ON THE CYCLIC HOMOGENEOUS POLYNOMIAL INEQUALITIES OF DEGREE FOUR

VASILE CIRTOAJE
Department of Automatic Control and Computers
University of Ploiesti
Romania
EMail: vcirtoaje@upg-ploiesti.ro

Received:	20 April, 2009
Accepted:	01 July, 2009
Communicated by:	N.K. Govil

2000 AMS Sub. Class.:
26D05.
Key words:

Abstract:

Cyclic inequality, Symmetric inequality, Necessity and sufficiency, Homogeneous polynomial of degree four.

Let $f(x, y, z)$ be a cyclic homogeneous polynomial of degree four with three variables which satisfies $f(1,1,1)=0$. In this paper, we give the necessary and sufficient conditions to have $f(x, y, z) \geq 0$ for any real numbers x, y, z. We also give the necessary and sufficient conditions to have $f(x, y, z) \geq 0$ for the case when f is symmetric and x, y, z are nonnegative real numbers. Finally, some new inequalities with cyclic homogeneous polynomials of degree four are presented.

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page

Contents

44

4

Page 1 of 22
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
 issn: 1443-575b

Contents

1 Introduction 3

2 Main Results 5

3 Proof of Theorem 2.1 12
4 Proof of Theorem 2.6 17
5 Other Related Inequalities 19

Cyclic Homogeneous Polynomial Inequalities
Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents
44

Page 2 of 22
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

Let x, y, z be real numbers. The fourth degree Schur's inequality ([3], [5], [7]) is a well-known symmetric homogeneous polynomial inequality which states that

$$
\begin{equation*}
\sum x^{4}+x y z \sum x \geq \sum x y\left(x^{2}+y^{2}\right) \tag{1.1}
\end{equation*}
$$

where \sum denotes a cyclic sum over x, y and z. Equality holds for $x=y=z$, and for $x=0$ and $y=z$, or $y=0$ and $z=x$, or $z=0$ and $x=y$.

In [3], the following symmetric homogeneous polynomial inequality was proved

$$
\begin{equation*}
\sum x^{4}+8 \sum x^{2} y^{2} \geq 3\left(\sum x y\right)\left(\sum x^{2}\right) \tag{1.2}
\end{equation*}
$$

with equality for $x=y=z$, and for $x / 2=y=z$, or $y / 2=z=x$, or $z / 2=x=y$. In addition, a more general inequality was proved in [3] for any real k,

$$
\begin{equation*}
\sum(x-y)(x-k y)(x-z)(x-k z) \geq 0 \tag{1.3}
\end{equation*}
$$

with equality for $x=y=z$, and again for $x / k=y=z$, or $y / k=z=x$, or $z / k=x=y$. Notice that this inequality is a consequence of the identity

$$
\sum(x-y)(x-k y)(x-z)(x-k z)=\frac{1}{2} \sum(y-z)^{2}(y+z-x-k x)^{2}
$$

In 1992, we established the following cyclic homogeneous inequality [1]:

$$
\begin{equation*}
\left(\sum x^{2}\right)^{2} \geq 3 \sum x^{3} y \tag{1.4}
\end{equation*}
$$

which holds for any real numbers x, y, z, with equality for $x=y=z$, and for

$$
\frac{x}{\sin ^{2} \frac{4 \pi}{7}}=\frac{y}{\sin ^{2} \frac{2 \pi}{7}}=\frac{z}{\sin ^{2} \frac{\pi}{7}}
$$

