kx)

∣∣∣∣∣
≤ m− n + 2

2 cos2 x
2

[
|un|+ b−1

n

(
1 +

1

cos θ

)
(|∆ (unbn)|+ |∆ (um−1bm−1)|)

]
,

(∀n, m ∈N, m > n) .

For bk = 1, we obtain the following theorem.

Theorem 2.7.Let{uk} be a complex convex sequence.

(i) If x 6= 2kπ for k = 0,±1,±2, . . . , then we have:∣∣∣∣∣
m∑

k=n

ukf (kx)

∣∣∣∣∣
≤ m− n + 2

2 sin2 x
2

[
|um|+

(
1 +

1

cos θ

)
|∆um−1|+

1

cos θ
|∆un|

]
,

(∀n, m ∈N, m > n) .
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(ii) If x 6= (2k + 1) π for k = 0,±1,±2, . . . , then we have:∣∣∣∣∣
m∑

k=n

(−1)k ukf (kx)

∣∣∣∣∣
≤ m− n + 2

2 cos2 x
2

[
|un|+

(
1 +

1

cos θ

)
(|∆un|+ |∆um−1|)

]
,

(∀n, m ∈N, m > n) .
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