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1. I NTRODUCTION

As well known, various differential and integral inequalities have played a dominant role in
the development of the theories of differential, functional-differential as well as integral equa-
tions. The most powerful integral inequalities applied frequently in the literature are the famous
Gronwall-Bellman inequality [1] and its first nonlinear generalization due to Bihari (cf., [2]). A
large number of generalizations and their applications of the Gronwall-Bellman inequality have
been obtained by many authors (cf., [4] – [7], [3], [5]). Pachpatte [6, p. 28] proved the follow-
ing interesting variant of the Gronwall-Bellman inequality which contains an infinite integration
limit:

Theorem A. Letf be a nonnegative continuous function defined fort ∈ R+ = [0,∞) such that∫∞
0
f(s)ds <∞ andc(t) > 0 be a continuous and decreasing function defined fort ∈ R+. If

u(t) ≥ 0 is a bounded continuous function defined fort ∈ R+ and satisfies

u(t) ≤ c(t) +

∫ ∞

t

f(s)u(s)ds, t ∈R+,
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then

u(t) ≤ c(t) exp

(∫ ∞

t

f(s)ds

)
, t ∈ R+ .

We note that, the condition above onc(t) can be relaxed to only require that, it is nonnegative,
continuous and nonincreasing onR+ . The importance of the last result was indicated in [6] by
the fact that, it can be used to derive the Rodrigues’ inequality [8] that played a crucial role in
the study of many perturbed linear delay differential equations.

The aim of the present paper is to establish some new linear and nonlinear generalizations of
Theorem A. In the sequel, we denote byC(S,M) the class of continuous functions defined on
setS with range contained in setM .

2. L INEAR GENERALIZATIONS

Firstly we show that an inversed version of Theorem A is valid:

Theorem 2.1.Letf ∈ C(R+,R+) satisfy the condition
∫∞

0
f(s)ds <∞ andm ∈ C(R+, (0,∞))

be nondecreasing. Ifx ∈ C(R+,R+) is bounded and satisfies the inequality

(2.1) x(t) ≥ m(t) +

∫ ∞

t

f(s)x(s)ds, t ∈R+,

then

(2.2) x(t) ≥ m(t) exp

∫ ∞

t

f(s)ds, t ∈R+.

Proof. From (2.1) we derive

x(t)

m(t)− ε
> 1 +

1

m(t)− ε

∫ ∞

t

f(s)x(s)ds(2.3)

≥ 1 +

∫ ∞

t

f(s)
x(s)

m(s)− ε
ds, t ∈R+,

whereε > 0 is an arbitrary number satisfyingm(0)−ε > 0. Define a positive and nonincreasing
functionV ∈ C(R+,R+) by the right member of (2.3). Then we haveV (∞) = 1 and

(2.4) x(t) > [m(t)− ε]V (t), t ∈ R+.

By differentiation we obtain

dV (t)

dt
= −f(t)

x(t)

m(t)− ε
< −f(t)V (t), t ∈ R+.

Rewrite the last relation in the form
dV (t)

V (t)dt
< −f(t), t ∈ R+,

and integrating its both sides fromt to∞,then we have

lnV (∞)− lnV (t) < −
∫ ∞

t

f(s)ds, t ∈R+ ,

i.e.,

V (t) > exp

∫ ∞

t

f(s)ds , t ∈R+ .

Substituting the last relation into (2.4), and lettingε→ 0, the desired inequality (2.2) follows.
�

From Theorem A and Theorem 2.1, we obtain the following
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Corollary 2.2. Letf ∈ C(R+,R+) satisfy
∫∞

0
f(s)ds <∞. Let c ≥ 0 be a constant. Then the

linear integral equation

(2.5) x(t) = c+

∫ ∞

t

f(s)x(s)ds, t ∈R+,

has an unique bounded continuous solution represented by

(2.6) x(t) = c exp

∫ ∞

t

f(s)ds, t ∈R+ .

Proof. If c > 0, by lettingc(t) ≡ c andm(t) ≡ c respectively in Theorem A and Theorem 2.1,
we havex(t) ≤ c exp

∫∞
t
f(s)ds andx(t) ≥ c exp

∫∞
t
f(s)ds.

Hence (2.6) is the unique bounded continuous solution of the equation (2.5). By the contin-
uous dependence onc of x(t) given by (2.6), the conclusion holds also whenc = 0. �

The next result is a new generalization of Pachpatte’s inequality in the case when an iterated
integral functional is involved.

