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ABSTRACT. In the article ”N. Ujevíc, A generalization of the pre-Grüss inequality and appli-
cations to some quadrature formulae,J. Inequal. Pure Appl. Math., 3(2), Art. 13, 2002” error
bounds for some quadrature formulae are established. Here we prove that all inequalities (error
bounds) obtained in this article are sharp. We also establish a new sharp averaged midpoint-
trapezoid inequality and give applications in numerical integration.
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1. I NTRODUCTION

In recent years a number of authors have considered error inequalities for some known and
some new quadrature rules. For example, this topic is considered in [1] – [6] and [11] – [14].

In this paper we consider the midpoint, trapezoid and averaged midpoint-trapezoid quadrature
rules. These rules are also considered in [12], where some new improved versions of the error
inequalities for the mentioned rules are derived.

Here we first prove that all inequalities obtained in [12] are sharp. Second, we specially
consider the averaged midpoint-trapezoid quadrature rule. In [6] it is shown that the last men-
tioned rule has a better estimation of error than the well-known Simpson’s rule and in [13] it
is shown that this rule is an optimal quadrature rule. We give a new sharp error bound for this
rule. Finally, we give applications in numerical integration.
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2 NENAD UJEVIĆ

2. M IDPOINT I NEQUALITY

Let I ⊂ R be a closed interval anda, b ∈ Int I, a < b. Let f : I → R be an absolutely
continuous function whose derivativef ′ ∈ L2(a, b). We define the mapping

Φ(t) =

{
t− 2a+b

3
, t ∈

[
a, a+b

2

]
t− a+2b

3
, t ∈

(
a+b
2

, b
]

such thatΦ0(t) = Φ(t)/ ‖Φ‖2, where

‖Φ‖2
2 =

∫ b

a

(Φ(t))2 dt =
(b− a)3

36
.

We have

Q(f ; a, b) =

∫ b

a

Φ0(t)f
′(t)dt

=
2√

b− a

[
f(a) + f

(
a + b

2

)
+ f(b)− 3

b− a

∫ b

a

f(t)dt

]
.

In [12] we can find the following midpoint inequality

(2.1)

∣∣∣∣f (a + b

2

)
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣ ≤ (b− a)3/2

2
√

3
C1,

where

(2.2) C1 =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− [Q(f ; a, b)]2

} 1
2

.

Proposition 2.1. The inequality (2.1) is sharp in the sense that the constant1
2
√

3
cannot be

replaced by a smaller one.

Proof. We first define the mapping

(2.3) f(t) =

{
1
2
t2, t ∈

[
0, 1

2

]
1
2
t2 − t + 1

2
, t ∈

(
1
2
, 1
]

and note thatf is a Lipschitzian function.
On the other hand, each Lipschitzian function is an absolutely continuous function [10, p.

227].
Let us now assume that the inequality (2.1) holds with a constantC > 0, i.e.

(2.4)

∣∣∣∣f (a + b

2

)
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣ ≤ C(b− a)3/2C1,

whereC1 is defined by (2.2). Choosinga = 0, b = 1 andf defined by (2.3), we get∫ 1

0

f(t)dt =
1

24
, f

(
1

2

)
=

1

8

such that the left-hand side of (2.4) becomes

(2.5) L.H.S.(2.4) =
1

12
.

We also find thatC1 = 1
2
√

3
such that the right-hand side of (2.4) becomes

(2.6) R.H.S.(2.4) =
C

2
√

3
.
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SHARP ERRORBOUNDS 3

From (2.4) – (2.6) we getC ≥ 1
2
√

3
, proving thatC = 1

2
√

3
is the best possible in (2.1). �

3. TRAPEZOID I NEQUALITY

Let I ⊂ R be a closed interval anda, b ∈ Int I, a < b. Let f : I → R be an absolutely
continuous function whose derivativef ′ ∈ L2(a, b). We define the mapping

χ(t) =

{
t− 5a+b

6
, t ∈

[
a, a+b

2

]
t− a+5b

6
, t ∈

(
a+b
2

, b
]

such thatχ0(t) = χ(t)/ ‖χ‖2, where

‖χ‖2
2 =

∫ b

a

(χ(t))2 dt =
(b− a)3

36
.

