Journal of Inequalities in Pure and Applied Mathematics

FEKETE-SZEGÖ FUNCTIONAL FOR SOME SUBCLASS OF NON-BAZILEVIČ FUNCTIONS

T.N. SHANMUGAM, M.P. JEYARAMAN, AND S. SIVASUBRAMANIAN
Department of Mathematics
AnNa University
Chennai 600025
TAMILNADU, IndiA
shan@annauniv.edu
Department of Mathematics
Easwari Engineering College
Chennai-600 089
TAMILNADU, IndiA
jeyaraman mp@yahoo.co.in
sivasaisastha@rediffmail.com

Received 18 November, 2005; accepted 24 March, 2006
Communicated by A. Lupaş

Abstract

In this present investigation, the authors obtain a sharp Fekete-Szegö's inequality for certain normalized analytic functions $f(z)$ defined on the open unit disk for which $(1+\beta)\left(\frac{z}{f(z)}\right)^{\alpha}-\beta f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\alpha},(\beta \in \mathbb{C}, 0<\alpha<1)$ lies in a region starlike with respect to 1 and is symmetric with respect to the real axis. Also, certain applications of our results for a class of functions defined by convolution are given. As a special case of this result, Fekete-Szegö's inequality for a class of functions defined through fractional derivatives is also obtained.

Key words and phrases: Analytic functions, Starlike functions, Subordination, Coefficient problem, Fekete-Szegö inequality.
2000 Mathematics Subject Classification Primary 30C45.

1. Introduction

Let \mathcal{A} denote the class of all analytic functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad(z \in \Delta:=\{z \in \mathbb{C} /|z|<1\}) \tag{1.1}
\end{equation*}
$$

and \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions. Let $\phi(z)$ be an analytic function with positive real part on Δ with $\phi(0)=1, \phi^{\prime}(0)>0$ which maps the unit disk Δ onto a region

[^0]starlike with respect to 1 and is symmetric with respect to the real axis. Let $S^{*}(\phi)$ be the class of functions $f \in \mathcal{S}$ for which
$$
\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), \quad(z \in \Delta)
$$
and $C(\phi)$ be the class of functions $f \in \mathcal{S}$ for which
$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z), \quad(z \in \Delta)
$$
where \prec denotes the subordination between analytic functions. These classes were introduced and studied by Ma and Minda [3]. They have obtained the Fekete-Szegö inequality for the functions in the class $C(\phi)$. Since $f \in C(\phi)$ if and only if $z f^{\prime} \in S^{*}(\phi)$, we get the FeketeSzegö inequality for functions in the class $S^{*}(\phi)$. Recently, Shanmugam and Sivasubramanian [9] obtained Fekete- Szegö inequalities for the class of functions $f \in \mathcal{A}$ such that
$$
\frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha) f(z)+\alpha z f^{\prime}(z)} \prec \phi(z) \quad(0 \leq \alpha<1) .
$$

Also, Ravichandran et al. [7] obtained the Fekete-Szegö inequality for the class of Bazilevič functions. For a brief history of the Fekete-Szegö problem for the class of starlike, convex and close-to-convex functions, see the recent paper by Srivastava et al. [11]. Obradovic [4] introduced a class of functions $f \in \mathcal{A}$, such that, for $0<\alpha<1$,

$$
\Re\left\{f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\alpha}\right\}>0, \quad z \in \Delta .
$$

He called this class of function as "Non-Bazilevič" type. Tuneski and Darus [14] obtained the Fekete-Szegö inequality for the non-Bazilevič class of functions. Using this non-Bazilevič class, Wang et al.[15] studied many subordination results for the class $N(\alpha, \beta, A, B)$ defined as

$$
N(\alpha, \beta, A, B):=\left\{f \in \mathcal{A}:(1+\beta)\left(\frac{z}{f(z)}\right)^{\alpha}-\beta f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\alpha} \prec \frac{1+A z}{1+B z}\right\}
$$

where $\beta \in \mathbb{C},-1 \leq B \leq 1, A \neq B, \quad 0<\alpha<1$.
In the present paper, we obtain the Fekete-Szegö inequality for functions in a more general class $N_{\alpha, \beta}(\phi)$ of functions which we define below. Also we give applications of our results to certain functions defined through convolution (or Hadamard product) and in particular we consider a class $N_{\alpha, \beta}^{\lambda}(\phi)$ of functions defined by fractional derivatives. The aim of this paper is to give a generalization the Fekete-Szegö inequalities for some subclass of Non-Bazilevič functions.

