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Andersson [1] proved that if for eachi, fi(0) = 0 and fi is convex and
increasing, then

(1)
∫ 1

0

n∏
1

fi(x)dx ≥ 2n

n + 1

n∏
1

∫ 1

0

fi(x)dx

with equality when eachfi is linear.
Elsewhere [2] we have proved that iffi ∈ M = {f |f(0) = 0 and f(x)

x
is

increasing and bounded} and

dσ ∈ M̂ =

{
dσ

∣∣∣∣∫ t

0

xdσ(x) ≥ 0,

∫ 1

t

xdσ(x) ≥ 0

for t ∈ [0, 1], and
∫ 1

0

xdσ(x) > 0

}
then

(2)
∫ 1

0

n∏
1

fi(x)dσ(x) ≥
∫ 1

0
xndσ(x)(∫ 1

0
xdσ(x)

)n

n∏
1

∫ 1

0

fi(x)dσ(x).

One notices that iff is convex and increasing withf(0) = 0 thenf ∈ M .
For f(x)

x
=

∫ 1

0
f ′(xt)dt whenf ′ exists. The question arises if in fact Andersson’s

inequality can be extended beyond (2).

Lemma 1 (Andersson). If fi(0) = 0, increasing and convex,i = 1, 2 and
f ∗2 = α2x whereα2 is chosen so that

∫ 1

0
f2 =

∫ 1

0
f ∗2 then

∫ 1

0
f1f2 ≥

∫ 1

0
f1f

∗
2 .
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We will examine whether Andersson’s Lemma is best possible. We now
discuss the notion of best possible.

An (integral) inequalityI(f, dµ) ≥ 0 is best possible if the following situa-
tion holds. We consider both the functions and measures as ‘variables’. Let the
functions be in some universeU usually consisting of continuous functions and
the measures in some universeÛ , usually regular Borel measures. Suppose we
can findM ⊂ U andM̂ ⊂ Û so thatI(f, dµ) ≥ 0 for all f ∈ M if and only
if µ ∈ M̂ (given thatµ ∈ Û ) andI(f, dµ) ≥ 0 for all µ ∈ M̂ if and only if
f ∈ M (given thatf ∈ U ). We then say the pair(M, M̂) give us a best possible
inequality.

As an historical example, Chebyshev [3] in 1882 submitted a paper in which
he proved that

(3)
∫ b

a

f(x)g(x)p(x)dx

∫ b

a

p(x)dx ≥
∫ b

a

f(x)p(x)dx

∫ b

a

g(x)p(x)dx

provided thatp ≥ 0 andf andg were monotone in the same sense. Even before
this paper appeared in 1883, it was shown to be not best possible since the pairs
f, g for which (3) holds can be expanded. Consider the identity

(4)
1

2

∫ b

a

∫ b

a

(f(x)− f(y)][g(x)− g(y)]p(x)p(y)dxdy

=

∫ b

a

fgp

∫ b

a

p−
∫ b

a

fp

∫ b

a

gp.

So (3) holds iff andg are similarly ordered, i.e.

(5) [f(x)− f(y)][g(x)− g(y)] ≥ 0, x, y ∈ [a, b].
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For examplex2 andx4 are similarly ordered but not monotone.
Jodeit and Fink [4] invented the notion of ‘best possible’ in a manuscript

circulated in 1975 and published in parts in [3] and [4]. They showed that if we
takeU to be pairs of continuous functions and̂U to be regular Borel measures
µ with

∫ b

a
dµ > 0, then

(6)
∫ b

a

fg dµ

∫ b

a

dµ ≥
∫ b

a

f dµ

∫ b

a

g dµ

is a best possible inequality ifM1 = {(f, g)| (5) holds} ⊂ U andM̂1 = {µ|µ ≥
0} i.e.
(6) holds for all pairs inM1 if and only if µ ∈ M̂1, and
(6) holds for allµ ∈ M̂1 if and only if (f, g) ∈ M1.

The sufficiency in both cases is the identity corresponding to (4). If dµ =
δx + δy wherex andy ∈ [a, b], the inequality (6) gives (5), and if f = g =
xA, A ⊂ [a, b], then (6) is µ(A)µ(a, b) ≥ µ(A)2 which givesµ(A) ≥ 0. Strictly
speaking this pair is not inM1, but can be approximated inL1 by continous
functions.

If we return to Chebyshev’s hypothesis thatf and g are monotone in the
same sense, let us takeU be the class of pairs of continuous functions, neither
of which is a constant and̂U as above,M0 = {f, g ∈ U | f andg are simularly
monotone} and

M̂0 =

{
µ

∣∣∣∣∫ t

a

dµ ≥ 0,

∫ b

t

dµ ≥ 0 for a ≤ t ≤ b

}
.

Lemma 2. The inequality (6) holds for all(f, g) ∈ M0 if and only ifµ ∈ M̂0.
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Proof. There exist measuresdτ anddλ such thatf(x) =
∫ x

0
dτ andg(x) =∫ x

0
dλ. We may assumef(0) = g(0) since adding a constant to a function does

not alter (6). Lettingx0
+ = 0 if x ≤ 0 and 1 ifx > 0 we can rewrite (6) after an

interchange of order of integration as

(7)
∫ 1

0

∫ 1

0

dλ(s)dτ(t)

[∫ 1

0

dµ

∫ 1

0

(x− t)0
+(x− s)0

+dµ(x)

−
∫ 1

0

(x− t)0
+dµ(x)

∫ 1

0

(x− s)0
+dµ(x)

]
≥ 0.