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

Page 3 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
or any cyclic permutation thereof.
Six years later, we established a similar cyclic homogeneous inequality [2],

$$
\begin{equation*}
\sum x^{4}+\sum x y^{3} \geq 2 \sum x^{3} y \tag{1.5}
\end{equation*}
$$

which holds for any real numbers x, y, z, with equality for $x=y=z$, and for

$$
x \sin \frac{\pi}{9}=y \sin \frac{7 \pi}{9}=z \sin \frac{13 \pi}{9}
$$

or any cyclic permutation thereof.
As shown in [3], substituting $y=x+p$ and $z=x+q$, the inequalities (1.4) and (1.5) can be rewritten in the form

$$
\left(p^{2}-p q+q^{2}\right) x^{2}+f(p, q) x+g(p, q) \geq 0
$$

where the quadratic polynomial of x has the discriminant

$$
\delta_{1}=-3\left(p^{3}-p^{2} q-2 p q^{2}+q^{3}\right)^{2} \leq 0
$$

and, respectively,

$$
\delta_{2}=-3\left(p^{3}-3 p q^{2}+q^{3}\right)^{2} \leq 0
$$

The symmetric inequalities (1.1), (1.2) and (1.3), as well as the cyclic inequalities (1.4) and (1.5), are particular cases of the inequality $f(x, y, z) \geq 0$, where $f(x, y, z)$ is a cyclic homogeneous polynomial of degree four satisfying $f(1,1,1)=$ 0 . This polynomial has the general form

$$
\begin{align*}
f(x, y, z)=w \sum x^{4} & +r \sum x^{2} y^{2} \tag{1.6}\\
& +(p+q-r-w) x y z \sum x-p \sum x^{3} y-q \sum x y^{3}
\end{align*}
$$

where p, q, r, w are real numbers. Since the inequality $f(x, y, z) \geq 0$ with $w \leq 0$ does not hold for all real numbers x, y, z, except the trivial case where $w=p=q=$ 0 and $r \geq 0$, we will consider $w=1$ throughout this paper.

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents
44

Page 4 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Results

In 2008, we posted, without proof, the following theorem in the Mathlinks Forum [4].

Theorem 2.1. Let p, q, r be real numbers. The cyclic inequality

$$
\begin{equation*}
\sum x^{4}+r \sum x^{2} y^{2}+(p+q-r-1) x y z \sum x \geq p \sum x^{3} y+q \sum x y^{3} \tag{2.1}
\end{equation*}
$$

holds for any real numbers x, y, z if and only if

$$
\begin{equation*}
3(1+r) \geq p^{2}+p q+q^{2} \tag{2.2}
\end{equation*}
$$

For $p=q=1$ and $r=0$, we obtain the fourth degree Schur's inequality (1.1). For $p=q=3$ and $r=8$ one gets (1.2), while for $p=q=k+1$ and $r=k(k+2)$ one obtains (1.3). In addition, for $p=3, q=0$ and $r=2$ one gets (1.4), while for $p=2, q=-1$ and $r=0$ one obtains (1.5).

In the particular cases $r=0, r=p+q-1, q=0$ and $p=q$, by Theorem 2.1, we have the following corollaries, respectively.

Corollary 2.2. Let p and q be real numbers. The cyclic inequality

$$
\begin{equation*}
\sum x^{4}+(p+q-1) x y z \sum x \geq p \sum x^{3} y+q \sum x y^{3} \tag{2.3}
\end{equation*}
$$

holds for any real numbers x, y, z if and only if

$$
\begin{equation*}
p^{2}+p q+q^{2} \leq 3 \tag{2.4}
\end{equation*}
$$

Corollary 2.3. Let p and q be real numbers. The cyclic inequality

$$
\begin{equation*}
\sum x^{4}+(p+q-1) \sum x^{2} y^{2} \geq p \sum x^{3} y+q \sum x y^{3} \tag{2.5}
\end{equation*}
$$

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

Page 5 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
holds for any real numbers x, y, z if and only if

$$
\begin{equation*}
3(p+q) \geq p^{2}+p q+q^{2} \tag{2.6}
\end{equation*}
$$

Corollary 2.4. Let p and q be real numbers. The cyclic inequality

$$
\begin{equation*}
\sum x^{4}+r \sum x^{2} y^{2}+(p-r-1) x y z \sum x \geq p \sum x^{3} y \tag{2.7}
\end{equation*}
$$

