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1. I NTRODUCTION

In the literature on numerical integration, see for example [12], [13], the following estimation
is well known as the trapezoid inequality:∣∣∣∣f (b) + f (a)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ ≤ (b− a)2

12
sup

x∈(a,b)

|f ′′ (x)| ,

where the mappingf : [a, b] → R is twice differentiable on the interval(a, b), with the second
derivative bounded on(a, b) .
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2 A. I. KECHRINIOTIS AND N. D. ASSIMAKIS

In [3] N. Barnett and S. Dragomir proved an inequality forn−time differentiable functions
which forn = 1 takes the following form:∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ ≤ b− a

8
(Γ− γ) ,

wheref : [a, b] → R is an absolutely continuous mapping on[a, b] such that−∞ < γ ≤
f ′ (x) ≤ Γ < ∞, ∀x ∈ (a, b) . In [15] N. Ujević reproved the above result via a generalization
of Ostrowski’s inequality.

For more results on the trapezoid inequality and their applications we refer to [4], [9], [11],
[12].

In [10] S. Dragomir et al. obtained the following perturbed trapezoid inequality involving the
Grüss inequality:∣∣∣∣ 1

b− a

∫ b

a

f (x) dx− f (b) + f (a)

2
+

(f ′ (b)− f ′ (a)) (b− a)

12

∣∣∣∣
≤ 1

32
(Γ2 − γ2) (b− a)2 ,

wheref is twice differentiable on the interval(a, b), with the second derivative bounded on
(a, b), andγ2 := infx∈(a,b) f ′′ (x), Γ2 =: supx∈(a,b) f ′′ (x). In [6] P. Cerone and S. Dragomir
improved the above inequality replacing the constant1

32
by 1

24
√

5
and in [8] X. Cheng and J.

Sun replaced the constant1
24
√

5
by 1

36
√

3
. For more results concerning the perturbed trapezoid

inequality we refer to the papers of N. Barnett and S. Dragomir [1], [2], as well as, to the paper
of N. Ujević [14].

In [5] P. Cerone and S. Dragomir obtained some general three-point integral inequalities
for n−times differentiable functions, involving two functionsα, β : [a, b] → [a, b] such that
α (x) ≤ x andβ (x) ≥ x for all x ∈ [a, b] . As special cases (forα (x) := x, β (x) := x)
trapezoid type inequalities forn−times differentiable functions result. For more trapezoid-type
inequalities involvingn−times differentiable functions we refer to [6], [7], [16].

In this paper we state a mean value Theorem for the remainder in Taylor’s formula. We then
develop a sharp general integral inequality forn−times differentiable mappings involving a
real parameter. Three generalizations of the classical trapezoid inequality and two generaliza-
tions of the perturbed trapezoid inequality are obtained. The resulting inequalities forn−times
differentiable mappings are sharp.

2. M EAN VALUE THEOREM

For convenience we set

Rn (f ; a, b) := f (b)−
n∑

i=0

(b− a)i

i!
f (i) (a) .

We prove the following mean value Theorem for the remainder in Taylor’s formula:

Theorem 2.1. Let f, g ∈ Cn [a, b] such thatf (n+1), g(n+1) are integrable and bounded on
(a, b) . Assume thatg(n+1) (x) > 0 for all x ∈ (a, b). Then for anyt ∈ [a, b] and any positive
valued mappingsα, β : [a, b] → R, the following estimation holds:

(2.1) m ≤ α (t) Rn (f ; t, b) + (−1)n+1 β (t) Rn (f ; t, a)

α (t) Rn (g; t, b) + (−1)n+1 β (t) Rn (g; t, a)
≤ M,

wherem := infx∈(a,b)
f (n+1)(x)

g(n+1)(x)
, M := supx∈(a,b)

f (n+1)(x)

g(n+1)(x)
.
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GENERALIZATIONS OF THETRAPEZOID INEQUALITIES 3

Proof. Sinceg(n+1), α, β are positive valued functions on(a, b) , we clearly have that for all
t ∈ [a, b] the following inequality holds:

α (t)

∫ b

t

(b− x)n g(n+1) (x) dx + β (t)

∫ t

a

(x− a)n g(n+1) (x) dx > 0,

which, by using the Taylor’s formula with an integral remainder, can be rewritten in the follow-
ing form:

(2.2) α (t) Rn (g; t, b) + (−1)n+1 β (t) Rn (g; t, a) > 0.

