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ABSTRACT. In this paper we introduce and investigate the skew Laplacian energy of a digraph.
We establish upper and lower bounds for the skew Laplacian energy of a digraph.
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1. I NTRODUCTION

In this paper we are concerned with simple directed graphs. A directed graph (or just digraph)
G consists of a non-empty finite setV (G) = {v1, v2, . . . , vn} of elements called vertices and a
finite setΓ(G) of ordered pairs of distinct vertices called arcs. Two vertices are called adjacent if
they are connected by an arc. The skew-adjacency matrix ofG is then×n matrixS(G) = [aij]
whereaij = 1 whenever(vi, vj) ∈ Γ(G), aij = −1 whenever(vj, vi) ∈ Γ(G), aij = 0
otherwise. HenceS(G) is a skew symmetric matrix of ordern and all its eigenvalues are of
the form iλ wherei =

√
−1 andλ ∈ R. The skew energy ofG is the sum of the absolute

value of the eigenvalues ofS(G). For additional information on the skew energy of digraphs
we refer to [1]. The degree of a vertex in a digraphG is the degree of the corresponding
vertex of the underlying graph ofG. Let D(G) = diag(d1, d2, . . . , dn), the diagonal matrix
with vertex degreesd1, d2, . . . , dn of v1, v2, . . . , vn. ThenL(G) = D(G) − S(G) is called the
Laplacian matrix of the digraphG. Let µ1, µ2, . . . , µn be the eigenvalues ofL(G). Then the
setσSL(G) = {µ1, µ2, . . . , µn} is called the skew Laplacian spectrum of the digraphG. The
Laplacian matrix of a simple, undirected(n,m) graphG1 is L(G1) = D(G1)− A(G1), where
A(G1) is the adjacency matrix ofG1. It is symmetric, singular, positive semi-definite and all its
eigenvalues are real and non negative. It is well known that the smallest eigenvalue is zero and
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its multiplicity is equal to the number of connected components ofG1. The Laplacian spectrum
of the graphG1, consisting of the numbersα1, α2, . . . , αn is the spectrum of its Laplacian
matrixL(G1) [3, 4]. The spectrum of the graphG1, consisting of the numbersλ1, λ2, . . . , λn is
the spectrum of its adjacency matrixA(G1). The ordinary and Laplacian eigenvalues obey the
following well-known relations:

(1.1)
n∑

i=1

λi = 0;
n∑

i=1

λ2
i = 2m,

(1.2)
n∑

i=1

αi = 2m;
n∑

i=1

α2
i = 2m +

n∑
i=1

d2
i .

The energy of the graphG1 is defined as

E(G1) =
n∑

i=1

|λi|.

For a survey of the mathematical properties of the energy we refer to [5]. In order to define
the Laplacian energy ofG1, Gutman and Zhou [6] introduced auxiliary "eigenvalues"βi, i =
1, 2, . . . , n, defined by

βi = αi −
2m

n
.

Then it follows that
n∑

i=1

βi = 0 and
n∑

i=1

β2
i = 2M

whereM = m + 1
2

∑n
i=1(di − 2m

n
)2.

If G1 is an(n,m)-graph and its Laplacian eigenvalues areα1, α2, . . . , αn, then the Laplacian
energy ofG1 [6] is defined by

LE(G1) =
n∑

i=1

|βi| =
n∑

i=1

∣∣∣∣αi −
2m

n

∣∣∣∣ .
Gutman and Zhou [6] have shown a great deal of analogy between the properties ofE(G1) and
LE(G1). Among others they proved the following two inequalities:

(1.3) LE(G1) ≤
√

2Mn

and

(1.4) 2
√

M ≤ LE(G1) ≤ 2M.

Various bounds for the Laplacian energy of a graph can be found in [8, 9].
The main purpose of this paper is to introduce the concept of the skew Laplacian energy

SLE(G) of a simple, connected digraphG, and to establish upper and lower bounds for
SLE(G) which are similar to(1.3) and(1.4). We may mention here that the skew Laplacian
energy of a digraph considered in [2] was actually the second spectral moment.
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2. BOUNDS FOR THE SKEW L APLACIAN ENERGY OF A DIGRAPH

We begin by giving the formal definition of the skew Laplacian energy of a digraph.

Definition 2.1. Let S(G) be the skew adjacency matrix of a simple digraphG, possessingn
vertices andm edges. Then the skew Laplacian energy of the digraphG is defined as

SLE(G) =
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ ,
whereµ1, µ2, . . . , µn are the eigenvalues of the Laplacian matrixL(G) = D(G)− S(G).

In analogy with (1.2), Adiga and Smitha [2] have proved that

(2.1)
n∑

i=1

µi =
n∑

i=1

di = 2m

and

(2.2)
n∑

i=1

µ2
i =

n∑
i=1

di(di − 1).

We may observe that equations (2.1) and (2.2) are evident as (1.1) and (1.2), which follow from
the trace equality.

Defineγi = µi − 2m
n

for i = 1, 2, . . . , n. On using (2.1) and (2.2) we see that

(2.3)
n∑

i=1

γi = 0

and

(2.4)
n∑

i=1

γ2
i = 2M,

where

M = −m +
1

2

n∑
i=1

(
di −

2m

n

)2

.

