

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 3, Issue 5, Article 72, 2002

COEFFICIENT ESTIMATES FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS

SHIGEYOSHI OWA AND JUNICHI NISHIWAKI

DEPARTMENT OF MATHEMATICS KINKI UNIVERSITY HIGASHI-OSAKA, OSAKA 577-8502 JAPAN. owa@math.kindai.ac.jp URL:http://163.51.52.186/math/OWA.htm

Received 9 September, 2002; accepted 10 October, 2002 Communicated by H.M. Srivastava

ABSTRACT. For some real α ($\alpha > 1$), two subclasses $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$ of analytic fuctions f(z) with f(0) = 0 and f'(0) = 1 in \mathbb{U} are introduced. The object of the present paper is to discuss the coefficient estimates for functions f(z) belonging to the classes $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$.

Key words and phrases: Analytic functions, Univalent functions, Starlike functions, Convex functions.

2000 Mathematics Subject Classification. 30C45.

1. INTRODUCTION AND DEFINITIONS

Let \mathcal{A} denote the class of functions f(z) of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Let $\mathcal{M}(\alpha)$ be the subclass of \mathcal{A} consisting of functions f(z) which satisfy the inequality:

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < \alpha \qquad (z \in \mathbb{U})$$

for some α ($\alpha > 1$). And let $\mathcal{N}(\alpha)$ be the subclass of \mathcal{A} consisting of functions f(z) which satisfy the inequality:

$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} < \alpha \qquad (z \in \mathbb{U})$$

for some α ($\alpha > 1$). Then, we see that $f(z) \in \mathcal{N}(\alpha)$ if and only if $zf'(z) \in \mathcal{M}(\alpha)$.

ISSN (electronic): 1443-5756

^{© 2002} Victoria University. All rights reserved.

¹⁰⁹⁻⁰²

Remark 1.1. For $1 < \alpha \leq \frac{4}{3}$, the classes $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$ were introduced by Uralegaddi et al. [3].

Remark 1.2. The classes $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$ correspond to the case k = 2 of the classes $\mathcal{M}_k(\alpha)$ and $\mathcal{N}_k(\alpha)$, respectively, which were investigated recently by Owa and Srivastava [1].

We easily see that

Example 1.1.

(i)
$$f(z) = z(1-z)^{2(\alpha-1)} \in \mathcal{M}(\alpha).$$

(ii) $g(z) = \frac{1}{2\alpha-1} \{1 - (1-z)^{2\alpha-1}\} \in \mathcal{N}(\alpha).$

2. INCLUSION THEOREMS INVOLVING COEFFICIENT INEQUALITIES

In this section we derive sufficient conditions for f(z) to belong to the aforementioned function classes, which are obtained by using coefficient inequalities.

Theorem 2.1. *If* $f(z) \in A$ *satisfies*

$$\sum_{n=2}^{\infty} \left\{ (n-k) + |n+k-2\alpha| \right\} |a_n| \leq 2(\alpha-1)$$

for some $k (0 \leq k \leq 1)$ and some $\alpha (\alpha > 1)$, then $f(z) \in \mathcal{M}(\alpha)$.

Proof. Let us suppose that

(2.1)
$$\sum_{n=2}^{\infty} \left\{ (n-k) + |n+k-2\alpha| \right\} |a_n| \leq 2(\alpha-1)$$

for $f(z) \in \mathcal{A}$.

It suffices to show that

$$\left|\frac{\frac{zf'(z)}{f(z)} - k}{\frac{zf'(z)}{f(z)} - (2\alpha - k)}\right| < 1 \qquad (z \in \mathbb{U}).$$

We note that

$$\begin{aligned} \left| \frac{\frac{zf'(z)}{f(z)} - k}{\frac{zf'(z)}{f(z)} - (2\alpha - k)} \right| &= \left| \frac{1 - k + \sum_{n=2}^{\infty} (n - k) a_n z^{n-1}}{1 + k - 2\alpha + \sum_{n=2}^{\infty} (n + k - 2\alpha) a_n z^{n-1}} \right| \\ &\leq \frac{1 - k + \sum_{n=2}^{\infty} (n - k) |a_n| |z|^{n-1}}{2\alpha - 1 - k - \sum_{n=2}^{\infty} |n + k - 2\alpha| |a_n| |z|^{n-1}} \\ &< \frac{1 - k + \sum_{n=2}^{\infty} (n - k) |a_n|}{2\alpha - 1 - k - \sum_{n=2}^{\infty} |n + k - 2\alpha| |a_n|}. \end{aligned}$$