Definition 1.1. Let $\phi(z)$ be an univalent starlike function with respect to 1 which maps the unit disk Δ onto a region in the right half plane which is symmetric with respect to the real axis, $\phi(0)=1$ and $\phi^{\prime}(0)>0$. A function $f \in \mathcal{A}$ is in the class $N_{\alpha, \beta}(\phi)$ if

$$
(1+\beta)\left(\frac{z}{f(z)}\right)^{\alpha}-\beta f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\alpha} \prec \phi(z), \quad(\beta \in \mathbb{C}, 0<\alpha<1)
$$

For fixed $g \in \mathcal{A}$, we define the class $N_{\alpha, \beta}^{g}(\phi)$ to be the class of functions $f \in \mathcal{A}$ for which $(f * g) \in N_{\alpha, \beta}(\phi)$.
Remark 1.1. $N_{\alpha,-1}\left(\frac{1+z}{1-z}\right)$ is the class of Non-Bazilevič functions introduced by Obradovic [4].
Remark 1.2. $N_{\alpha,-1}\left(\frac{1+(1-2 \gamma) z}{1-z}\right), \quad 0 \leq \gamma<1$ is the class of Non-Bazilevič functions of order γ introduced and studied by Tuneski and Darus [14].

Remark 1.3. We call $N_{\alpha, \beta}\left\{1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}\right\}$ the class of "Non-Bazilevič parabolic starlike functions".

To prove our main result, we need the following:
Lemma 1.4 ([3]). If $p_{1}(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is an analytic function with a positive real part in Δ, then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq \begin{cases}-4 v+2 & \text { if } v \leq 0 \\ 2 & \text { if } 0 \leq v \leq 1 \\ 4 v-2 & \text { if } v \geq 1\end{cases}
$$

When $v<0$ or $v>1$, the equality holds if and only if $p_{1}(z)$ is $(1+z) /(1-z)$ or one of its rotations. If $0<v<1$, then the equality holds if and only if $p_{1}(z)$ is $\left(1+z^{2}\right) /\left(1-z^{2}\right)$ or one of its rotations. If $v=0$, the equality holds if and only if

$$
p_{1}(z)=\left(\frac{1}{2}+\frac{1}{2} \lambda\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \lambda\right) \frac{1-z}{1+z} \quad(0 \leq \lambda \leq 1)
$$

or one of its rotations. If $v=1$, the equality holds if and only if p_{1} is the reciprocal of one of the functions such that equality holds in the case of $v=0$.

Also the above upper bound is sharp, and it can be improved as follows when $0<v<1$:

$$
\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2} \leq 2 \quad(0<v \leq 1 / 2)
$$

and

$$
\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2} \leq 2 \quad(1 / 2<v \leq 1)
$$

2. Fekete-Szegö Problem

Our main result is the following:
Theorem 2.1. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$. If f given by (1.1) belongs to $N_{\alpha, \beta}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}-\frac{B_{2}}{(\alpha+2 \beta)}-\frac{\mu B_{1}^{2}}{2(\alpha+\beta)^{2}}+\frac{(1+\alpha)}{2(\alpha+\beta)^{2}} B_{1}^{2} & \text { if } \quad \mu \leq \sigma_{1} ; \\ -\frac{B_{1}}{(\alpha+2 \beta)} & \text { if } \quad \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{B_{2}}{(\alpha+2 \beta)}+\frac{\mu B_{1}^{2}}{2(\alpha+\beta)^{2}}-\frac{(1+\alpha)}{2(\alpha+\beta)^{2}} B_{1}^{2} & \text { if } \quad \mu \geq \sigma_{2},\end{cases}
$$

where,

$$
\begin{aligned}
\sigma_{1} & :=\frac{(1+\alpha)(2 \beta+\alpha) B_{1}^{2}-2\left(B_{2}-B_{1}\right)(\beta+\alpha)^{2}}{2(2 \beta+\alpha) B_{1}^{2}} \\
\sigma_{2} & :=\frac{(1+\alpha)(2 \beta+\alpha) B_{1}^{2}-2\left(B_{2}+B_{1}\right)(\beta+\alpha)^{2}}{2(2 \beta+\alpha) B_{1}^{2}}
\end{aligned}
$$