Moreover, we have

α (t)

∫ b

t

(b− x)n g(n+1) (x)

(
f (n+1) (x)

g(n+1) (x)
−m

)
dx

+ β (t)

∫ t

a

(x− a)n g(n+1) (x)

(
f (n+1) (x)

g(n+1) (x)
−m

)
≥ 0,

or equivalently

(2.3) α (t)

∫ b

t

(b− x)n f (n+1) (x) dx + (−1)n+1 β (t)

∫ a

t

(a− x)n f (n+1) (x) dx

≥ m

(
α (t)

∫ b

t

(b− x)n g(n+1) (x) dx + (−1)n+1 β (t)

∫ a

t

(a− x)n g(n+1) (x) dx

)
.

Using the Taylor’s formula with an integral remainder,(2.3) can be rewritten in the following
form:

(2.4) α (t) Rn (f ; t, b) + (−1)n+1 β (t) Rn (f ; t, a)

≥ m
(
α (t) Rn (g; t, b) + (−1)n+1 β (t) Rn (g; t, a)

)
.

Dividing (2.4) by (2.2) we get

(2.5) m ≤ α (t) Rn (f ; t, b) + (−1)n+1 β (t) Rn (f ; t, a)

α (t) Rn (g; t, b) + (−1)n+1 β (t) Rn (g; t, a)
.

On the other hand, we have

α (t)

∫ b

t

(b− x)n g(n+1) (x)

(
M − f (n+1) (x)

g(n+1) (x)

)
dx

+ β (t)

∫ t

a

(x− a)n g(n+1) (x)

(
M − f (n+1) (x)

g(n+1) (x)

)
≥ 0.

or equivalently

(2.6) α (t) Rn (f ; t, b) + (−1)n+1 β (t) Rn (f ; t, a)

≤ M
(
α (t) Rn (g; t, b) + (−1)n+1 β (t) Rn (g; t, a)

)
.

Dividing (2.6) by (2.2) we get

(2.7)
α (t) Rn (f ; t, b) + (−1)n+1 β (t) Rn (f ; t, a)

α (t) Rn (g; t, b) + (−1)n+1 β (t) Rn (g; t, a)
≤ M.

Combining(2.5) with (2.7) we get(2.1). �
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4 A. I. KECHRINIOTIS AND N. D. ASSIMAKIS

Theorem 2.2. Let f, g ∈ Cn [a, b] such thatf (n+1), g(n+1) are integrable and bounded on
(a, b) . Assume thatg(n+1) (x) > 0 for all x ∈ (a, b). Then for anyt ∈ [a, b] and any integrable
and positive valuated mappingsα, β : [a, b] → R+, the following estimation holds:

(2.8) m ≤
∫ b

a

(
α (t) Rn (f ; t, b) + (−1)n+1 β (t) Rn (f ; t, a)

)
dt∫ b

a

(
α (t) Rn (g; t, b) + (−1)n+1 β (t) Rn (g; t, a)

)
dt
≤ M,

wherem, M are as in Theorem 2.1.

Proof. Integrating(2.2), (2.4), (2.6) in Theorem 2.1 over[a, b] we get

(2.9)
∫ b

a

(
α (t) Rn (g; t, b) + (−1)n+1 β (t) Rn (g; t, a)

)
dt > 0,

and

m

∫ b

a

(
α (t) Rn (g; t, b) + (−1)n+1 β (t) Rn (g; t, a)

)
dt(2.10)

≤
∫ b

a

(
α (t) Rn (f ; t, b) + (−1)n+1 β (t) Rn (f ; t, a)

)
dt

≤ M

∫ b

a

(
α (t) Rn (g; t, b) + (−1)n+1 β (t) Rn (g; t, a)

)
dt.

Dividing (2.10) by (2.9) we get(2.8) . �

3. GENERAL I NTEGRAL I NEQUALITIES

For convenience we denote

γn (f) := inf
x∈(a,b)

f (n) (x) , Γn (f) := sup
x∈(a,b)

f (n) (x) .