holds for any real numbers x, y, z if and only if

$$
\begin{equation*}
3(1+r) \geq p^{2} \tag{2.8}
\end{equation*}
$$

Corollary 2.5. Let p and q be real numbers. The symmetric inequality

$$
\begin{equation*}
\sum x^{4}+r \sum x^{2} y^{2}+(2 p-r-1) x y z \sum x \geq p \sum x y\left(x^{2}+y^{2}\right) \tag{2.9}
\end{equation*}
$$

holds for any real numbers x, y, z if and only if

$$
\begin{equation*}
r \geq p^{2}-1 \tag{2.10}
\end{equation*}
$$

Finding necessary and sufficient conditions such that the cyclic inequality (2.1) holds for any nonnegative real numbers x, y, z is a very difficult problem. On the other hand, the approach for nonnegative real numbers is less difficult in the case when the cyclic inequality (2.1) is symmetric. Thus, in 2008, Le Huu Dien Khue posted, without proof, the following theorem on the Mathlinks Forum [4].

Theorem 2.6. Let p and r be real numbers. The symmetric inequality (2.9) holds for any nonnegative real numbers x, y, z if and only if

$$
\begin{equation*}
r \geq(p-1) \max \{2, p+1\} \tag{2.11}
\end{equation*}
$$

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 6 of 22	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

From Theorem 2.1, setting $p=1+\sqrt{6}, q=1-\sqrt{6}$ and $r=2$, and then $p=3$, $q=-3$ and $r=2$, we obtain the inequalities:

$$
\begin{equation*}
\left(\sum x^{2}\right)\left(\sum x^{2}-\sum x y\right) \geq \sqrt{6}\left(\sum x^{3} y-\sum x y^{3}\right) \tag{2.12}
\end{equation*}
$$

with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 0.4493$ and $\beta \approx-0.1009$ were found using a computer;

$$
\begin{equation*}
\left(x^{2}+y^{2}+z^{2}\right)^{2} \geq 3 \sum x y\left(x^{2}-y^{2}+z^{2}\right) \tag{2.13}
\end{equation*}
$$

with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 0.2469$ and $\beta \approx-0.3570$.

From Corollary 2.2, setting $p=\sqrt{3}$ and $q=-\sqrt{3}$ yields

$$
\begin{equation*}
\sum x^{4}-x y z \sum x \geq \sqrt{3}\left(\sum x^{3} y-\sum x y^{3}\right) \tag{2.14}
\end{equation*}
$$

with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 0.3767$ and $\beta \approx-0.5327$. Notice that if x, y, z are nonnegative real numbers, then the best constant in inequality (2.14) is $2 \sqrt{2}$ (Problem 19, Section 2.3 in [3], by Pham Kim Hung):

$$
\begin{equation*}
\sum x^{4}-x y z \sum x \geq 2 \sqrt{2}\left(\sum x^{3} y-\sum x y^{3}\right) \tag{2.15}
\end{equation*}
$$

From Corollary 2.3, setting $p=1+\sqrt{3}$ and $q=1$, and then $p=1-\sqrt{3}$ and $q=1$, we obtain the inequalities:

$$
\begin{equation*}
\sum x^{4}-\sum x y^{3} \geq(1+\sqrt{3})\left(\sum x^{3} y-\sum x^{2} y^{2}\right) \tag{2.16}
\end{equation*}
$$

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

Page 7 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 0.7760$ and $\beta \approx 0.5274$;

$$
\begin{equation*}
\sum x^{4}-\sum x y^{3} \geq(\sqrt{3}-1)\left(\sum x^{2} y^{2}-\sum x^{3} y\right) \tag{2.17}
\end{equation*}
$$

with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 1.631$ and $\beta \approx-1.065$.