The result is sharp.
Proof. For $f \in N_{\alpha, \beta}(\phi)$, let

$$
\begin{equation*}
p(z):=(1+\beta)\left(\frac{z}{f(z)}\right)^{\alpha}-\beta f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\alpha}=1+b_{1} z+b_{2} z^{2}+\cdots \tag{2.1}
\end{equation*}
$$

From (2.1), we obtain

$$
-(\alpha+\beta) a_{2}=b_{1}
$$

$$
(2 \beta+\alpha)\left(\frac{\alpha+1}{2} a_{2}^{2}-a_{3}\right)=b_{2} .
$$

Since $\phi(z)$ is univalent and $p \prec \phi$, the function

$$
p_{1}(z)=\frac{1+\phi^{-1}(p(z))}{1-\phi^{-1}(p(z))}=1+c_{1} z+c_{2} z^{2}+\cdots
$$

is analytic and has a positive real part in Δ. Also we have

$$
\begin{equation*}
p(z)=\phi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) \tag{2.2}
\end{equation*}
$$

and from this equation (2.2), we obtain

$$
b_{1}=\frac{1}{2} B_{1} c_{1}
$$

and

$$
b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} .
$$

Therefore we have

$$
a_{3}-\mu a_{2}^{2}=-\frac{B_{1}}{2(2 \beta+\alpha)}\left\{c_{2}-v c_{1}^{2}\right\}
$$

where

$$
v:=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+\frac{(2 \beta+\alpha)(\alpha+1-2 \mu)}{2(\beta+\alpha)^{2}} B_{1}\right] .
$$

Our result now follows by an application of Lemma 1.4. To show that the bounds are sharp, we define the functions $K_{\alpha, \beta}^{\phi_{n}}(n=2,3, \ldots)$ by

$$
\begin{gathered}
(1+\beta)\left(\frac{z}{K_{\alpha, \beta}^{\phi_{n}}(z)}\right)^{\alpha}-\beta\left(K_{\alpha, \beta}^{\phi_{n}}\right)^{\prime}(z)\left(\frac{z}{K_{\alpha, \beta}^{\phi_{n}}(z)}\right)^{1+\alpha}=\phi\left(z^{n-1}\right), \\
K_{\alpha, \beta}^{\phi_{n}}(0)=0=\left[K_{\alpha, \beta}^{\phi_{n}}(0)-1\right.
\end{gathered}
$$

and the function $F_{\alpha, \beta}^{\lambda}$ and $G_{\alpha, \beta}^{\lambda}(0<\alpha<1)$ by

$$
\begin{gathered}
(1+\beta)\left(\frac{z}{F_{\alpha, \beta}^{\lambda}(z)}\right)^{\alpha}-\beta\left[F_{\alpha, \beta}^{\lambda}\right]^{\prime}(z)\left(\frac{z}{F_{\alpha, \beta}^{\lambda}(z)}\right)^{1+\alpha}=\phi\left(z^{n-1}\right), \\
\left.\left[F_{\alpha, \beta}^{\lambda}\right](0)=0=\left[F_{\alpha, \beta}^{\lambda}\right]\right]^{\prime}(0)-1
\end{gathered}
$$

and

$$
\begin{gathered}
(1+\beta)\left(\frac{z}{G_{\alpha, \beta}^{\lambda}}\right)^{\alpha}-\beta\left[G_{\alpha, \beta}^{\lambda}\right]^{\prime}(z)\left(\frac{z}{G_{\alpha, \beta}^{\lambda}(z)}\right)^{1+\alpha}=\phi\left(z^{n-1}\right), \\
{\left[G_{\alpha, \beta}^{\lambda}\right](0)=0=\left[G_{\alpha, \beta}^{\lambda}\right]^{\prime}(0)-1 .}
\end{gathered}
$$