For our purpose we shall use Theorems 2.1 and 2.2, as well as, an identity:

Lemma 3.1. Let f : [a, b] → R be a mapping such thatf (n) is integrable on[a, b] . Then for
any positive numberρ the following identity holds:

(3.1)
1

(b− a)

∫ b

a

(
ρRn (f ; x, b) + (−1)n+1 Rn (f ; x, a)

)
dx

= −
(n + 1)

(
ρ + (−1)n+1)
b− a

∫ b

a

f (x) dx + ρf (b) + (−1)n+1 f (a)

+
n−1∑
k=0

(n− k)
(−1)n+k+1 f (k) (b) + ρf (k) (a)

(k + 1)!
(b− a)k+1 .

Proof. Using the analytical form of the remainder in Taylor’s formula we have

1

(b− a)

∫ b

a

(
ρRn (f ; x, b) + (−1)n+1 Rn (f ; x, a)

)
dx(3.2)

= ρf (b) + (−1)n+1 f (a)− 1

(b− a)

n∑
k=0

∫ b

a

ρ (b− x)k + (−1)n+1 (a− x)k

k!
f (k) (x) dx

= ρf (b) + (−1)n+1 f (a)− 1

(b− a)

n∑
k=0

Ik,
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GENERALIZATIONS OF THETRAPEZOID INEQUALITIES 5

where

Ik :=

∫ b

a

ρ (b− x)k + (−1)n+1 (a− x)k

k!
f (k) (x) dx, (k = 0, 1, ..., n) .

Fork ≥ 1, using integration by parts we obtain

(3.3) Ik − Ik−1 = −(−1)n+k f (k−1) (b) + ρf (k−1) (a)

k!
(b− a)k .

Further, the following identity holds:

(3.4)
n∑

k=0

Ik = (n + 1) I0 +
n∑

k=1

(n + 1− k) (Ik − Ik−1) .

Combining(3.2) with (3.4) and(3.3) we get

(3.5)
1

(b− a)

∫ b

a

(
ρRn (f ; x, b) + (−1)n+1 Rn (f ; x, a)

)
dt

= ρf (b) + (−1)n+1 f (a)−
(n + 1)

(
ρ + (−1)n+1)
b− a

∫ b

a

f (x) dx

+
n∑

k=1

(n + 1− k)
(−1)n+k f (k−1) (b) + ρf (k−1) (a)

k!
(b− a)k .

Replacingk by k + 1 in (3.5) , we get(3.1) . �

Theorem 3.2. Let f ∈ Cn [a, b] such thatf (n+1) is integrable and bounded on(a, b) . Then for
any positive numberρ the following estimation holds:

(1 + ρ) (b− a)n+1

(n + 2)! (n + 1)
γn+1 (f)(3.6)

≤ −ρ + (−1)n+1

(b− a)

∫ b

a

f (x) dx +
ρf (b) + (−1)n+1 f (a)

(n + 1)

+
n−1∑
k=0

(n− k)

(n + 1)

(−1)n+k+1 f (k) (b) + ρf (k) (a)

(k + 1)!
(b− a)k

≤ (1 + ρ) (b− a)n+1

(n + 2)! (n + 1)
Γn+1 (f) ,

The inequalities in(3.6) are sharp.

Proof. Choosingg (x) = xn+1, α (x) = ρ, β (x) = 1 in (2.1) in Theorem 2.1, and then using
the identityRn (g; a, x) = (x− a)n+1 we get

ρ (b− t)n+1 + (−1)n+1 (a− t)n+1

(n + 1)!
γn+1 (f)(3.7)

≤ ρRn (f ; t, b) + (−1)n+1 Rn (f ; t, a)

≤ ρ (b− t)n+1 + (−1)n+1 (a− t)n+1

(n + 1)!
Γn+1 (f) ,
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6 A. I. KECHRINIOTIS AND N. D. ASSIMAKIS

for all t ∈ [a, b] . Integrating(3.7) with respect tot from a to b we have

(1 + ρ)
(b− a)n+1

(n + 2)!
γn+1 (f)(3.8)

≤ 1

b− a

∫ b

a

(
ρRn (f ; t, b) + (−1)n+1 Rn (f ; t, a)

)
dt

≤ (1 + ρ)
(b− a)n+1

(n + 2)!
Γn+1 (f) .