We have

P (f ; a, b) =

∫ b

a

χ0(t)f
′(t)dt

=
1√

b− a

[
f(a) + 4f

(
a + b

2

)
+ f(b)− 6

b− a

∫ b

a

f(t)dt

]
.

In [12] we can find the following trapezoid inequality:

(3.1)

∣∣∣∣f(a) + f(b)

2
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣ ≤ (b− a)3/2

2
√

3
C2,

where

(3.2) C2 =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− [P (f ; a, b)]2

} 1
2

.

Proposition 3.1. The inequality (3.1) is sharp in the sense that the constant1
2
√

3
cannot be

replaced by a smaller one.

Proof. We define the mapping

(3.3) f(t) =
1

2
t2 − 1

2
t.

It is obvious thatf is an absolutely continuous function. Let us now assume that the inequality
(3.1) holds with a constantC > 0, i.e.

(3.4)

∣∣∣∣f(a) + f(b)

2
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣ ≤ C(b− a)3/2C2,

whereC2 is defined by (3.2).
Choosinga = 0, b = 1 andf defined by (3.3), we get∫ 1

0

f(t)dt =
1

12
and f(0) = f(1) = 0.

Thus, the left-hand side of (3.4) becomes

(3.5) L.H.S.(3.4) =
1

12
.

The right-hand side of (3.4) becomes

(3.6) R.H.S.(3.4) =
C

2
√

3
.
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4 NENAD UJEVIĆ

From (3.4) – (3.6) we getC ≥ 1
2
√

3
, proving that 1

2
√

3
is the best possible in (3.1). �

4. AVERAGED M IDPOINT -TRAPEZOID I NEQUALITY

Let I ⊂ R be a closed interval anda, b ∈ Int I, a < b. Let f : I → R be an absolutely
continuous function whose derivativef ′ ∈ L2(a, b). We now consider a simple quadrature rule
of the form

(4.1)
f(a) + 2f

(
a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t)dt

=
1

2

[
f

(
a + b

2

)
+

f(a) + f(b)

2

]
(b− a)−

∫ b

a

f(t)dt = R(f).

It is not difficult to see that (4.1) is a convex combination of the midpoint quadrature rule and
the trapezoid quadrature rule. In [6] it is shown that (4.1) has a better estimation of error than
the well-known Simpson’s quadrature rule (when we estimate the error in terms of the first
derivativef ′ of integrandf ). In [12] the following inequality is proved

(4.2)

∣∣∣∣∣f(a) + 2f
(

a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ (b− a)3/2

4
√

3
C3,

where

(4.3) C3 =

[
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− 1

b− a

(
f(a)− 2f

(
a + b

2

)
+ f(b)

)2
] 1

2

.

Proposition 4.1. The inequality (4.2) is sharp in the sense that the constant1
4
√

3
cannot be

replaced by a smaller one.

Proof. We first define the mapping

(4.4) f(t) =

{
1
2
t2 − 1

4
t, t ∈

[
0, 1

2

]
1
2
t2 − 3

4
t + 1

4
, t ∈

(
1
2
, 1
]

and note thatf is a Lipschitzian function.
Let us now assume that the inequality (4.2) holds with a constantC > 0, i.e.

(4.5)

∣∣∣∣∣f(a) + 2f
(

a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ C(b− a)3/2C3,

whereC3 is defined by (4.3). Choosinga = 0, b = 1 andf defined by (4.4), we get∫ 1

0

f(t)dt = − 1

48
, f(0) = f(1) = f

(
1

2

)
= 0

such that the left-hand side of (4.5) becomes

(4.6) L.H.S.(4.5) =
1

48
.

We also find thatC3 = 1
4
√

3
such that the right-hand side of (4.5) becomes

(4.7) R.H.S.(4.5) =
C

4
√

3
.