From Corollary 2.4, setting in succession $p=\sqrt{3}$ and $r=0, p=-\sqrt{3}$ and $r=0, p=6$ and $r=11, p=2$ and $r=1 / 3, p=-1$ and $r=-2 / 3, p=r=$ $(3+\sqrt{21}) / 2, p=1$ and $r=-2 / 3, p=r=(3-\sqrt{21}) / 2, p=\sqrt{6}$ and $r=1$, we obtain the inequalities below, respectively:

$$
\begin{equation*}
\sum x^{4}+(\sqrt{3}-1) x y z \sum x \geq \sqrt{3} \sum x^{3} y \tag{2.18}
\end{equation*}
$$

with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 0.7349$ and $\beta \approx-0.1336$ (Problem 5.3.10 in [6]);

$$
\begin{equation*}
\sum x^{4}+\sqrt{3} \sum x^{3} y \geq(1+\sqrt{3}) x y z \sum x \tag{2.19}
\end{equation*}
$$

with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 7.915$ and $\beta \approx-6.668$;

$$
\begin{equation*}
\sum x^{4}+11 \sum x^{2} y^{2} \geq 6\left(\sum x^{3} y+x y z \sum x\right) \tag{2.20}
\end{equation*}
$$

with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 0.5330$ and $\beta \approx 2.637$;

$$
\begin{equation*}
3 \sum x^{4}+\left(\sum x y\right)^{2} \geq 6 \sum x^{3} y \tag{2.21}
\end{equation*}
$$

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

Page 8 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 0.7156$ and $\beta \approx-0.0390$;

$$
\begin{equation*}
\sum x^{4}+\sum x^{3} y \geq \frac{2}{3}\left(\sum x y\right)^{2} \tag{2.22}
\end{equation*}
$$

with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 1.871$ and $\beta \approx-2.053$;

$$
\begin{equation*}
\sum x^{4}-x y z \sum x \geq \frac{3+\sqrt{21}}{2}\left(\sum x^{3} y-\sum x^{2} y^{2}\right) \tag{2.23}
\end{equation*}
$$

with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 0.570$ and $\beta \approx 0.255$;

$$
\begin{equation*}
\sum x^{4}-\sum x^{3} y \geq \frac{2}{3}\left(\sum x^{2} y^{2}-x y z \sum x\right) \tag{2.24}
\end{equation*}
$$

with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 0.8020$ and $\beta \approx-0.4446$;

$$
\begin{equation*}
\sum x^{4}-x y z \sum x \geq \frac{\sqrt{21}-3}{2}\left(\sum x^{2} y^{2}-\sum x^{3} y\right) \tag{2.25}
\end{equation*}
$$

with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 1.528$ and $\beta \approx-1.718$;

$$
\begin{equation*}
\sum\left(x^{2}-y z\right)^{2} \geq \sqrt{6} \sum x y(x-z)^{2} \tag{2.26}
\end{equation*}
$$

with equality for $x=y=z$, and for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 0.6845$ and $\beta \approx 0.0918$ (Problem 21, Section 2.3 in [3]).

Cyclic Homogeneous Polynomial Inequalities
Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

Page 9 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

From either Corollary 2.5 or Theorem 2.6, setting $r=p^{2}-1$ yields

$$
\begin{equation*}
\sum x^{4}+\left(p^{2}-1\right) \sum x^{2} y^{2}+p(2-p) x y z \sum x \geq p \sum x y\left(x^{2}+y^{2}\right) \tag{2.27}
\end{equation*}
$$

which holds for any real numbers p and x, y, z. For $p=k+1$, the inequality (2.27) turns into (1.3).

Corollary 2.7. Let x, y, z be real numbers. If p, q, r, s are real numbers such that

$$
\begin{equation*}
p+q-r-1 \leq s \leq 2(r+1)+p+q-p^{2}-p q-q^{2} \tag{2.28}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum x^{4}+r \sum x^{2} y^{2}+s x y z \sum x \geq p \sum x^{3} y+q \sum x y^{3} . \tag{2.29}
\end{equation*}
$$

Let

$$
\alpha=\frac{r+s+1-p-q}{3} \geq 0 .
$$

Since

$$
3(1+r-\alpha) \geq p^{2}+p q+q^{2},
$$

by Theorem 2.1 we have
$\sum x^{4}+(r-\alpha) \sum x^{2} y^{2}+(\alpha+p+q-r-1) x y z \sum x \geq p \sum x^{3} y+q \sum x y^{3}$.
Adding this inequality to the obvious inequality

$$
\alpha\left(\sum x y\right)^{2} \geq 0
$$

we get (2.29).