Setting(3.1) (Lemma 3.1) in(3.8) and dividing the resulting estimation by(n + 1), we get
(3.6). Moreover, choosingf (x) = xn+1 in (3.6), the equality holds. Therefore the inequalities
in (3.6) are sharp. �

Remark 3.3. Applying Theorem 3.2 forn = 1 we get immediately the classical trapezoid
inequality:

(3.9)
(b− a)2

12
γ2 (f) ≤ f (b) + f (a)

2
− 1

b− a

∫ b

a

f (x) dx ≤ (b− a)2

12
Γ2 (f) ,

wheref : [a, b] → R is continuously differentiable on[a, b] and twice differentiable on(a, b),
with the second derivativef ′′ integrable and bounded on(a, b) .

Remark 3.4. Theorem 3.2 forn = 2 becomes the following form:

(1 + ρ) (b− a)3

72
γ3 (f) ≤ 1− ρ

(b− a)

∫ b

a

f (x) dx +
(2ρ− 1) f (a)− (2− ρ) f (b)

3

+
f ′ (b) + ρf ′ (a)

6
(b− a)

≤ (1 + ρ) (b− a)3

72
Γ3 (f) ,

whereρ ∈ R+, f ∈ C2 [a, b] and such thatf ′′′ is bounded and integrable on(a, b) .

Theorem 3.5.Letf, g be two mappings as in Theorem 2.2. Then for anyρ ∈ R+ the following
estimation holds:

(3.10) m ≤ In (f ; ρ, a, b)

In (g; ρ, a, b)
≤ M,

wherem := infx∈(a,b)
f (n+1)(x)

g(n+1)(x)
, M := supx∈(a,b)

f (n+1)(x)

g(n+1)(x)
, and

In (f ; ρ, a, b) := −ρ + (−1)n+1

(b− a)

∫ b

a

f (x) dx +
ρf (b) + (−1)n+1 f (a)

(n + 1)

+
n−1∑
k=0

(n− k)

(n + 1)

(−1)n+k+1 f (k) (b) + ρf (k) (a)

(k + 1)!
(b− a)k .

Proof. Settingα (x) = ρ, β (x) = 1 in (2.1) of Theorem 2.1, and using the identity(3.1) in
Lemma 3.1 we get(3.9) . �
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4. GENERALIZED CLASSICAL TRAPEZOID I NEQUALITIES

Using the inequality(3.6) in Theorem 3.2 we obtain two generalizations of the classical
trapezoid inequality, which will be used in the last section. Moreover, combining both general-
izations we obtain a third generalization of the classical trapezoid inequality.

Theorem 4.1. Let f ∈ Cn [a, b] such thatf (n+1) is integrable and bounded on(a, b) . Suppose
n is odd. Then the following estimation holds:

1

(n + 2)! (n + 1)
(b− a)n+1 γn+1 (f)(4.1)

≤ − 1

b− a

∫ b

a

f (x) dx +
f (b) + f (a)

2

+
n−1∑
k=1

(n− k)

2 (n + 1)

(b− a)k
(
f (k) (a) + (−1)k f (k) (b)

)
(k + 1)!

≤ 1

(n + 2)! (n + 1)
(b− a)n+1 Γn+1 (f) .

The inequalities in(4.1) are sharp.

Proof. From(3.6) in Theorem 3.2 byρ = 1, obviously we get(4.1) . �

Theorem 4.2. Let f ∈ Cn [a, b] such thatf (n+1) is integrable and bounded on(a, b) . Suppose
n is odd. Then we have

2 (b− a)n+1

n (n + 3)!
γn+1 (f)(4.2)

≤ − 1

b− a

∫ b

a

f (x) dx +
n−1∑
k=0

(n− k)

n
·

(
(−1)k f (k) (b) + f (k) (a)

)
(b− a)k

(k + 2)!

≤ 2 (b− a)n+1

n (n + 3)!
Γn+1 (f) .

The inequalities in(4.2) are sharp.

