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ABSTRACT. For some realα (α > 1), two subclassesM(α) andN (α) of analytic fuctions
f(z) with f(0) = 0 andf ′(0) = 1 in U are introduced. The object of the present paper is to
discuss the coefficient estimates for functionsf(z) belonging to the classesM(α) andN (α).
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1. I NTRODUCTION AND DEFINITIONS

LetA denote the class of functionsf(z) of the form:

f(z) = z +
∞∑

n=2

anz
n,

which are analytic in the open unit diskU = {z : z ∈ C and |z| < 1}. Let M(α) be the
subclass ofA consisting of functionsf(z) which satisfy the inequality:

Re

{
zf ′(z)

f(z)

}
< α (z ∈ U)

for someα (α > 1). And letN (α) be the subclass ofA consisting of functionsf(z) which
satisfy the inequality:

Re

{
1 +

zf ′′(z)

f ′(z)

}
< α (z ∈ U)

for someα (α > 1). Then, we see thatf(z) ∈ N (α) if and only if zf ′(z) ∈M(α).
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Remark 1.1. For 1 < α ≤ 4
3
, the classesM(α) andN (α) were introduced by Uralegaddi et

al. [3].

Remark 1.2. The classesM(α) andN (α) correspond to the casek = 2 of the classesMk(α)
andNk(α), respectively, which were investigated recently by Owa and Srivastava [1].

We easily see that

Example 1.1.
(i) f(z) = z(1− z)2(α−1) ∈M(α).

(ii) g(z) = 1
2α−1

{1− (1− z)2α−1} ∈ N (α).

2. I NCLUSION THEOREMS I NVOLVING COEFFICIENT I NEQUALITIES

In this section we derive sufficient conditions forf(z) to belong to the aforementioned func-
tion classes, which are obtained by using coefficient inequalities.

Theorem 2.1. If f(z) ∈ A satisfies
∞∑

n=2

{(n− k) + |n + k − 2α|} |an| 5 2(α− 1)

for somek (0 5 k 5 1) and someα (α > 1), thenf(z) ∈M(α).

Proof. Let us suppose that

(2.1)
∞∑

n=2

{(n− k) + |n + k − 2α|} |an| 5 2(α− 1)

for f(z) ∈ A.
It suffices to show that ∣∣∣∣∣

zf ′(z)
f(z)

− k

zf ′(z)
f(z)

− (2α− k)

∣∣∣∣∣ < 1 (z ∈ U).

We note that∣∣∣∣∣
zf ′(z)
f(z)

− k

zf ′(z)
f(z)

− (2α− k)

∣∣∣∣∣ =

∣∣∣∣ 1− k +
∑∞

n=2(n− k)anz
n−1

1 + k − 2α +
∑∞

n=2(n + k − 2α)anzn−1

∣∣∣∣
5

1− k +
∑∞

n=2(n− k)|an||z|n−1

2α− 1− k −
∑∞

n=2 |n + k − 2α| |an||z|n−1

<
1− k +

∑∞
n=2(n− k)|an|

2α− 1− k −
∑∞

n=2 |n + k − 2α| |an|
.

The last expression is bounded above by 1 if

1− k +
∞∑

n=2

(n− k)|an| 5 2α− 1− k −
∞∑

n=2

|n + k − 2α| |an|

which is equivalent to our condition:
∞∑

n=2

{(n− k) + |n + k − 2α|}|an| 5 2(α− 1)

of the theorem. This completes the proof of the theorem. �

If we takek = 1 and someα
(
1 < α 5 3

2

)
in Theorem 2.1, then we have
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Corollary 2.2. If f(z) ∈ A satisfies
∞∑

n=2

(n− α)|an| 5 α− 1

for someα
(
1 < α 5 3

2

)
, thenf(z) ∈M(α).

Example 2.1.The functionf(z) given by

f(z) = z +
∞∑

n=2

4(α− 1)

n(n + 1)(n− k + |n + k − 2α|)
zn

belongs to the classM(α).

For the classN (α), we have

Theorem 2.3. If f(z) ∈ A satisfies

(2.2)
∞∑

n=2

n(n− k + 1 + |n + k − 2α|)|an| 5 2(α− 1)

for somek (0 5 k 5 1) and someα (α > 1), thenf(z) belongs to the classN (α).

Corollary 2.4. If f(z) ∈ A satisfies
∞∑

n=2

n(n− α)|an| 5 α− 1

for someα
(
1 < α 5 3

2

)
, thenf(z) ∈ N (α).

Example 2.2.The function

f(z) = z +
∞∑

n=2

4(α− 1)

n2(n + 1)(n− k + |n + k − 2α|)
zn

belongs to the classN (α).

Further, denoting byS∗(α) andK(α) the subclasses ofA consisting of all starlike functions
of orderα, and of all convex functions of orderα, respectively (see [2]), we derive

Theorem 2.5.If f(z) ∈ A satisfies the coefficient inequality (2.1) for someα
(
1 < α 5 k+2

2
5 3

2

)
,

then f(z) ∈ S∗
(

4−3α
3−2α

)
. If f(z) ∈ A satisfies the coefficient inequality (2.2) for someα(

1 < α 5 k−2
2

5 3
2

)
thenf(z) ∈ K

(
4−3α
3−2α

)
.

Proof. For someα
(
1 < α 5 k+2

2
5 3

2

)
, we see that the coefficient inequality (2.1) implies that

∞∑
n=2

(n− α)|an| 5 α− 1.

It is well-known that iff(z) ∈ A satisfies
∞∑

n=2

n− β

1− β
|an| 5 1

for someβ (0 5 β < 1), thenf(z) ∈ S∗(β) by Silverman [2]. Therefore, we have to find the
smallest positiveβ such that

∞∑
n=2

n− β

1− β
|an| 5

∞∑
n=2

n− α

α− 1
|an| 5 1.
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This gives that

(2.3) β 5
(2− α)n− α

n− 2α + 1

for all n = 2, 3, 4, · · · . Noting that the right-hand side of the inequality (2.3) is increasing for
n, we conclude that

β 5
4− 3α

3− 2α
,

which proves thatf(z) ∈ S∗
(

4−3α
3−2α

)
. Similarly, we can show that iff(z) ∈ A satisfies (2.2),

thenf(z) ∈ K
(

4−3α
3−2α

)
. �

Our result for the coefficient estimates of functionsf(z) ