Journal of Inequalities in Pure and Applied Mathematics

A GENERAL L_{2} INEQUALITY OF GRÜSS TYPE

volume 7 , issue 2 , article 54, 2006.

Received 06 April, 2005; accepted 27 February, 2006.
Communicated by: S.S. Dragomir

P.R. China

Hangzhou 310012, Zhejiang
EMail: rhm@mail.hzrtvu.edu.cn
Department of Mathematics
Hangzhou Normal College
Hangzhou 310012, Zhejiang
P.R. China

EMail: sjyang@hztc.edu.cn

ISSN (electronic): 1443-5756
Quit

Abstract

Based on the Euler-Maclaurin formula in the spirit of Wang [1] and sparked by Wang and Han [2], we obtain a general L_{2} inequality of Grüss type, which includes some existing results as special cases.

2000 Mathematics Subject Classification: Primary 65D32; Secondary 41A55.
Key words: Euler-Maclaurin formula, Error estimate, Grüss type inequality.
This work is supported by NNSF (Grant No. 10275054) and Hangzhou Normal College (Grant No. 2004 XNZ 03 and No. 112).

Contents

1 Introduction... . . 3
2 A L_{2} version of Grüss Type Inequality 5
3 Examples 10
References

A General L_{2} Inequality of Grüss Type

Hongmin Ren and Shijun Yang

J. Ineq. Pure and Appl. Math. 7(2) Art. 54, 2006 http://jipam.vu.edu.au

1. Introduction

Inequalities of the Grüss type have been the subject renewed research interest in the past few years. The monograph [3] has had much impact on the stream of current research in this area.

Inequalities of the Grüss type can be found in e.g. [4, 5, 6, 7, 8, 9, 10] and references therein.

Recently, N. Ujević in [10] proved the following two theorems among others.
Theorem 1.1. Let $f:[0,1] \rightarrow \mathbb{R}$ be an absolutely continuous function, whose derivatives $f^{\prime} \in L_{2}[0,1]$. Then,

$$
\begin{equation*}
\left|\frac{1}{6}\left[f(0)+4 f\left(\frac{1}{2}\right)+f(1)\right]-\int_{0}^{1} f(t) d t\right| \leq \frac{1}{6} \sqrt{\sigma\left(f^{\prime}\right)} \tag{1.1}
\end{equation*}
$$

where $\sigma(\cdot)$ is defined by

$$
\begin{equation*}
\sigma(f)=\|f\|_{2}^{2}-\left(\int_{0}^{1} f(t) d t\right)^{2} \tag{1.2}
\end{equation*}
$$

Inequality (1.1) is sharp in the sense that the constant $\frac{1}{6}$ cannot be replaced by a smaller one.
Theorem 1.2. Under the assumptions of Theorem 1.1, for any $x \in[0,1]$, we have

$$
\begin{equation*}
\left|f(x)-\left(x-\frac{1}{2}\right)[f(1)-f(0)]-\int_{0}^{1} f(t) d t\right| \leq \frac{1}{2 \sqrt{3}} \sqrt{\sigma\left(f^{\prime}\right)} \tag{1.3}
\end{equation*}
$$

Inequality (1.3) is sharp in the sense that the constant $1 /(2 \sqrt{3})$ cannot be replaced by a smaller one.

Based on the Euler-Maclaurin formula in the spirit of Wang [1] and sparked by Wang and Han [2], we obtain a general L_{2} inequality of the Grüss type under very natural assumptions. Our results improve and generalize some existing observations.

A General L_{2} Inequality of Grüss Type

Hongmin Ren and Shijun Yang

J. Ineq. Pure and Appl. Math. 7(2) Art. 54, 2006

2. A L_{2} version of Gruiss Type Inequality

In what follows, let f be defined on $[0,1]$,

$$
\|f\|_{2}=\left(\int_{0}^{1} f(t) d t\right)^{2}
$$

and $L_{2}[0,1]=\left\{f \mid\|f\|_{2}<\infty\right\}$.
Some more notations and the following lemmas are needed before we proceed. In the rest of the paper, a standing assumption is that $x \in[0,1], n$ is a positive integer and $0=t_{0}<t_{1}<\cdots<t_{n}=1$ is an equidistant subdivision of the interval $[0,1]$ such that $t_{i+1}-t_{i}=h=1 / n, i=0,1, \ldots, n-1$.