Clearly, the functions $K_{\alpha, \beta}^{\phi_{n}},\left[F_{\alpha, \beta}^{\lambda}\right]$ and $\left[G_{\alpha, \beta}^{\lambda}\right] \in N_{\alpha, \beta}(\phi)$
Also we write $K_{\alpha, \beta}^{\phi}:=K_{\alpha, \beta}^{\phi_{2}}$.
If $\mu<\sigma_{1}$ or $\mu>\sigma_{2}$, then the equality holds if and only if f is $K_{\alpha, \beta}^{\phi}$ or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, the equality holds if and only if f is $K_{\alpha, \beta}^{\phi_{3}}$ or one of its rotations. If $\mu=\sigma_{1}$ then the equality holds if and only if f is $F_{\alpha, \beta}^{\lambda}$ or one of its rotations. If $\mu=\sigma_{2}$ then the equality holds if and only if f is $G_{\alpha, \beta}^{\lambda}$ or one of its rotations.

Corollary 2.2. Let $\phi(z)=1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}$. If f given by (1.1) belongs to $N_{\alpha, \beta}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}-\frac{8}{3 \pi^{2}(\alpha+2 \beta)}-\frac{8 \mu}{\pi^{4}(\alpha+\beta)^{2}}+\frac{(1+\alpha)}{(\alpha+\beta)^{2}} \frac{8}{\pi^{4}} & \text { if } \quad \mu \leq \sigma_{1} \\ -\frac{4}{\pi^{2}(\alpha+2 \beta)} & \text { if } \quad \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{8}{3 \pi^{2}(\alpha+2 \beta)}+\frac{8 \mu}{\pi^{4}(\alpha+\beta)^{2}}-\frac{(1+\alpha)}{(\alpha+\beta)^{2}} \frac{8}{\pi^{4}} & \text { if } \quad \mu \geq \sigma_{2}\end{cases}
$$

where,

$$
\begin{aligned}
& \sigma_{1}:=\frac{(1+\alpha)(2 \beta+\alpha) \frac{16}{\pi^{4}}-2\left(\frac{8}{3 \pi^{2}}-\frac{4}{\pi^{2}}\right)(\beta+\alpha)^{2}}{2(2 \beta+\alpha) \frac{16}{\pi^{4}}} \\
& \sigma_{2}:=\frac{(1+\alpha)(2 \beta+\alpha) \frac{16}{\pi^{4}}-2\left(\frac{8}{3 \pi^{2}}+\frac{4}{\pi^{2}}\right)(\beta+\alpha)^{2}}{2(2 \beta+\alpha) \frac{16}{\pi^{4}}} .
\end{aligned}
$$

The result is sharp.
Corollary 2.3. For $\beta=-1, \quad \phi(z)=\frac{1+(1-2 \gamma) z}{1-z}, \quad 0 \leq \gamma<1$ in Theorem 2.1. we get the results obtained by Tuneski and Darus [14].

Remark 2.4. If $\sigma_{1} \leq \mu \leq \sigma_{2}$, then, in view of Lemma 1.4. Theorem 2.1 can be improved. Let σ_{3} be given by

$$
\sigma_{3}:=\frac{(1+\alpha)(2 \beta+\alpha) B_{1}^{2}-2 B_{2}(\beta+\alpha)^{2}}{2(2 \beta+\alpha) B_{1}^{2}} .
$$

If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|-\frac{(\beta+\alpha)^{2}}{(2 \beta+\alpha) B_{1}^{2}}\left[B_{1}-B_{2}+B_{1}^{2} \frac{(\alpha+1-2 \mu)(2 \beta+\alpha)}{2(\beta+\alpha)^{2}}\right]\left|a_{2}\right|^{2} \leq-\frac{B_{1}}{(2 \beta+\alpha)}
$$

If $\sigma_{3} \leq \mu \leq \sigma_{2}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|-\frac{(\beta+\alpha)^{2}}{(2 \beta+\alpha) B_{1}^{2}}\left[B_{1}+B_{2}-B_{1}^{2} \frac{(\alpha+1-2 \mu)(2 \beta+\alpha)}{2(\beta+\alpha)^{2}}\right]\left|a_{2}\right|^{2} \leq-\frac{B_{1}}{(2 \beta+\alpha)}
$$