From (4.5) – (4.7) we getC ≥ 1
4
√

3
, proving thatC = 1

4
√

3
is the best possible in (4.2). �
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SHARP ERRORBOUNDS 5

5. A SHARP ERROR I NEQUALITY

In [12] we can find the following inequality

(5.1) S(f, g)2 ≤ S(f, f)S(g, g),

where

(5.2) S(f, g) =

∫ b

a

f(t)g(t)dt− 1

b− a

∫ b

a

f(t)dt

∫ b

a

g(t)dt

− 1

‖Ψ‖2

∫ b

a

f(t)Ψ(t)dt

∫ b

a

g(t)Ψ(t)dt

andΨ satisfies

(5.3)
∫ b

a

Ψ(t)dt = 0,

while

‖Ψ‖2 =

∫ b

a

Ψ2(t)dt.

In [14] we can find a variant of the following lemma.

Lemma 5.1. Letf ∈ C1 [a, c], g ∈ C1 [c, b] be such thatf(c) = g(c). Then

h(t) =

{
f(t), t ∈ [a, c]

g(t), t ∈ [c, b]

is an absolutely continuous function.

Theorem 5.2. Let f : [0, 1] → R be an absolutely continuous function whose derivativef ′ ∈
L2(0, 1). Then

(5.4)

∣∣∣∣∫ 1

0

f(t)dt− 1

4

[
f(0) + 2f

(
1

2

)
+ f(1)

]∣∣∣∣
≤ 1

4
√

3

√
‖f ′‖2 − 2

[
f

(
1

2

)
− f(0)

]2

− 2

[
f(1)− f

(
1

2

)]2

.

The inequality (5.4) is sharp in the sense that the constant1
4
√

3
cannot be replaced by a smaller

one.

Proof. We define the functions

(5.5) p(t) =

{
t− 1

4
, t ∈

[
0, 1

2

)
t− 3

4
, t ∈

[
1
2
, 1
]

and

(5.6) Ψ(t) =

{
t, t ∈

[
0, 1

2

)
t− 1, t ∈

[
1
2
, 1
] .

It is not difficult to verify that

(5.7)
∫ 1

0

p(t)dt =

∫ 1

0

Ψ(t)dt = 0.
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6 NENAD UJEVIĆ

We also have

(5.8) ‖p‖2 =

∫ 1

0

p2(t)dt =
1

48
,

(5.9) ‖Ψ‖2 =

∫ 1

0

Ψ2(t)dt =
1

12
,

(5.10)
∫ 1

0

p(t)Ψ(t)dt =
1

48
.

From (5.1), (5.2) and (5.3) we get

(5.11)

[∫ 1

0

p(t)f ′(t)dt− 1

‖Ψ‖2

∫ 1

0

p(t)Ψ(t)dt

∫ 1

0

f ′(t)Ψ(t)dt

]2

≤

[
‖p‖2 − 1

‖Ψ‖2

(∫ 1

0

p(t)Ψ(t)dt

)2
]

×

[
‖f ′‖2 −

(∫ 1

0

f ′(t)dt

)2

− 1

‖Ψ‖2

(∫ 1

0

f ′(t)Ψ(t)dt

)2
]

.

Integrating by parts, we obtain∫ 1

0

p(t)f ′(t)dt =

∫ 1
2

0

(
t− 1

4

)
f ′(t)dt +

∫ 1

1
2

(
t− 3

4

)
f ′(t)dt(5.12)

=
1

4

[
f(0) + 2f

(
1

2

)
+ f(1)

]
−
∫ 1

0

f(t)dt

and ∫ 1

0

f ′(t)Ψ(t)dt =

∫ 1
2

0

tf ′(t)dt +

∫ 1

1
2

(t− 1)f ′(t)dt(5.13)

= f

(
1

2

)
−
∫ 1

0

f(t)dt.

We introduce the notations

(5.14) i =

∫ 1

0

f(t)dt,

(5.15) q =
1

4

[
f(0) + 2f

(
1

2

)
+ f(1)

]
.

From (5.11) – (5.15) and (5.8) – (5.10) it follows that

(5.16)

[
(q − i)− 1

4

(
f

(
1

2

)
− i

)]2

≤ 1

64

[
‖f ′‖2 − [f(1)− f(0)]2 − 12

(
f

(
1

2

)
− i

)2
]
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SHARP ERRORBOUNDS 7

or

(5.17) i2 − 2qi +
4

3
q2 +

1

48
[f(1)− f(0)]2 − ‖f ′‖2

+ 16

(
f

(
1

2

))2

− 32f

(
1

2

)
q ≤ 0.