We start with the following lemma.
Lemma 2.1 ([1], cf. [11]). Let $f:[0,1] \rightarrow \mathbb{R}$ be such that its $(k-1)$ th derivative $f^{(k-1)}$ is absolutely continuous for some positive integer k. Then for any $x \in[0,1]$, we have the Euler-Maclaurin formula

$$
\begin{equation*}
\int_{0}^{1} f(t) d t=Q_{k}(f, x)+E_{k}\left(Q_{k} ; f, x\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{k}(f, x)=h \sum_{i=0}^{n-1} f\left(t_{i}+x h\right)-\sum_{\nu=1}^{k} \frac{f^{(\nu-1)}(1)-f^{(\nu-1)}(0)}{\nu!} B_{\nu}(x) h^{\nu} \tag{2.2}
\end{equation*}
$$

$$
E_{k}\left(Q_{k} ; f, x\right)=\frac{h^{k}}{k!} \int_{0}^{1} \widetilde{B}_{k}(x-n t) f^{(k)}(t) d t
$$

and $\widetilde{B}_{k}(t):=B_{k}(t-\lfloor t\rfloor)$ where $B_{k}(t)$ is the kth Bernoulli polynomial.

A General L_{2} Inequality of Grüss Type

Hongmin Ren and Shijun Yang

Title Page
Contents

Go Back
Close
Quit
Page 5 of 13

Lemma 2.2. For any $x, y \in[0,1]$, we have

$$
\begin{equation*}
\int_{0}^{1} \widetilde{B}_{k}(x-t) \widetilde{B}_{k}(y-t) d t=\frac{(-1)^{k-1}(k!)^{2}}{(2 k)!} \widetilde{B}_{2 k}(x-y) \tag{2.3}
\end{equation*}
$$

Proof. We use a technique of [2]. Setting $n=1, t_{0}=0$ and

$$
f(t)=\frac{(-1)^{k} k!}{(2 k)!} \widetilde{B}_{2 k}(x-t)
$$

in (2.1), then we have

$$
f^{(k)}(t)=\widetilde{B}_{k}(x-t)
$$

By the periodicity of $\widetilde{B}_{2 k}(t)$ and the property of $B_{2 k}(t)$ (see e.g. [12]), we can easily get

$$
\begin{equation*}
\int_{0}^{1} \widetilde{B}_{2 k}(x-t) d t=\int_{0}^{1} B_{2 k}(t) d t=0 \tag{2.4}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\int_{0}^{1} f(t) d t=0 \tag{2.5}
\end{equation*}
$$

From (2.2) and the periodicity of this special function f, we have for any $y \in$ $[0,1]$

$$
\begin{align*}
& Q_{k}(f, y)=f(y)-\sum_{\nu=1}^{k} \frac{f^{(\nu-1)}(1)-f^{(\nu-1)}(0)}{\nu!} B_{\nu}(y)=f(y) \tag{2.6}\\
& E_{k}\left(Q_{k} ; f, y\right)=\frac{1}{k!} \int_{0}^{1} \widetilde{B}_{k}(y-t) \widetilde{B}_{k}(x-t) d t
\end{align*}
$$

Now from (2.1), (2.5) and (2.6), (2.3) follows.
By Lemmas 2.1 and 2.2, we have
Corollary 2.3. Suppose the conditions in Lemma 2.1 hold, then we have

$$
\begin{equation*}
E_{k}\left(Q_{k} ; f, x\right) \leq h^{k} c_{k}(2)\left\|f^{(k)}\right\|_{2} \tag{2.7}
\end{equation*}
$$

where

$$
c_{k}(2)=\sqrt{\frac{(-1)^{k-1}}{(2 k)!} B_{2 k}}
$$

Remark 1. From Corollary 2.3, the right side of (2.7) is independent of x.
Lemma 2.4 ([1], cf. [11]). Suppose that the following quadrature rule

$$
\begin{equation*}
\int_{0}^{1} f(t) d t=\sum_{j=0}^{m-1} p_{j} f\left(x_{j}\right) \tag{2.8}
\end{equation*}
$$

is exact for any polynomial of degree $\leq k-1$ for some positive integer k. Let $f:[0,1] \rightarrow \mathbb{R}$ be such that its $(k-1)$ th derivative $f^{(k-1)}$ is absolutely continuous. Then we have