The last expression is bounded above by 1 if

$$1 - k + \sum_{n=2}^{\infty} (n-k)|a_n| \le 2\alpha - 1 - k - \sum_{n=2}^{\infty} |n+k-2\alpha| |a_n|$$

which is equivalent to our condition:

$$\sum_{n=2}^{\infty} \{ (n-k) + |n+k-2\alpha| \} |a_n| \le 2(\alpha-1)$$

of the theorem. This completes the proof of the theorem.

If we take k = 1 and some α $\left(1 < \alpha \leq \frac{3}{2}\right)$ in Theorem 2.1, then we have

Corollary 2.2. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} (n-\alpha)|a_n| \leq \alpha - 1$$

for some α $(1 < \alpha \leq \frac{3}{2})$, then $f(z) \in \mathcal{M}(\alpha)$. **Example 2.1.** The function f(z) given by

$$f(z) = z + \sum_{n=2}^{\infty} \frac{4(\alpha - 1)}{n(n+1)(n-k+|n+k-2\alpha|)} z^n$$

belongs to the class $\mathcal{M}(\alpha)$.

For the class $\mathcal{N}(\alpha)$, we have

Theorem 2.3. *If* $f(z) \in A$ *satisfies*

(2.2)
$$\sum_{n=2}^{\infty} n(n-k+1+|n+k-2\alpha|)|a_n| \le 2(\alpha-1)$$

for some k ($0 \leq k \leq 1$) and some α ($\alpha > 1$), then f(z) belongs to the class $\mathcal{N}(\alpha)$. Corollary 2.4. If $f(z) \in \mathcal{A}$ satisfies

$$\sum_{n=2}^{\infty} n(n-\alpha)|a_n| \leq \alpha - 1$$

for some α $(1 < \alpha \leq \frac{3}{2})$, then $f(z) \in \mathcal{N}(\alpha)$. Example 2.2. The function

$$f(z) = z + \sum_{n=2}^{\infty} \frac{4(\alpha - 1)}{n^2(n+1)(n-k+|n+k-2\alpha|)} z^n$$

belongs to the class $\mathcal{N}(\alpha)$.

Further, denoting by $S^*(\alpha)$ and $\mathcal{K}(\alpha)$ the subclasses of \mathcal{A} consisting of all starlike functions of order α , and of all convex functions of order α , respectively (see [2]), we derive **Theorem 2.5.** If $f(z) \in \mathcal{A}$ satisfies the coefficient inequality (2.1) for some α $(1 < \alpha \leq \frac{k+2}{2} \leq \frac{3}{2})$, then $f(z) \in S^*(\frac{4-3\alpha}{3-2\alpha})$. If $f(z) \in \mathcal{A}$ satisfies the coefficient inequality (2.2) for some α $(1 < \alpha \leq \frac{k-2}{2} \leq \frac{3}{2})$ then $f(z) \in \mathcal{K}(\frac{4-3\alpha}{3-2\alpha})$.

Proof. For some α $(1 < \alpha \leq \frac{k+2}{2} \leq \frac{3}{2})$, we see that the coefficient inequality (2.1) implies that

$$\sum_{n=2}^{\infty} (n-\alpha)|a_n| \leq \alpha - 1.$$

It is well-known that if $f(z) \in \mathcal{A}$ satisfies

$$\sum_{n=2}^{\infty} \frac{n-\beta}{1-\beta} |a_n| \le 1$$

for some $\beta (0 \leq \beta < 1)$, then $f(z) \in S^*(\beta)$ by Silverman [2]. Therefore, we have to find the smallest positive β such that

$$\sum_{n=2}^{\infty} \frac{n-\beta}{1-\beta} |a_n| \leq \sum_{n=2}^{\infty} \frac{n-\alpha}{\alpha-1} |a_n| \leq 1.$$

This gives that

(2.3)
$$\beta \leq \frac{(2-\alpha)n-\alpha}{n-2\alpha+1}$$

for all $n = 2, 3, 4, \cdots$. Noting that the right-hand side of the inequality (2.3) is increasing for n, we conclude that

$$\beta \leqq \frac{4 - 3\alpha}{3 - 2\alpha},$$

which proves that $f(z) \in S^*\left(\frac{4-3\alpha}{3-2\alpha}\right)$. Similarly, we can show that if $f(z) \in A$ satisfies (2.2), then $f(z) \in \mathcal{K}\left(\frac{4-3\alpha}{3-2\alpha}\right)$.