Sincef, g are arbitrary increasing functions,dλ anddτ ≥ 0 so (6) holds if and
only if the [ ] ≥ 0 for eacht ands. For example we may take both these
measures,dτ, dλ to be point atoms. The equivalent condition then is that

(8)
∫ 1

0

dµ

∫ 1

t∨s

dµ ≥
∫ 1

t

dµ

∫ 1

s

dµ.

By symmetry we may assume thatt ≥ s so that (8) may be written
∫ s

0
dµ

∫ 1

t
dµ

≥ 0. Consequently, ifdµ ∈ M̂0 (6) holds and (6) holds for allf, g ∈ M0 only if∫ s

0
dµ

∫ 1

t
dµ ≥ 0. But for s = t this is the product of two numbers whose sum

is positive so each factor must be non-negative, completing the proof.

Lemma 3. Supposef andg are bounded integrable functions on[0, 1]. If (6)
holds for allµ ∈ M̂0 thenf andg are both monotone in the same sense.

Proof. First let dµ = δx + δy whereδx is an atom atx. Then (6) becomes
[f(x)−f(y)][g(x)−g(y)] ≥ 0, i.e. f andg are similarly ordered. Ifx < y < z,
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takedτ = δx − δy + δz so thatµ ∈ M0. To ease the burden of notation let the
values off atx, y, z bea, b, c and the corresponding values ofg beA, B, C. By
(6) we have

(9) aA− bB + cC ≥ (a− b + c)(A−B + C).

By similar ordering we have

(10) (a− b)(A−B) ≥ 0, (a− c)(A− C) ≥ 0, and(b− c)(B − C) ≥ 0;

and (9) may be rewritten as

(11) (a− b)(C −B) + (c− b)(A−B) ≤ 0.

Now if one of the two terms in (10) is positive, the other is negative and all the
factors are non-zero. By (10) the two terms are the same sign. Thus

(12) (a− b)(C −B) ≤ 0 and(c− b)(A−B) ≤ 0.

Now (10) and (12) hold for any triple. We will show that iff is not mono-
tone, theng is a constant.

We say that we have configuration I ifa < b andc < b, and configuration II
if a > b andc > b.

We claim that for both configurations I and II we must haveA = B = C.
Take configuration I. Nowb − a > 0 implies thatB − A ≥ 0 by (10) and
C−B ≥ 0 by (12). Also b− c > 0 yields(B−C) ≥ 0 by (10) andA−B ≥ 0
by (12). Combining these we haveA = B = C. The proof for configuration II
is the same.
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Assume now that configuration I exists, soA = B = C. Let x < x0 < y. If
a0 < b (a0 = f(x0)) thenx0, y, z form a configuration I andA0 = B. If a0 ≥ b,
thenx, x0, z form a configuration I andA0 = B. If x0 < x anda0 < b, then
againx0, y, z form a configuration I andA0 = B. Finally if a0 ≥ b andx0 < x
thenx0, x, b for a configuration II andA0 = B. Thus forx < y g(0) ≡ g(y).
The proof forx > y is similar yielding thatg is a constant.

If a configuration II exists, then the proof is similar, or alternately we can
apply the configuration I argument to the pair−f,−g.

Finally if f is not monotone on[0, 1] then either a configuration I or II must
exist andg is a constant. Consequently, if neitherf nor g are constants, then
both are monotone and by similar ordering, monotone in the same sense.

Note that if one off, g is a constant, then (6) is an identity for any measure.

Theorem 4.

i) LetM be defined as above andN = {g|g(0) = 0 andg is increasing and
bounded}. Then forF (x) ≡ f(x)

x

(13)
∫ 1

0

fgdσ(x)

≥
(∫ 1

0

xdσ(x)

)−1 (∫ 1

0

F (x)xdσ

) (∫ 1

0

g(x)xdσ(x)

)
holds for all pairs(f, g) ∈ M ×N if and only ifdσ ∈ M̂ .

ii) Letf(0) = g(0) = 0 and f
x

andg be of bounded variation on[0, 1]. If (13)

holds for alldσ ∈ M̂ then eitherf
x

or g is a constant (in which case (13)
is an identity) or

(
f
x
, g

)
∈ M ×N .

http://jipam.vu.edu.au/
mailto:fink@math.iastate.edu
http://jipam.vu.edu.au/


Andersson’s Inequality and
Best Possible Inequalities

A.M. Fink

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 8 of 9

J. Ineq. Pure and Appl. Math. 4(3) Art. 54, 2003

http://jipam.vu.edu.au

The proof starts with the observation that (13) is in fact a Chebyshev inequal-
ity

(14)
∫ 1

0

Fg dτ

∫ 1

0

dτ ≥
∫ 1

0

F dτ

∫ 1

0

g dτ

wheredτ = x dσ; andF, g are the functions. The theorem is a corollary of the
two lemmas.

Andersson’s inequality (2) now follows by induction, replacing onef by f ∗

at a time. Note that the casen = 2 of Andersson’s inequality (2) has the proof∫ 1

0

f1f2 ≥
∫ 1

0

f ∗1 f2 ≥
∫ 1

0

f ∗1 f ∗2

and it is only the first one which is best possible! The inequality between the
extremes is perhaps ‘best possible’.

Remark 1. Of coursex can be replaced by any function that is zero at zero
and positive elsewhere, i.e.f(x)

x
can be replaced byf(x)

p(x)
and the measuredτ =

p(x)dσ(x).
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