3. Applications to Functions Defined by Fractional Derivatives

In order to introduce the class $N_{\alpha, \beta}^{\lambda}(\phi)$, we need the following:
Definition 3.1 (see [5, 6]; see also [12, 13]). Let f be analytic in a simply connected region of the z-plane containing the origin. The fractional derivative of f of order λ is defined by

$$
D_{z}^{\lambda} f(z):=\frac{1}{\Gamma(1-\lambda)} \frac{d}{d z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\lambda}} d \zeta \quad(0 \leq \lambda<1)
$$

where the multiplicity of $(z-\zeta)^{\lambda}$ is removed by requiring that $\log (z-\zeta)$ is real for $z-\zeta>0$.
Using the above Definition 3.1 and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava [5] introduced the operator $\Omega^{\lambda}: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\left(\Omega^{\lambda} f\right)(z)=\Gamma(2-\lambda) z^{\lambda} D_{z}^{\lambda} f(z), \quad(\lambda \neq 2,3,4, \ldots)
$$

The class $N_{\alpha, \beta}^{\lambda}(\phi)$ consists of functions $f \in \mathcal{A}$ for which $\Omega^{\lambda} f \in N_{\alpha, \beta}(\phi)$. Note that $N_{\alpha, \beta}^{\lambda}(\phi)$ is the special case of the class $N_{\alpha, \beta}^{g}(\phi)$ when

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} z^{n} \tag{3.1}
\end{equation*}
$$

Let $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n}\left(g_{n}>0\right)$. Since $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in N_{\alpha, \beta}^{g}(\phi)$ if and only if $(f * g)=z+\sum_{n=2}^{\infty} g_{n} a_{n} z^{n} \in N_{\alpha, \beta}(\phi)$, we obtain the coefficient estimate for functions in the class $N_{\alpha, \beta}^{g}(\phi)$, from the corresponding estimate for functions in the class $N_{\alpha, \beta}(\phi)$. Applying Theorem 2.1 for the function $(f * g)(z)=z+g_{2} a_{2} z^{2}+g_{3} a_{3} z^{3}+\cdots$, we get the following Theorem 3.1 after an obvious change of the parameter μ :
Theorem 3.1. Let the function ϕ be given by $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$. If f given by (1.1) belongs to $N_{\alpha, \beta}^{g}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{1}{g_{3}}\left\{-\frac{B_{2}}{(\alpha+2 \beta)}-\frac{\mu g_{3} B_{1}^{2}}{g_{2}^{2}(\alpha+\beta)^{2}}+\frac{(1+\alpha)}{2(\alpha+\beta)^{2}} B_{1}^{2}\right\} & \text { if } \quad \mu \leq \sigma_{1} \\ -\frac{1}{g_{3}} \frac{B_{1}}{(\alpha+2 \beta)} & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{1}{g_{3}}\left\{\frac{B_{2}}{(\alpha+2 \beta)}+\frac{\mu g_{3} B_{1}^{2}}{2(\alpha+\beta)^{2} g_{2}^{2}}-\frac{(1+\alpha)}{2(\alpha+\beta)^{2}} B_{1}^{2}\right\} & \text { if } \quad \mu \geq \sigma_{2}\end{cases}
$$

where

$$
\begin{aligned}
\sigma_{1} & :=\frac{g_{3}}{g_{2}^{2}} \frac{(1+\alpha)(2 \beta+\alpha) B_{1}^{2}-2\left(B_{2}-B_{1}\right)(\beta+\alpha)^{2}}{2(2 \beta+\alpha) B_{1}^{2}} \\
\sigma_{2} & :=\frac{g_{3}}{g_{2}^{2}} \frac{(1+\alpha)(2 \beta+\alpha) B_{1}^{2}-2\left(B_{2}+B_{1}\right)(\beta+\alpha)^{2}}{2(2 \beta+\alpha) B_{1}^{2}}
\end{aligned}
$$

The result is sharp.
Since

$$
\left(\Omega^{\lambda} f\right)(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} a_{n} z^{n},
$$

we have

$$
\begin{equation*}
g_{2}:=\frac{\Gamma(3) \Gamma(2-\lambda)}{\Gamma(3-\lambda)}=\frac{2}{2-\lambda} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{3}:=\frac{\Gamma(4) \Gamma(2-\lambda)}{\Gamma(4-\lambda)}=\frac{6}{(2-\lambda)(3-\lambda)} . \tag{3.3}
\end{equation*}
$$