Since2m/n is the average vertex degree, we haveM + m = 0 if and only if G is regular.

Theorem 2.1. Let G be an(n, m)-digraph and letdi be the degree of theith vertex ofG, i =
1, 2, . . . , n. If µ1, µ2, . . . , µn are the eigenvalues of the Laplacian matrixL(G) = D(G)−S(G),
whereD(G) = diag(d1, d2, . . . , dn) is the diagonal matrix andS(G) = [aij] is the skew-
adjacency matrix ofG, then

SLE(G) ≤
√

2M1n.

HereM1 = M + 2m = m + 1
2

∑n
i=1(di − 2m

n
)2.

Proof. From(2.1) it is clear that

(2.5)
n∑

i=1

Re(µi) =
n∑

i=1

di.

By Schur’s unitary triangularization theorem, there is a unitary matrixU such thatU∗L(G)U =
T = [tij], whereT is an upper triangular matrix with diagonal entriestii = µi, i = 1, 2, . . . , n,
i.e. L(G) = [sij] andT = [tij] are unitarily equivalent. That is,

n∑
i,j=1

|sij|2 =
n∑

i,j=1

|tij|2 ≥
n∑

i=1

|tii|2 =
n∑

i=1

|µi|2.
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Thus

(2.6)
n∑

i=1

d2
i + 2m ≥

n∑
i=1

|µi|2.

Let γi = µi − 2m
n

, i = 1, 2, . . . , n. By the Cauchy-Schwarz inequality applied to the Euclidean
vectors(|γ1|, |γ2|, . . . , |γn|) and(1, 1, . . . , 1), we have

(2.7) SLE(G) =
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ =
n∑

i=1

|γi| ≤

√√√√ n∑
i=1

|γi|2
√

n.

Now by (2.5) and(2.6),
n∑

i=1

|γi|2 =
n∑

i=1

(∣∣∣∣µi −
2m

n

∣∣∣∣)(∣∣∣∣µi −
2m

n

∣∣∣∣)

=
n∑

i=1

|µi|2 −
2m

n

n∑
i=1

2 Re µi +
4m2

n

≤ 2m +
n∑

i=1

d2
i −

4m

n

n∑
i=1

di +
4m2

n

= 2M1.(2.8)

Using(2.8) in (2.7), we conclude that

SLE(G) ≤
√

2M1n.

�

Second Proof.Consider the sum

S =
n∑

i=1

n∑
j=1

(|γi| − |γj|)2.

By direct calculation

S = 2n
n∑

i=1

|γi|2 − 2

(
n∑

i=1

|γi|
n∑

j=1

|γj|

)
.

It follows from (2.8) and the definition ofSLE(G) that

S ≤ 4nM1 − 2SLE(G)2.

SinceS ≥ 0, we haveSLE(G) ≤
√

2M1n. �

If E(G1) is the ordinary energy of a simple graphG1 it is well-known [7] that

(2.9) E(G1) ≤
2m

n
+

√√√√(n− 1)

[
2m−

(
2m

n

)2
]
.

We prove an inequality similar to(2.9) involving the skew Laplacian energy of a digraph. Let
G be an(n,m)-digraph. Supposeµ1, µ2, . . . , µn are the eigenvalues of the Laplacian matrix
L(G) with |γ1| ≤ |γ2| ≤ · · · ≤ |γn| = k, whereγi = µi − 2m

n
, i = 1, 2, . . . , n. Let X =
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(|γ1| ≤ |γ2| ≤ · · · ≤ |γn−1|) and Y = (1, 1, . . . , 1). By the Cauchy-Schwarz inequality we
have (

n−1∑
i=1

|γi|

)2

≤ (n− 1)
n−1∑
i=1

|γi|2.

That is,

(SLE(G)− |γn|)2 ≤ (n− 1)

(
n∑

i=1

|γi|2 − |γn|2
)

.

Using(2.8) in the above inequality we obtain

SLE(G) ≤ k +
√

(n− 1)(2M1 − k2),

wherek = |γn| andM1 is as in Theorem 2.1.

Theorem 2.2.We have
2
√
|M | ≤ SLE(G) ≤ 2M1.

Proof. Since
∑n

i=1 γi = 0, we have
n∑

i=1

γ2
i + 2

n∑
i<j

γiγj = 0.

Now, using(2.4) in the above equation we have

2M = −2
n∑

i<j

γiγj.

This implies

(2.10) 2|M | = 2

∣∣∣∣∣
n∑

i<j

γiγj

∣∣∣∣∣ ≤ 2
n∑

i<j

|γi||γj|.

Now by (2.4),

SLE(G)2 =

(
n∑

i=1

|γi|

)2

=
n∑

i=1

|γi|2 + 2
n∑

i<j

|γi||γj|

≥ 2|M |+ 2
n∑

i<j

|γi||γj|,

which combined with(2.10) yieldsSLE(G)2 ≥ 4|M |. Thus

2
√
|M | ≤ SLE(G).

To prove the right-hand inequality, note that for a graph withm edges and no isolated vertex,
n ≤ 2m. By Theorem 2.1, we have

SLE(G) ≤
√

2M1n ≤
√

2M1(2m) = 2
√

M1m.

SinceM1 ≥ m, we obtainSLE(G) ≤ 2M1. �
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