Theorem 2.3. Let n ∈ C(R+,R+)be nonincreasing. Letf, h ∈ C(R+,R+),g ∈ C(R+,R+)
with g′(t) ≥ 0 and

∫∞
0

[f(s) + g(s)h(s)]ds <∞. If x ∈ C(R+,R+) is bounded and satisfies
the inequality

(2.7) x(t) ≤ n(t) +

∫ ∞

t

f(s)

(
x(s) + g(s)

∫ ∞

s

h(k)x(k)dk

)
ds, t ∈R+,

then

(2.8) x(t) ≤ n(t)

{
1 +

∫ ∞

t

f(s) exp

(∫ ∞

s

[f(k) + g(k)h(k)]dk

)
ds

}
, t ∈ R+.

Proof. From (2.7) we have

x(t)

n(t) + ε
(2.9)

< 1 +
1

n(t) + ε

∫ ∞

t

f(s)

(
x(s) + g(s)

∫ ∞

s

h(k)x(k)dk

)
ds

< 1 +

∫ ∞

t

f(s)

(
x(s)

n(s) + ε
+ g(s)

∫ ∞

s

h(k)
x(k)

n(k) + ε
dk

)
ds, t ∈R+,

whereε > 0 is an arbitrary positive number. Define a functionV ∈ C(R+,R+) by the right
member of inequality (2.9). ThenV (t) is positive and nonincreasing withV (∞) = 1, and by
(2.9) we have

(2.10) x(t) < [n(t) + ε]V (t), t ∈ R+.

By differentiation we obtain

dV (t)

dt
= −f(t)

(
x(t)

n(t) + ε
+ g(t)

∫ ∞

t

h(k)
x(k)

n(k) + ε
dk

)
≥ −f(t)

(
V (t) + g(t)

∫ ∞

t

h(k)V (k)dk

)
, t ∈ R+.

Now we define

W (t) = V (t) + g(t)

∫ ∞

t

h(k)V (k)dk.

ThenW (t) ∈ C(R+,R+) is positive,W (∞) = V (∞) = 1, and we have

(2.11) W (t) ≥ V (t), t ∈ R+ ,
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and

(2.12)
dV (t)

dt
≥ −f(t)W (t), t ∈ R+ .

By differentiation we derive

dW (t)

dt
=
dV (t)

dt
+ g′(t)

∫ ∞

t

h(k)V (k)dk − g(t)h(t)V (t)(2.13)

≥ − [f(t) + g(t)h(t)]W (t), t ∈ R+,

here (2.11) and (2.12) are used. Rewrite the last relation in the form

dW (t)

W (t)dt
≥ − [f(t) + g(t)h(t)], t ∈ R+ ,

and then integrating both sides fromt to∞, we obtain

lnW (∞)− lnW (t) ≥ −
∫ ∞

t

[f(k) + g(k)h(k)]dk,

or

W (t) ≤ exp

(∫ ∞

t

[f(k) + g(k)h(k)]dk

)
, t ∈ R+.

Substituting the last inequality into (2.12) and then integrating both sides fromt to∞, we have

V (∞)− V (t) ≥ −
∫ ∞

t

f(s) exp

(∫ ∞

s

[f(k) + g(k)h(k)]dk

)
ds,

i.e.,

V (t) ≤ 1 +

∫ ∞

t

f(s) exp

(∫ ∞

s

[f(k) + g(k)h(k)]dk

)
ds, t ∈R+.

From inequality (2.10) we obtain

x(t) < [n(t) + ε]

{
1 +

∫ ∞

t

f(s) exp

(∫ ∞

s

[f(k) + g(k)h(k)]dk

)
ds

}
, t ∈ R+.

Hence, by lettingε → 0 the desired inequality (2.8) follows from the last relation directly.
�

Note that, ifg(t) ≡ 0 or h(t) ≡ 0, then from Theorem 2.3 we derive Theorem A.

3. NONLINEAR EXTENSIONS

Theorem 3.1.Letf ∈ C(R+,R+) satisfy the condition
∫∞

0
f(s)ds <∞ andc is a nonnegative

number. Letϕ, ψ ∈ C(R+,R+) be strictly increasing andϕ−1 denote the inverse ofϕ. If
x ∈ C(R+,R+) is bounded and satisfies the inequality

(3.1) ϕ[x(t)] ≤ c+

∫ ∞

t

f(s)ψ[x(s)]ds, t ∈R+,

then fort ∈ (T,∞) we have

(3.2) x(t) ≤ ϕ−1 ◦G−1
c

(∫ ∞

t

f(s)ds

)
,

whereG−1
c is the inverse ofGc and

(3.3) Gc(z) :=

∫ z

c

ds

ψ ◦ ϕ−1(s)
, z ≥ c,
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andT > 0 is the smallest number satisfying the condition

(3.4)
∫ ∞

t

f(s)ds ∈ Dom(G−1), as long ast ∈ (T,∞).