Proof. Letm := n+1. Thenm is an even integer. Consider the mappingF : [a, b] → R, defined
via F (x) :=

∫ x

a
f (t) dt. Then we clearly have thatF ∈ Cm [a, b] andF (m+1) is integrable and

bounded on(a, b) . Now, applying inequality(3.6) in Theorem 3.2 toF by choosingρ = 1, we
readily get

2 (b− a)m+1

(m + 2)! (m + 1)
γm+1 (F ) ≤ −(m− 1)

(m + 1)
(F (b)− F (a))

+
m−1∑
k=1

(m− k)

(m + 1)

(−1)k+1 F (k) (b) + F (k) (a)

(k + 1)!
(b− a)k

≤ 2 (b− a)m+1

(m + 2)! (m + 1)
Γm+1 (F ) ,
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8 A. I. KECHRINIOTIS AND N. D. ASSIMAKIS

or equivalently,

2 (b− a)m+1

(m + 2)! (m− 1)
γm (f)

≤ −m− 1

m + 1

∫ b

a

f (x) dx +
m−1∑
k=1

(m− k)

m + 1

(
(−1)k+1 f (k−1) (b) + f (k−1) (a)

)
(b− a)k

(k + 1)!

≤ 2 (b− a)m+1

(m + 2)! (m + 1)
Γm (f) .

Multiplying the previous inequality by m+1
(m−1)(b−a)

, and then usingm = n + 1 we have

2 (b− a)n+1

(n + 3)!n
γn+1 (f)

≤ − 1

b− a

∫ b

a

f (x) dx +
n∑

k=1

(n + 1− k)

n

(
(−1)k+1 f (k−1) (b) + f (k−1) (a)

)
(b− a)k−1

(k + 1)!

≤ 2 (b− a)n+1

(n + 3)!n
Γn+1 (f) ,

and replacingk by k + 1we get(4.2) . Moreover, choosingf (x) = xn+1 in (4.2), the equality
holds. So, the inequalities in(4.2) are sharp. �

Remark 4.3. Applying Theorem 4.2 forn = 1 we again obtain the classical trapezoid inequal-
ity (3.9) in Remark 3.3.

Remark 4.4. A simple calculation yields 2
n(n+3)!

< 1
(n+2)!(n+1)

for anyn > 1. Thus inequality
(4.2) in Theorem 4.2 is better than(4.1) in Theorem 4.1. Nevertheless inequality(4.1) is useful,
because suitable combinations of(4.1), (4.2) lead to some interesting results, as for example in
the following theorem.

Theorem 4.5.Let n be an odd integer such thatn ≥ 3. Letf ∈ Cn−2 [a, b] such thatf (n−1) is
integrable and bounded on(a, b) . Then the following inequalities hold

12 (b− a)n

(n + 3)! (n− 2) (n− 1)
(2 (n + 1) γn−1 (f)− n (n + 3) Γn−1 (f))(4.3)

≤
∫ b

a

f (x) dx− 12n (n + 1)

(n− 2) (n− 1)

n−3∑
k=0

n (k + 2)− 2

2n (n + 1)

×
(n− k − 2)

(
(−1)k f (k) (b) + f (k) (a)

)
(b− a)k+1

(k + 4)!

≤ 12 (b− a)n

(n + 3)! (n− 2) (n− 1)
(2 (n + 1) Γn−1 (f)− n (n + 3) γn−1 (f)) .

The inequalities in(4.3) are sharp.

Proof. We set the mappingF : [a, b] → R by

(4.4) F (x) :=

∫ x

a

∫ t

a

f (s) dsdt.
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GENERALIZATIONS OF THETRAPEZOID INEQUALITIES 9

Then we have thatF ∈ Cn [a, b] andF (n+1) is bounded and integrable on(a, b). Applying
the inequalities(4.2) in Theorem 4.2 and(4.1) in Theorem 4.1 toF we respectively get the
following inequalities:

2 (b− a)n+1

(n + 3)!n
γn+1 (F ) ≤ − 1

b− a

∫ b

a

F (x) dx +
F (a) + F (b)

2
(4.5)

+
n−1∑
k=1

(n− k)

n

(
(−1)k F (k) (b) + F (k) (a)

)
(b− a)k

(k + 2)!

≤ 2 (b− a)n+1

(n + 3)!n
Γn+1 (F ) ,

and

(b− a)n+1

(n + 2)! (n + 1)
γn+1 (F )(4.6)

≤ − 1

b− a

∫ b

a

F (x) dx +
F (b) + F (a)

2

+
n−1∑
k=1

(n− k)

2 (n + 1)
·
(b− a)k

(
F (k) (a) + (−1)k F (k) (b)

)
(k + 1)!