$$
\begin{equation*}
\int_{0}^{1} f(t) d t=\bar{Q}(f)+E_{k}(\bar{Q} ; f) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{Q}(f)=h \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} p_{j} f\left(t_{i}+x_{j} h\right) \tag{2.10}
\end{equation*}
$$

$$
E_{k}(\bar{Q} ; f)=\frac{h^{k}}{k!} \int_{0}^{1} g_{k}(n t) f^{(k)}(t) d t
$$

and

$$
\begin{equation*}
g_{k}(t)=\sum_{j=0}^{m-1} p_{j}\left(\widetilde{B}_{k}\left(x_{j}-t\right)-B_{k}\left(x_{j}\right)\right) \tag{2.11}
\end{equation*}
$$

By the Hölder inequality, we have

$$
\begin{equation*}
\left|E_{k}(\bar{Q} ; f)\right| \leq \bar{c}_{k}(2)\left\|f^{(k)}\right\|_{2} \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{c}_{k}(2)=\frac{h^{k}}{k!}\left\|g_{k}\right\|_{2} \tag{2.13}
\end{equation*}
$$

Remark 2. It is easy to see that (2.12) is sharp in the sense that the constant $\bar{c}_{k}(2)$ cannot be replaced by a smaller one.

We are now able to find an explicit expression for $\bar{c}_{k}(2)$.

Theorem 2.5. Suppose that the quadrature rule (2.3) is exact for any polynomial of degree $\leq k-1$ for some positive integer k. Then the following equality is valid.
(2.14) $\bar{c}_{k}(2)$

$$
=\frac{h^{k}}{k!}\left\{\sum_{i, j=0}^{m-1} p_{i} p_{j}\left(\frac{(-1)^{k-1}(k!)^{2}}{(2 k)!} \widetilde{B}_{2 k}\left(x_{i}-x_{j}\right)+B_{k}\left(x_{i}\right) B_{k}\left(x_{j}\right)\right)\right\}^{\frac{1}{2}}
$$

Proof. A straightforward computation on using (2.4) and Lemma 2.2 gives

$$
\begin{aligned}
\left\|g_{k}\right\|_{2}^{2} & \left.=\sum_{i, j=0}^{m-1} p_{i} p_{j} \int_{0}^{1}\left(\widetilde{B}_{k}\left(x_{i}-t\right)-B_{k}\left(x_{i}\right)\right)\left(\widetilde{B}_{k}\left(x_{j}-t\right)-B_{k}\left(x_{j}\right)\right)\right) d t \\
& =\sum_{i, j=0}^{m-1} p_{i} p_{j} \int_{0}^{1}\left(\widetilde{B}_{k}\left(x_{i}-t\right) \widetilde{B}_{k}\left(x_{j}-t\right)+B_{k}\left(x_{i}\right) B_{k}\left(x_{j}\right)\right) d t \\
& =\frac{(-1)^{k-1}(k!)^{2}}{(2 k)!} \sum_{i, j=0}^{m-1} p_{i} p_{j} \widetilde{B}_{2 k}\left(x_{i}-x_{j}\right)+\frac{1}{k!} \sum_{i, j=0}^{m-1} p_{i} p_{j} B_{k}\left(x_{i}\right) B_{k}\left(x_{j}\right),
\end{aligned}
$$

which in combination with (2.13) proves the conclusion as desired.

3. Examples

Example 3.1. For the Trapezoid rule, $m=2, x_{0}=0, x_{1}=1, p_{0}=p_{1}=1 / 2$. It is well known that the Trapezoid rule has degree of precision $1(k=2)$. A direct calculation using (2.14) yields

$$
\bar{c}_{1}(2)=\frac{h}{2 \sqrt{3}}, \quad \bar{c}_{2}(2)=\frac{h^{2}}{2 \sqrt{30}} .
$$

If f is absolutely continuous, then we can obtain

$$
\begin{equation*}
\left|\frac{1}{2}[f(0)+f(1)]-\int_{0}^{1} f(t) d t\right| \leq \frac{1}{2 \sqrt{3}}\left\|f^{\prime}\right\|_{2} \tag{3.1}
\end{equation*}
$$