Cyclic Homogeneous Polynomial Inequalities
Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

Page 10 of 22

Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

From Corollary 2.7, setting $p=1, q=r=0$ and $s=2$, we get

$$
\begin{equation*}
\sum x^{4}+2 x y z \sum x \geq \sum x^{3} y \tag{2.30}
\end{equation*}
$$

with equality for $x=y / \alpha=z / \beta$ or any cyclic permutation, where $\alpha \approx 0.8020$ and $\beta \approx-0.4451$. Notice that (2.30) is equivalent to

$$
\begin{equation*}
\sum\left(2 x^{2}-y^{2}-z^{2}-x y+y z\right)^{2}+4\left(\sum x y\right)^{2} \geq 0 \tag{2.31}
\end{equation*}
$$

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

Page 11 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Proof of Theorem 2.1

Proof of the Sufficiency. Since

$$
\sum x^{2} y^{2}-x y x \sum x=\frac{1}{2} \sum x^{2}(y-z)^{2} \geq 0
$$

it suffices to prove the inequality (2.1) for the least value of r, that is

$$
r=\frac{p^{2}+p q+q^{2}}{3}-1
$$

On this assumption, (2.1) is equivalent to each of the following inequalities:

$$
\begin{equation*}
\sum\left[2 x^{2}-y^{2}-z^{2}-p x y+(p+q) y z-q z x\right]^{2} \geq 0 \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum\left[3 y^{2}-3 z^{2}-(p+2 q) x y-(p-q) y z+(2 p+q) z x\right]^{2} \geq 0 \tag{3.2}
\end{equation*}
$$

$$
\begin{align*}
3\left[2 x^{2}-y^{2}-\right. & \left.z^{2}-p x y+(p+q) y z-q z x\right]^{2} \tag{3.3}\\
& +\left[3 y^{2}-3 z^{2}-(p+2 q) x y-(p-q) y z+(2 p+q) z x\right]^{2} \geq 0
\end{align*}
$$

Thus, the conclusion follows.
Proof of the Necessity. For $p=q=2$, we need to show that the condition $r \geq 3$ is necessary to have

$$
\sum x^{4}+r \sum x^{2} y^{2}+(3-r) x y z \sum x \geq 2 \sum x^{3} y+2 \sum x y^{3}
$$

Page 12 of 22

Go Back

Full Screen
Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for any real numbers x, y, z. Indeed, setting $y=z=1$ reduces this inequality to

$$
(x-1)^{4}+(r-3)(x-1)^{2} \geq 0
$$

which holds for any real x if and only if $r \geq 3$.
In the other cases (different from $p=q=2$), by Lemma 3.1 below it follows that there is a triple $(a, b, c)=(1, b, c) \neq(1,1,1)$ such that

$$
\sum\left[2 a^{2}-b^{2}-c^{2}-p a b+(p+q) b c-q c a\right]^{2}=0
$$

Since

$$
\sum a^{2} b^{2}-a b c \sum a=\frac{1}{2} \sum a^{2}(b-c)^{2}>0
$$

we may write this relation as

$$
\frac{p \sum a^{3} b+q \sum a b^{3}-\sum a^{4}-(p+q-1) a b c \sum a}{\sum a^{2} b^{2}-a b c \sum a}=\frac{p^{2}+p q+q^{2}}{3}-1 .
$$

On the other hand, since (2.1) holds for (a, b, c) (by hypothesis), we get

$$
r \geq \frac{p \sum a^{3} b+q \sum a b^{3}-\sum a^{4}-(p+q-1) a b c \sum a}{\sum a^{2} b^{2}-a b c \sum a}
$$