≤ (b− a)n+1

(n + 2)! (n + 1)
Γn+1 (F ) .

Multiplying (4.6) by (−1) and adding the resulting estimation with(4.5) , we get

(b− a)n+1

(n + 2)!

(
2

n (n + 3)
γn+1 (F )− 1

n + 1
Γn+1 (F )

)
(4.7)

≤ −
n−1∑
k=1

nk − 2

2n (n + 1)

(n− k)
(
(−1)k F (k) (b) + F (k) (a)

)
(b− a)k−1

(k + 2)!

≤ (b− a)n+1

(n + 2)!

(
2

n (n + 3)
Γn+1 (F )− 1

n + 1
γn+1 (F )

)
.

Dividing the last estimation with(b− a) and splitting the first term of the sum we have

(b− a)n

(n + 2)!

(
2

n (n + 3)
γn+1 (F )− 1

n + 1
Γn+1 (F )

)
(4.8)

≤ (n− 2) (n− 1) (F ′ (b)− F ′ (a))

12n (n + 1)

−
n−1∑
k=2

nk − 2

2n (n + 1)

(n− k)
(
(−1)k F (k) (b) + F (k) (a)

)
(b− a)k−1

(k + 2)!

≤ (b− a)n

(n + 2)!

(
2

n (n + 3)
Γn+1 (F )− 1

n + 1
γn+1 (F )

)
.
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Finally, setting(4.4) in (4.7) and multiplying the resulting estimation by12n(n+1)
(n−2)(n−1)

we get

12 (b− a)n

(n + 3)! (n− 2) (n− 1)
(2 (n + 1) γn−1 (f)− n (n + 3) Γn−1 (f))

≤
∫ b

a

f (x) dx− 12n (n + 1)

(n− 2) (n− 1)

×
n−1∑
k=2

nk − 2

2n (n + 1)

(n− k)
(
(−1)k f (k−2) (b) + f (k−2) (a)

)
(b− a)k−1

(k + 2)!

≤ 12 (b− a)n

(n + 3)! (n− 2) (n− 1)
(2 (n + 1) Γn−1 (f)− n (n + 3) γn−1 (f)) ,

and replacingk by k + 2 the inequalities in(4.3) are obtained.
Moreover, choosingf (x) = xn−1 in (4.3), the equality holds. So, the inequalities in(4.3)

are sharp. �

Applying Theorem 4.5 forn = 3 we immediately obtain the following result:

Corollary 4.6. Letf ∈ C1 [a, b] such thatf ′′ is integrable and bounded on(a, b) . Then,

(b− a)2

60
(4γ2 (f)− 9Γ2 (f)) ≤ 1

b− a

∫ b

a

f (x) dx− f (a) + f (b)

2
(4.9)

≤ (b− a)2

60
(4Γ2 (f)− 9γ2 (f)) .

Remark 4.7. Let f be as in Corollary 4.6. Ifγ2 (f) > 4
9
Γ2 (f) then from(4.8) we get the

following inequality:

1

b− a

∫ b

a

f (x) dx <
f (a) + f (b)

2
.

5. GENERALIZED PERTURBED TRAPEZOID I NEQUALITIES

In this section, using the results of the two previous sections, several perturbed trapezoid
inequalities are obtained involvingn−times differentiable functions.

Theorem 5.1. Let f ∈ Cn [a, b] such thatf (n+1) is integrable and bounded on(a, b) . Then the
following estimations are valid:

(b− a)n+1

(n + 2)! (n + 1)
γn+1 (f) ≤ (−1)n

(b− a)

∫ b

a

f (x) dx +
(−1)n+1 (f (a) + nf (b))

(n + 1)
(5.1)

+
n−1∑
k=1

(n− k)

(n + 1)

(−1)n+k+1 f (k) (b)

(k + 1)!
(b− a)k

≤ (b− a)n+1

(n + 2)! (n + 1)
Γn+1 (f) ,
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(b− a)n+1

(n + 2)! (n + 1)
γn+1 (f) ≤ − 1

(b− a)

∫ b

a

f (x) dx +
nf (a) + f (b)

n + 1
(5.2)

+
n−1∑
k=1

(n− k)

(n + 1)

f (k) (a)

(k + 1)!
(b− a)k

≤ (b− a)n+1

(n + 2)! (n + 1)
Γn+1 (f) .