Proof. Without loss of generality we may assumec > 0. Otherwise we may replace it by an
arbitrary positive numberε and then letε→ 0 in (3.1) and (3.2) to complete the proof.

Define a nonincreasing and differentiable functionH ∈ C(R+, [c,∞)) by the right member
of (3.1), then we have

(3.5) x(t) ≤ ϕ−1[H(t)], t ∈ R+,

andH(∞) = c holds. By differentiation we obtain

dH(t)

dt
= −f(t)ψ[x(t)] ≥ −f(t)ψ ◦ ϕ−1[H(t)], t ∈ R+,

where we used inequality (3.5). Rewrite this relation as

dH(t)

ψ ◦ ϕ−1[H(t)]dt
≥ −f(t), t ∈ R+.

Integrating both sides fromt to∞, we derive

Gc(H(∞))−Gc(H(t)) ≥ −
∫ ∞

t

f(s)ds, t ∈R+,

i.e.,

Gc(H(t)) ≤ Gc(c) +

∫ ∞

t

f(s)ds, t ∈R+,

where the functionGc is defined by (3.3). SinceGc(c) = 0, in view of the choice ofT in (3.4),
the last relation implies

H(t) ≤ G−1
c

(∫ ∞

t

f(s)ds

)
, t ∈ (T,∞).

Finally, substituting the last inequality into (3.5), the desired inequality (3.2) follows immedi-
ately. �

Remark 3.2. In the case whenc = 0 andϕ(0) = ψ(0) = 0 hold, to ensure the correct definition
of the functionG(z), an additional condition is needed, namely,

lim
δ→0

∫ 1

δ

ds

ψ ◦ ϕ−1(s)
= M <∞.

Theorem 3.3.Letp, q be positive numbers andc ∈ C(R+,R+) be positive and nonincreasing.
Let f ∈ C(R+,R+) satisfy the condition

∫∞
0
f(s)ds <∞. If x ∈ C(R+,R+) is bounded and

satisfies the inequality

(3.6) [x(t)]p ≤ c(t) +

∫ ∞

t

f(s)[x(s)]qds, t ∈R+,

the following conclusions are true:

(I) If p > q,

(3.7) x(t) ≤ c1/p(t)

[
1 +

p− q

q

∫ ∞

t

c(s)(q−p)/pf(s)ds

] 1
p−q

, t ∈ R+;
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(II) If p = q,

(3.8) x(t) ≤ c1/p(t) exp

[
1

p

∫ ∞

t

f(s)ds

]
, t ∈ R+;

(III) If p < q,

(3.9) x(t) ≤ c1/p(t)

[
1 +

p− q

p

∫ ∞

t

c(s)(q−p)/pf(s)ds

] 1
p−q

, t ∈ (T,∞),

whereT is the smallest non-negative number that satisfies∫ ∞

T

c(s)(q−p)/pf(s)ds ≤ p

q − p
.

Proof. (I) If p > q holds, from inequality (3.6) we obtain

yp(t) ≤ 1 +

∫ ∞

t

c(s)(q−p)/pf(s)yq(s)ds, t ∈ R+,

wherey(t) := x(t)

c1/p(t)
. The last integral inequality is a special case of (3.1) whenϕ(ξ) = ξp,

ψ(η) = ηq. By (3.3) we derive

G1(z) =

∫ z

1

s−q/pds =
p

p− q
(z(p−q)/p − 1),

and hence,

G−1
1 (v) =

[
p− q

p
v + 1

] p
p−q

.

SinceG−1
1 (v) ⊃ [0,∞) holds, from (3.2) we derive that

x(t)

c1/p(t)
≤ ϕ−1 ◦G−1

1

[∫ ∞

t

c(s)(q−p)/pf(s)ds

]
=

{
G−1

1

[∫ ∞

t

c(s)(q−p)/pf(s)ds

]} 1
p

=

[
1 +

p− q

p

∫ ∞

t

c(s)(q−p)/pf(s)ds

] 1
p−q

, t ∈ R+.

The desired inequality (3.7) follows from the last relation directly.

(II) If p = q holds, lettingz(t) =
[

x(t)

c1/p(t)

]p

,from (3.6) we derive

(3.10) z(t) ≤ 1 +

∫ ∞

t

f(s)z(s)ds, t ∈ R+.

Define a positive, nonincreasing and differentiable functionV (t) by the right member of
(3.10), thenz(t) ≤ V (t) andV (∞) = 1 hold. Sincec(t), f(t), z(t) are nonnegative, by differ-
entiation we obtain from (3.9)

V ′(t) = −f(t)z(t) ≥ −f(t)V (t), t ∈ R+,

i.e.,
V ′(t)

V (t)
≥ −f(t), t ∈ R+.