Therefore,

$$
r \geq \frac{p^{2}+p q+q^{2}}{3}-1
$$

Title Page
Contents

Page 13 of 22

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. We consider two cases: $p=q \neq 2$ and $p \neq q$.
Case 1. $p=q \neq 2$.
It is easy to prove that $(x, y, z)=(1, p-1,1) \neq(1,1,1)$ is a solution of the equation (3.4).
Case 2. $p \neq q$.
The equation (3.4) is equivalent to

$$
\left\{\begin{array}{l}
2 y^{2}-z^{2}-x^{2}-p y z+(p+q) z x-q x y=0 \\
2 z^{2}-x^{2}-y^{2}-p z x+(p+q) x y-q y z=0 .
\end{array}\right.
$$

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

For $x=1$, we get

$$
\left\{\begin{array}{l}
2 y^{2}-z^{2}-1-p y z+(p+q) z-q y=0 \tag{3.5}\\
2 z^{2}-1-y^{2}-p z+(p+q) y-q y z=0 .
\end{array}\right.
$$

Adding the first equation multiplied by 2 to the second equation yields

$$
\begin{equation*}
z[(2 p+q) y-p-2 q]=3 y^{2}+(p-q) y-3 . \tag{3.6}
\end{equation*}
$$

Under the assumption that $(2 p+q) y-p-2 q \neq 0$, substituting z from (3.6) into the first equation, (3.5) yields

$$
\begin{equation*}
(y-1)\left(a y^{3}+b y^{2}+c y-a\right)=0, \tag{3.7}
\end{equation*}
$$

where

$$
\begin{gathered}
a=9-2 p^{2}-5 p q-2 q^{2} \\
b=9+6 p-6 q-3 p^{2}+3 q^{2}+2 p^{3}+3 p^{2} q+3 p q^{2}+q^{3} \\
c=-9+6 p-6 q-3 p^{2}+3 q^{2}-p^{3}-3 p^{2} q-3 p q^{2}-2 q^{3} .
\end{gathered}
$$

Title Page
Contents

Page 14 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The equation (3.7) has a real root $y_{1} \neq 1$. To prove this claim, it suffices to show that the equation $a y^{3}+b y^{2}+c y-a=0$ does not have a root of 1 ; that is to show that $b+c \neq 0$. This is true because

$$
\begin{aligned}
b+c & =12(p-q)-6\left(p^{2}-q^{2}\right)+p^{3}-q^{3} \\
& =(p-q)\left(12-6 p-6 q+p^{2}+q^{2}+p q\right)
\end{aligned}
$$

and

$$
\begin{aligned}
p-q & \neq 0 \\
4\left(12-6 p-6 q+p^{2}+q^{2}+p q\right) & >48-24(p+q)+3(p+q)^{2} \\
& =3(p+q-4)^{2} \\
& \geq 0
\end{aligned}
$$

For $y=y_{1}$ and $(2 p+q) y_{1}-p-2 q \neq 0$, from (3.6) we get

$$
z_{1}=\frac{3 y_{1}^{2}+(p-q) y_{1}-3}{(2 p+q) y_{1}-p-2 q}
$$

Title Page
Contents

Page 15 of 22

Go Back

Full Screen

Close
journal of inequalities
For $y=y_{1}$, from (3.6) we get $3\left(y_{1}^{2}-1\right)+(p-q) y_{1}=0$, which yields

$$
\begin{equation*}
(2 p+q)(p+2 q)=9(p+q) \tag{3.8}
\end{equation*}
$$

Substituting y_{1} into the first equation (3.5), we get

$$
(2 p+q) z^{2}-\left(p^{2}+q^{2}+p q\right) z+p+2 q=0 .
$$

To complete the proof, it suffices to show that this quadratic equation has real roots. Due to (3.8), we need to prove that

$$
\left(p^{2}+q^{2}+p q\right)^{2} \geq 36(p+q)
$$

For the nontrivial case $p+q>0$, let us denote $s=p+q, s>0$, and write the condition (3.8) as $9 s-2 s^{2}=p q$. Since $4 p q \leq s^{2}$, we find that $s \geq 4$. Therefore,

$$
\left(p^{2}+q^{2}+p q\right)^{2}-36(p+q)=9\left(s^{2}-3 s\right)^{2}-36 s=9 s(s-1)^{2}(s-4) \geq 0
$$