Replacing $f(t)$ by $f(t)-t \int_{0}^{1} f(t) d t$ in (3.1), we get

$$
\begin{equation*}
\left|\frac{1}{2}[f(0)+f(1)]-\int_{0}^{1} f(t) d t\right| \leq \frac{1}{2 \sqrt{3}} \sqrt{\sigma\left(f^{\prime}\right)} \tag{3.2}
\end{equation*}
$$

since the Trapezoid rule has degree of precision 1.
Example 3.2. Consider the following quadrature rule

$$
\begin{equation*}
\int_{0}^{1} f(t) d t=\left(x-\frac{1}{2}\right) f(0)+f(x)-\left(x-\frac{1}{2}\right) f(1), \quad x \in[0,1] \tag{3.3}
\end{equation*}
$$

which has degree of precision $1(k=2)$. A direct calculation using Corollary 2.3 gives

$$
c_{1}(2)=\frac{1}{2 \sqrt{3}}
$$

from which and the similar argument of Example 3.1, follows (1.3).

Example 3.3. For Simpson's rule, $m=3, x_{0}=0, x_{1}=1 / 2, x_{2}=1, p_{0}=p_{2}=$ $1 / 6, p_{1}=2 / 3$. It is well known that Simpson's rule has degree of precision 3 $(k=4)$. A direct calculation leads to the following.

$$
\begin{aligned}
& \bar{c}_{1}(2)=\frac{h}{6} ; \quad \bar{c}_{2}(2)=\frac{h^{2}}{12 \sqrt{30}} \\
& \bar{c}_{3}(2)=\frac{h^{3}}{48 \sqrt{105}} ; \quad \bar{c}_{4}(2)=\frac{h^{4}}{576 \sqrt{14}} .
\end{aligned}
$$

The inequality (2.12) in combination with $\bar{c}_{1}(2)=h / 6$ yields

$$
\left|\frac{1}{6}\left[f(0)+4 f\left(\frac{1}{2}\right)+f(1)\right]-\int_{0}^{1} f(t) d t\right| \leq \frac{1}{6}\left\|f^{\prime}\right\|_{2}
$$

Again replacing $f(t)$ by $f(t)-t \int_{0}^{1} f(t) d t$ in the above inequality, we easily get Theorem 1.1.

A General L_{2} Inequality of Grüss Type

Hongmin Ren and Shijun Yang

J. Ineq. Pure and Appl. Math. 7(2) Art. 54, 2006

References

[1] X.H. WANG, Remarks on some quadrature formulas, Math. Numer. Sin. (in Chinese), 3 (1978), 76-84.
[2] X.H. WANG and D.F. HAN, Computational complexity of numerical integrations, Sci. China Ser. A (in Chinese), 10 (1990), 1009-1013.
[3] D.S. MITRINOVIĆ, J. PEČARIĆ AND A.M. FINK, Inequalities Involving Functions and their Integrals and Derivatives, Kluwer Academic, Dordrecht, (1994).
[4] S.S. DRAGOMIR, Some integral inequalities of Grüss type, Indian J. Pure Appl. Math., 31 (2000), 397-415.
[5] S.S. DRAGOMIR, A generalization of Grüss's inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82.
[6] S.S. DRAGOMIR, A Grüss type discrete inequality in inner product spaces and applications, J. Math. Anal. Appl., 250 (2000), 494-511.
[7] Lj. DEDIĆ, M. MATIĆ AND J. PEČARIĆ, Some inequalities of EulerGrüss type, Computers Math. Applic., 41 (2001), 843-856.
[8] S.S. DRAGOMIR AND S. WANG, An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computer Math. Appl., 33(11) (1997), 15-20.

A General L_{2} Inequality of Grüss Type

Hongmin Ren and Shijun Yang

J. Ineq. Pure and Appl. Math. 7(2) Art. 54, 2006 http://jipam.vu.edu.au
[10] N. UJEVIĆ, Sharp inequalities of Simpson type and Ostrowski type, Computers Math. Applic., 48 (2004), 145-151.
[11] Q. WU and S. YANG, A note to Ujević's generalization of Ostrowski's inequality, Appl. Math. Lett., in press.
[12] M. ABRAMOWITZ and I.A. STEGUN (Eds), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Tenth printing, Applied Math. Series 55, (National Bureau of Standards, Washington, D.C., 1972).

A General L_{2} Inequality of Grüss Type

Hongmin Ren and Shijun Yang

J. Ineq. Pure and Appl. Math. 7(2) Art. 54, 2006