If we now introduce the notations

(5.18) β = −2q,

(5.19) γ =
4

3
q2 +

1

48
[f(1)− f(0)]2 − ‖f ′‖2

+ 16

(
f

(
1

2

))2

− 32f

(
1

2

)
q

then we have

(5.20) i2 + βi + γ ≤ 0.

Thus,i ∈ [i1, i2], where

i1 =
−β −

√
β2 − 4γ

2
, i2 =

−β +
√

β2 − 4γ

2
.

In other words,

−β

2
−
√

β2 − 4γ

2
≤ i ≤ −β

2
+

√
β2 − 4γ

2
or

(5.21)

∣∣∣∣i +
β

2

∣∣∣∣ ≤
√

β2 − 4γ

2
.

We have

(5.22) β2 − 4γ =
1

12

[
‖f ′‖2 − 2

[
f

(
1

2

)
− f(0)

]2

− 2

[
f(1)− f

(
1

2

)]2
]

.

From (5.21) and (5.22) we easily find that (5.4) holds.
We have to prove that (5.4) is sharp. For that purpose, we define the function

(5.23) f(t) =

{
1
2
t2 − 1

4
t + 1

32
, t ∈

[
0, 1

2

)
1
2
t2 − 3

4
t + 9

32
, t ∈

[
1
2
, 1
] .

From Lemma 5.1 we see that the above function is absolutely continuous. If we substitute the
above function in the left-hand side of (5.4) then we get

(5.24) L.H.S.(5.4) =
1

48
.

If we substitute the above function in the right-hand side of (5.4) then we get

(5.25) R.H.S.(5.4) =
1

48
.

From (5.24) and (5.25) we conclude that (5.4) is sharp. �
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8 NENAD UJEVIĆ

Theorem 5.3. Let f : [a, b] → R be an absolutely continuous function whose derivativef ′ ∈
L2(a, b). Then

(5.26)

∣∣∣∣∫ b

a

f(t)dt− b− a

4

[
f(a) + 2f

(
a + b

2

)
+ f(b)

]∣∣∣∣
≤ (b− a)3/2

4
√

3

(
‖f ′‖2 − 2

b− a

[
f

(
a + b

2

)
− f(a)

]2

− 2

b− a

[
f(b)− f

(
a + b

2

)]2
) 1

2

.

The above inequality is sharp in the sense that the constant1/(4
√

3) cannot be replaced by a
smaller one.

Remark 5.4. We have better estimates than (5.26). For example, we have the inequality

(5.27)

∣∣∣∣b− a

4

[
f(a) + 2f

(
a + b

2

)
+ f(b)

]
−
∫ b

a

f(t)dt

∣∣∣∣ ≤ 1

8
‖f ′‖∞ (b− a)2.

However, note that the estimate (5.27) can be applied only iff ′ is bounded. On the other hand,
the estimate (5.26) can be applied for absolutely continuous functions iff ′ ∈ L2(a, b).

There are many examples where we cannot apply the estimate (5.27) but we can apply (5.26).

Example 5.1.Let us consider the integral
∫ 1

0

3
√

sin t2dt. We have

f(t) =
3
√

sin t2 and f ′(t) =
2t cos t2

3
3
√

sin2 t2

such thatf ′(t) → ∞, t → 0 and we cannot apply the estimate (5.27). On the other hand, we
have ∫ 1

0

[f ′(t)]
2
dt ≤ 4

9
max
t∈[0,1]

t2 cos t2

sin t2

∫ 1

0

dt
3
√

sin t2
≤ 16

9
,

i.e. ‖f ′‖2 ≤
4
3

and we can apply the estimate (5.26).