Cyclic Homogeneous Polynomial Inequalities
Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

journal of inequalities in pure and applied mathematics
issn: 1443-575b

4. Proof of Theorem 2.6

The condition $r \geq(p-1) \max \{2, p+1\}$ is equivalent to $r \geq p^{2}-1$ for $p \geq 1$, and $r \geq 2(p-1)$ for $p \leq 1$.
Proof of the Sufficiency. By Theorem 2.1, if $r \geq p^{2}-1$, then the inequality (2.9) is true for any real numbers x, y, z. Thus, it only remains to consider the case when $p \leq 1$ and $r \geq 2(p-1)$. Writing (2.9) as

$$
\begin{aligned}
\sum x^{4}+x y z \sum x-\sum x y\left(x^{2}+y^{2}\right) & \\
+(1-p)\left[\sum\right. & \left.x y\left(x^{2}+y^{2}\right)-2 \sum x^{2} y^{2}\right] \\
& +(r-2 p+2)\left(\sum x^{2} y^{2}-x y z \sum x\right) \geq 0
\end{aligned}
$$

Cyclic Homogeneous Polynomial Inequalities
Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

Page 17 of 22

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b $p^{2}-1$ are necessary such that the inequality (2.9) holds for any nonnegative real
numbers x, y, z. Setting $y=z=1$, (2.9) becomes

$$
(x-1)^{2}\left[x^{2}+2(1-p) x+2+r-2 p\right] \geq 0
$$

For $x=0$, we get the necessary condition $r \geq 2(p-1)$, while for $x=p-1$, we get

$$
(p-2)^{2}\left(r+1-p^{2}\right) \geq 0
$$

If $p \neq 2$, then this inequality provides the necessary condition $r \geq p^{2}-1$. Thus, it remains to show that for $p=2$, we have the necessary condition $r \geq 3$. Indeed, setting $p=2$ and $y=z=1$ reduces the inequality (2.9) to

$$
(x-1)^{2}\left[(x-1)^{2}+r-3\right] \geq 0
$$

Clearly, this inequality holds for any nonnegative x if and only if $r \geq 3$.

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page

Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 18 of 22	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

5. Other Related Inequalities

The following theorem establishes other interesting related inequalities with symmetric homogeneous polynomials of degree four.

Theorem 5.1. Let x, y, z be real numbers, and let

$$
\begin{aligned}
& A=\sum x^{4}-\sum x^{2} y^{2}, \quad B=\sum x^{2} y^{2}-x y z \sum x \\
& C=\sum x^{3} y-x y z \sum x, \quad D=\sum x y^{3}-x y z \sum x
\end{aligned}
$$

Then,

$$
\begin{equation*}
A B=C^{2}-C D+D^{2} \geq \frac{C^{2}+D^{2}}{2} \geq\left(\frac{C+D}{2}\right)^{2} \geq C D \tag{5.1}
\end{equation*}
$$

Moreover, if x, y, z are nonnegative real numbers, then

$$
\begin{equation*}
C D \geq B^{2} \tag{5.2}
\end{equation*}
$$

The equality $A B=C D$ holds for $x+y+z=0$, and for $x=y$, or $y=z$, or $z=x$, while the equality $C D=B^{2}$ holds for $x=y=z$, and for $x=0$, or $y=0$, or $z=0$.

Proof. The inequalities in Theorem 5.1 follow from the identities:

$$
\begin{gathered}
D-C=(x+y+z)(x-y)(y-z)(z-x), \\
A B-C D=(x+y+z)^{2}(x-y)^{2}(y-z)^{2}(z-x)^{2}, \\
A B-\left(\frac{C+D}{2}\right)^{2}=\frac{3}{4}(x+y+z)^{2}(x-y)^{2}(y-z)^{2}(z-x)^{2},
\end{gathered}
$$