For g_{2} and g_{3} given by (3.2) and (3.3), Theorem 3.1 reduces to the following:
Theorem 3.2. Let the function ϕ be given by $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$. If f given by (1.1) belongs to $N_{\alpha, \beta}^{g}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{(2-\lambda)(3-\lambda)}{6}\left\{-\frac{B_{2}}{(\alpha+2 \beta)}-\frac{\mu g_{3} B_{1}^{2}}{g_{2}^{2}(\alpha+\beta)^{2}}+\frac{(1+\alpha)}{2(\alpha+\beta)^{2}} B_{1}^{2}\right\} & \text { if } \mu \leq \sigma_{1} \\ -\frac{(2-\lambda)(3-\lambda)}{6} \frac{B_{1}}{(\alpha+2 \beta)} & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{(2-\lambda)(3-\lambda)}{6}\left\{\frac{B_{2}}{(\alpha+2 \beta)}+\frac{\mu g_{3} B_{1}^{2}}{2(\alpha+\beta)^{2} g_{2}^{2}}-\frac{(1+\alpha)}{2(\alpha+\beta)^{2}} B_{1}^{2}\right\} & \text { if } \mu \geq \sigma_{2},\end{cases}
$$

where

$$
\begin{aligned}
& \sigma_{1}:=\frac{2(3-\lambda)}{3(2-\lambda)} \frac{(1+\alpha)(2 \beta+\alpha) B_{1}^{2}-2\left(B_{2}-B_{1}\right)(\beta+\alpha)^{2}}{2(2 \beta+\alpha) B_{1}^{2}}, \\
& \sigma_{2}:=\frac{2(3-\lambda)}{3(2-\lambda)} \frac{(1+\alpha)(2 \beta+\alpha) B_{1}^{2}-2\left(B_{2}+B_{1}\right)(\beta+\alpha)^{2}}{2(2 \beta+\alpha) B_{1}^{2}} .
\end{aligned}
$$

The result is sharp.

References

[1] B.C. CARLSON AND D.B. SHAFFER, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
[2] A.W. GOODMAN, Uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.
[3] W. MA AND D. MINDA, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press (1994), 157-169.
[4] M. OBRADOVIC, A class of univalent functions, Hokkaido Math. J., 27(2) (1998), 329-335.
[5] S. OWA AND H.M. SRIVASTAVA, Univalent and starlike generalized bypergeometric functions, Canad. J. Math., 39 (1987), 1057-1077.
[6] S. OWA, On the distortion theorems I, Kyungpook Math. J., 18 (1978), 53-58.
[7] V. RAVICHANDRAN, A. GANGADHARAN AND M. DARUS, Fekete-Szegő inequality for certain class of Bazilevic functions, Far East J. Math. Sci. (FJMS), 15(2) (2004), 171-180.
[8] F. RØNNING, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189-196.
[9] T.N. SHANMUGAM AND S. SIVASUBRAMANIAN, On the Fekete-Szegö problem for some subclasses of analytic functions, J. Inequal. Pure and Appl. Math., 6(3) (2005), Art. 71, 6 pp.
[10] H.M. SRIVASTAVA AND A.K. MISHRA, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Computer Math. Appl., 39 (2000), 57-69.
[11] H.M. SRIVASTAVA, A.K. MISHRA AND M.K. DAS, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables, Theory Appl., 44 (2001), 145-163.
[12] H.M. SRIVASTAVA AND S. OWA, An application of the fractional derivative, Math. Japon., 29 (1984), 383-389.
[13] H.M. SRIVASTAVA AND S. OWA, Univalent functions, Fractional Calculus, and their Applications, Halsted Press/John Wiley and Songs, Chichester/New York, (1989).
[14] N. TUNESKI AND M. DARUS, Fekete-Szegö functional for non-Bazilevic functions, Acta Mathematica Academia Paedagogicae Nyiregyhaziensis, 18 (2002), 63-65.
[15] Z. WANG, C. GAO AND M. LIAO, On certain generalized class of non-Bazilevič functions, Acta Mathematica Academia Paedagogicae Nyiregyhaziensis, 21 (2005), 147-154.

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 108-06