Our result for the coefficient estimates of functions $f(z) \in \mathcal{M}(\alpha)$ is contained in **Theorem 2.6.** If $f(z) \in \mathcal{M}(\alpha)$, then

(2.4)
$$|a_n| \leq \frac{\prod_{j=2}^n (j+2\alpha-4)}{(n-1)!}$$
 $(n \geq 2)$

Proof. Let us define the function p(z) by

$$p(z) = \frac{\alpha - \frac{zf'(z)}{f(z)}}{\alpha - 1}$$

for $f(z) \in \mathcal{M}(\alpha)$. Then p(z) is analytic in \mathbb{U} , p(0) = 1 and $\operatorname{Re}(p(z)) > 0$ $(z \in \mathbb{U})$. Therefore, if we write

$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n,$$

then $|p_n| \leq 2 \ (n \geq 1)$. Since

$$\alpha f(z) - zf'(z) = (\alpha - 1)p(z)f(z),$$

we obtain that

$$(1-n)a_n = (\alpha - 1)(p_{n-1} + a_2p_{n-2} + a_3p_{n-3} + \dots + a_{n-1}p_1).$$

If n = 2, then $-a_2 = (\alpha - 1)p_1$ implies that

$$|a_2| = (\alpha - 1)|p_1| \leq 2\alpha - 2.$$

Thus the coefficient estimate (2.4) holds true for n = 2. Next, suppose that the coefficient estimate

$$|a_k| \leq \frac{\prod_{j=2}^k (j+2\alpha-4)}{(k-1)!}$$

is true for all $k = 2, 3, 4, \dots, n$. Then we have that

$$-na_{n+1} = (\alpha - 1)(p_n + a_2p_{n-1} + a_3p_{n-2} + \dots + a_np_1),$$

so that

$$\begin{aligned} n|a_{n+1}| &\leq (2\alpha - 2)(1 + |a_2| + |a_3| + \dots + |a_n|) \\ &\leq (2\alpha - 2)\left(1 + (2\alpha - 2) + \frac{(2\alpha - 2)(2\alpha - 1)}{2!} + \dots + \frac{\prod_{j=2}^n (j + 2\alpha - 4)}{(n-1)!}\right) \\ &= (2\alpha - 2)\left(\frac{(2\alpha - 1)2\alpha(2\alpha + 1)\dots(2\alpha + n - 4)}{(n-2)!} + \frac{(2\alpha - 2)(2\alpha - 1)2\alpha\dots(2\alpha + n - 4)}{(n-1)!}\right) \\ &= \frac{\prod_{j=2}^{n+1} (j + 2\alpha - 4)}{(n-1)!}.\end{aligned}$$

Thus, the coefficient estimate (2.4) holds true for the case of k = n + 1. Applying the mathematical induction for the coefficient estimate (2.4), we complete the proof of Theorem 2.6.

For the functions f(z) belonging to the class $\mathcal{N}(\alpha)$, we also have **Theorem 2.7.** If $f(z) \in \mathcal{N}(\alpha)$, then

$$|a_n| \leq \frac{\prod_{j=2}^n (j+2\alpha-4)}{n!} \qquad (n \geq 2)$$

Remark 2.8. We can not show that Theorem 2.6 and Theorem 2.7 are sharp. If we can prove that Theorem 2.6 is sharp, then the sharpness of Theorem 2.7 follows.

REFERENCES

- [1] S. OWA AND H.M. SRIVASTAVA, Some generalized convolution properties associated with certain subclasses of analytic functions, *J. Ineq. Pure Appl. Math.*, 3(3) (2002), Article 42. [ONLINE http://jipam.vu.edu.au/v3n3/033_02.html]
- [2] H. SILVERMAN, Univalent functions with negative coefficients, *Proc. Amer. Math. Soc.*, **51** (1975), 109–116.
- [3] B.A. URALEGADDI, M.D. GANIGI AND S.M. SARANGI, Univalent functions with positive coefficients, *Tamkang J. Math.*, **25** (1994), 225–230.