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

Page 19 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{gathered}
A B-\frac{C^{2}+D^{2}}{2}=\frac{1}{2}(x+y+z)^{2}(x-y)^{2}(y-z)^{2}(z-x)^{2} \\
C D-B^{2}=x y z(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)^{2} .
\end{gathered}
$$

Remark 1. We obtained the identity $A B=C^{2}-C D+D^{2}$ in the following way. For $3(r+1)=p^{2}+p q+q^{2}$, by Theorem 2.1 we have

$$
A+(1+r) B-p C-q D \geq 0,
$$

which is equivalent to

$$
B p^{2}+(B q-3 C) p+B q^{2}-3 D q+3 A \geq 0 .
$$

Since this inequality holds for any real p and $B \geq 0$, the discriminant of the quadratic of p is non-positive; that is

$$
(B q-3 C)^{2}-4 B\left(B q^{2}-3 D q+3 A\right) \leq 0
$$

which is equivalent to

$$
B^{2} q^{2}+2 B(C-2 D) q+4 A B-3 C^{2} \geq 0
$$

Similarly, the discriminant of the quadratic of q is non-positive; that is

$$
B^{2}(C-2 D)^{2}-B^{2}\left(4 A B-3 C^{2}\right) \leq 0,
$$

which yields $A B \geq C^{2}-C D+D^{2}$. Actually, this inequality is an identity. Remark 2. The inequality $C D \geq B^{2}$ is true if

$$
k^{2} C-2 k B+D \geq 0
$$

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents
\square
Page 20 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for any real k. This inequality is equivalent to

$$
\sum y z(x-k y)^{2} \geq(k-1)^{2} x y z \sum x
$$

which follows immediately from the Cauchy-Schwarz inequality

$$
\left(\sum x\right)\left[\sum y z(x-k y)^{2}\right] \geq(k-1)^{2} x y z\left(\sum x\right)^{2}
$$

On the other hand, assuming that $x=\min \{x, y, z\}$ and substituting $y=x+p$ and $z=x+q$, where $p, q \geq 0$, the inequality $C D \geq B^{2}$ can be rewritten as

$$
A_{1} x^{4}+B_{1} x^{3}+C_{1} x^{2}+D_{1} x \geq 0
$$

with

$$
\begin{gathered}
A_{1}=3\left(p^{2}-p q+q^{2}\right)^{2} \geq 0 \\
B_{1}=4(p+q)\left(p^{2}-p q+q^{2}\right)^{2} \geq 0 \\
C_{1}=2 p q\left(p^{2}-p q+q^{2}\right)^{2}+p q\left(p^{2}-q^{2}\right)^{2}+\left(p^{3}+q^{3}\right)^{2}-2 p^{2} q^{2}\left(p^{2}+q^{2}\right)+5 p^{3} q^{3} \geq 0, \\
D_{1}=p q\left[p^{5}+q^{5}-p q\left(p^{3}+q^{3}\right)+p^{2} q^{2}(p+q)\right] \geq 0
\end{gathered}
$$

Cyclic Homogeneous Polynomial Inequalities
Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

Page 21 of 22

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] V. CIRTOAJE, Problem 22694, Gazeta Matematica, 7-8 (1992), 287.
[2] V. CIRTOAJE, Problem O:887, Gazeta Matematica, 10 (1998), 434.
[3] V. CIRTOAJE, Algebraic Inequalities-Old and New Methods, GIL Publishing House, 2006.
[4] V. CIRTOAJE AND LE HUU DIEN KHUE, Mathlinks Forum, February 2008, [ONLINE: http://www.mathlinks.ro/Forum/viewtopic. php?t=186179].
[5] G.H. HARDY, J.E. LITTLEWOOD and G. POLYA, Inequalities, Cambridge University Press, 1952.
[6] P.K. HUNG, Secrets in Inequalities, Vol. 2, GIL Publishing House, 2008.
[7] D.S. MITRINOVIĆ, J. PEČARIĆ AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.

Cyclic Homogeneous Polynomial Inequalities

Vasile Cirtoaje
vol. 10, iss. 3, art. 67, 2009

Title Page
Contents

Page 22 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