Further, if n is an even positive integer, then

(5.3)

∣∣∣∣− 1

(b− a)

∫ b

a

f (x) dx +
f (a) + f (b)

2

+
n−1∑
k=1

(n− k)

2 (n + 1)

f (k) (a) + (−1)k f (k) (b)

(k + 1)!
(b− a)k

∣∣∣∣∣
≤ (b− a)n+1

2 (n + 2)! (n + 1)
(Γn+1 (f)− γn+1 (f)) .

The inequalities in(5.1) and(5.2) are sharp.

Proof. Taking the limit of(3.6) in Theorem 3.2 asρ → 0 we obtain(5.1) . Further forρ > 1,
dividing (3.6) by

(
ρ + (−1)n+1) and then obtaining the limit from the resulting estimation as

ρ → ∞ we get(5.2) . Now, letn be an even integer. Then multiplying(5.2) by (−1) , adding
the resulting inequality with(5.1) and finally multiplying the obtained estimation by(−1

2
) we

easily get(5.3). �

Remark 5.2. Applying Theorem 5.1 forn = 2 we obtain the following inequalities:

(b− a)3

72
γ3 (f) ≤ 1

(b− a)

∫ b

a

f (x) dx− f (a) + 2f (b)

3
+

f ′ (b)

6
(b− a)

≤ (b− a)3

72
Γ3 (f) ,

(b− a)3

72
γ3 (f) ≤ − 1

(b− a)

∫ b

a

f (x) dx +
2f (a) + f (b)

3
+

f ′ (a)

6
(b− a)

≤ (b− a)3

72
Γ3 (f) ,

(5.4)

∣∣∣∣ 1

(b− a)

∫ b

a

f (x) dx− f (a) + f (b)

2
+

f ′ (b)− f ′ (a)

12
(b− a)

∣∣∣∣
≤ (b− a)3

144
(Γ3 (f)− γ3 (f)) ,

wheref ∈ C2 [a, b] and is such thatf ′′′ is bounded and integrable on[a, b] . Therefore, inequality
(5.4) can be regarded as a Grüss type generalization of the perturbed trapezoid inequality.
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Theorem 5.3. Let f ∈ Cn [a, b] such thatf (n+1) is integrable and bounded on(a, b) . Suppose
n is odd and greater than1. Then the following estimation holds:

2 (b− a)n+1 ((n + 3) γn+1 (f)− (n + 1) Γn+1 (f))

(n + 3)! (n + 1) (n− 2)
(5.5)

≤ 1

b− a

∫ b

a

f (x) dx− f (b) + f (a)

2

−
n−2∑
k=1

(n− k) (n− 1− k)

(n− 2) (n + 1)

(
f (k) (a) + (−1)k f (k) (b)

)
(b− a)k

(k + 2)!

≤ 2 (b− a)n+1 ((n + 3) Γn+1 (f)− (n + 1) γn+1 (f))

(n + 3)! (n + 1) (n− 2)
.

The inequalities in(5.5) are sharp.

Proof. Multiplying (4.2) in Theorem 4.2 by n
n−2

and(4.1) in Theorem 4.1 by− 2
n−2

and then
adding the resulting estimations we see that the last term of the sum in the intermediate part of
the obtained inequality is vanishing, and so, after some algebra, we get(5.5). Finally, choosing
f (x) := xn+1 in (5.5), a simple calculation verifies that the equalities hold. Therefore, the
inequalities in(5.5) are sharp. �

Applying Theorem 5.3 forn = 3 we get immediately the following result.

Corollary 5.4. Let f ∈ C3 [a, b] such thatf (4) is integrable and bounded on(a, b) . Then the
following estimation holds:

1

720
(b− a)4 (3γ4 (f)− 2Γ4 (f))(5.6)

≤ 1

b− a

∫ b

a

f (x) dx− f (b) + f (a)

2
+

(f ′ (b)− f ′ (a)) (b− a)

12

≤ 1

720
(b− a)4 (3Γ4 (f)− 2γ4 (f)) .

The inequalities in(5.6) are sharp.
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[14] N. UJEVIĆ, On perturbed mid-point and trapezoid inequalities and applications,Kyungpook Math.
J.,43 (2003), 327–334.
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