Integrating both sides of the last relation fromt to∞, then we have

lnV (∞)− lnV (t) ≥ −
∫ ∞

t

f(s)ds, t ∈R+,
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or

lnV (t) ≤ lnV (∞) +

∫ ∞

t

f(s)ds, t ∈R+.

Hence we obtain[
x(t)

c1/p(t)

]p

= z(t) ≤ V (t) ≤ exp

(∫ ∞

t

f(s)ds

)
, t ∈ R+.

This relation implies the desired inequality (3.8) immediately.

(III) If p < q holds, similar to the process of (I), we can get

G1(z) =
p

p− q
(z(p−q)/p − 1), G−1

1 (v) =

[
p− q

p
v + 1

] p
p−q

.

Since ∫ ∞

T

c(s)(q−p)/pf(s)ds =
p

q − p
,

we can derive

(3.11) 1 +
p− q

p

∫ ∞

t

c(s)(q−p)/pf(s)ds > 0, for t ∈ (T,∞).

Inequality (3.11) ensures thatG−1
1

(∫∞
t
c(s)(q−p)/pf(s)ds

)
exists fort ∈ (T,∞). Then we

get the desired inequality (3.9). �

Note that, Theorem A is a special case of Theorem 3.3 (II), whenp = q = 1. Some similar
integral inequalities without infinite integration limits had been established by Yang [8, 9].

Corollary 3.4. Let p, q be positive numbers withp ≤ q. Letf ∈ C(R+,R+) satisfy the condi-
tion

∫∞
0
f(s)ds <∞. Thenx(t) ≡ 0 (t ∈ R+) is the unique bounded continuous and nonneg-

ative solution of inequality

(3.12) [x(t)]p ≤
∫ ∞

t

f(s)[x(s)]qds, t ∈R+.

Proof. Let x ∈ C(R+,R+) be any bounded function satisfying (3.12). We obtain

(3.13) [x(t)]p ≤ ε+

∫ ∞

t

f(s)[x(s)]qds, t ∈R+,

whereε is an arbitrary positive number.
Whenp < q andε is small enough, the inequality∫ ∞

t

ε(q−p)/pf(s)ds <
p

q − p

holds for allt ∈ R+.
A suitable application of Theorem 3.3 to (3.13) yields that, fort ∈ R+

x(t) ≤


ε1/p

[
1 + p−q

p

∫∞
t
ε(q−p)/pf(s)ds

] 1
p−q

, p < q;

ε1/p exp
[

1
p

∫∞
t
f(s)ds

]
, p = q.

Finally, lettingε→ 0, from the last relation we obtainx(t) ≡ 0, t ∈ R+. �
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If the conditionp ≤ q is replaced byp > q, the resultx(t) ≡ 0 cannot be derived directly
from Theorem 3.3. In fact, ifp > q andM(t) :=

∫∞
t
f(s)ds, then

lim
ε→0

ε1/p

[
1 +

p− q

p

∫ ∞

t

ε(q−p)/pf(s)ds

] 1
p−q

=

[
p− q

p
M(t)

] 1
p−q

.

4. EXAMPLES

Example 4.1.Let x ∈ C(R+,R+) be bounded and satisfy the integral inequality

x(t) ≥ 1 +

∫ ∞

t

s e−3sx(s)ds, t ∈R+.

Then by Theorem 2.1, we have

x(t) ≥ exp

∫ ∞

t

se−3sds = exp

[
3t+ 1

9
e−3t

]
, t ∈R+.

Example 4.2.Let x ∈ C(R+,R+) be a bounded function satisfying the inequality

x(t) ≤ 1 +

∫ ∞

t

e−sx(s)ds+

∫ ∞

t

e−s

∫ ∞

s

(
e−kx(k)dk

)
ds, t ∈R+.

Then by Theorem 2.3 ,we easily establish

x(t) ≤ 1 +

∫ ∞

t

e−s exp

[∫ ∞

s

2e−kdk

]
ds

=
1

2

[
1 + exp

(
2e−t

)]
, t ∈ R+.

Example 4.3.Let x ∈ C(R+,R+) be a bounded function satisfying the inequality

x1/2(t) ≤ 1 +

∫ ∞

t

e−3sx(s)ds, t ∈R+.

Since

dom

(
G−1

1

(∫ ∞

t

e−3sds

))
= dom

(
3

3− e−3t

)
⊃ R+

holds, referring to the proof of Theorem 3.3, we obtain

x(t) ≤
[

3

3− e−3t

]2

, t ∈ R+.
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