6. APPLICATIONS IN NUMERICAL I NTEGRATION

Let π = {x0 = a < x1 < · · · < xn = b} be a given subdivision of the interval[a, b] such that
hi = xi+1 − xi = h = (b− a)/n. We define

(6.1) σn(f) =
n−1∑
i=0

[
b− a

n
‖f ′‖2

2 − (f(xi+1)− f(xi))
2

−
(

f(xi)− 2f

(
xi + xi+1

2

)
+ f(xi+1)

)2
] 1

2

,

(6.2) ηn(f) =
n−1∑
i=0

[
b− a

n
‖f ′‖2

2 − 2

(
f

(
xi + xi+1

2

)
− f(xi)

)2

− 2

(
f(xi+1)− f

(
xi + xi+1

2

))2
] 1

2
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and

(6.3) ωn(f) =

[
(b− a) ‖f ′‖2

2 −
1

n
(f(b)− f(a))2

] 1
2

.

Theorem 6.1. Let π be a given subdivision of the interval[a, b] and let the assumptions of
Theorem 5.2 hold. Then

(6.4)

∣∣∣∣∣
∫ b

a

f(t)dt− h

4

n−1∑
i=0

[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]∣∣∣∣∣
≤ b− a

4
√

3n
σn(f) ≤ b− a

4
√

3n
ωn(f),

whereσn(f) andωn(f) are defined by (6.1) and (6.3), respectively.

Proof. We have

(6.5)
h

4

[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]
−
∫ xi+1

xi

f(t)dt =

∫ xi+1

xi

Ki(t)f
′(t)dt,

where

Ki(t) =

 t− 3xi+xi+1

4
, t ∈

[
xi,

xi+xi+1

2

]
t− xi+3xi+1

4
, t ∈

(xi+xi+1

2
, xi+1

] .

From Proposition 4.1 we obtain∣∣∣∣h4
[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]
−
∫ xi+1

xi

f(t)dt

∣∣∣∣
≤ h3/2

4
√

3

[
‖f ′‖2

2 −
1

h
(f(xi+1)− f(xi))

2

− 1

h

(
f(xi)− 2f

(
xi + xi+1

2

)
+ f(xi+1)

)2
] 1

2

.

If we sum (6.5) overi from 0 to n− 1 and apply the above inequality then we get∣∣∣∣∣
∫ b

a

f(t)dt− h

4

n−1∑
i=0

[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]∣∣∣∣∣
≤ h3/2

4
√

3

[
n−1∑
i=0

‖f ′‖2
2 −

1

h
(f(xi+1)− f(xi))

2

− 1

h

(
f(xi)− 2f

(
xi + xi+1

2

)
+ f(xi+1)

)2
] 1

2

.

From the above relation and the facth = (b−a)/n we see that the first inequality in (6.4) holds.
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Using the Cauchy inequality we have

n−1∑
i=0

[
‖f ′‖2

2 −
1

h
(f(xi+1)− f(xi))

2

] 1
2

(6.6)

≤ n

[
‖f ′‖2

2 −
1

b− a

n−1∑
i=0

(f(xi+1)− f(xi))
2

] 1
2

≤ n

[
‖f ′‖2

2 −
1

b− a

1

n
(f(b)− f(a))2

] 1
2

.

Since

‖f ′‖2
2 −

1

h
(f(xi+1)− f(xi))

2 − 1

h

(
f(xi)− 2f

(
xi + xi+1

2

)
+ f(xi+1)

)2

≤ ‖f ′‖2
2 −

1

h
(f(xi+1)− f(xi))

2 ,

we easily conclude that the second inequality in (6.4) holds, too. �

Remark 6.2. The second inequality in (6.4) is coarser than the first inequality. It may be
used to predict the number of steps needed in the compound rule for a given accuracy of the
approximation. Of course, we shall use the first inequality in (6.4) to obtain the error bound.
Note also that in this last case we use the same valuesf(xi) to calculate the approximation
of the integral

∫ b

a
f(t)dt and to obtain the error bound and recall that function evaluations are

generally considered the computationally most expensive part of quadrature algorithms.

Theorem 6.3.Under the assumptions of Theorem 6.1 we have∣∣∣∣∣
∫ b

a

f(t)dt− h

4

n−1∑
i=0

[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]∣∣∣∣∣
≤ b− a

4
√

3n
ηn(f) ≤ b− a

4
√

3n
ωn(f),

whereηn(f) is defined by (6.2).

Proof. The proof of this theorem is similar to the proof of Theorem 6.1. Here we use Theorem
5.3. �
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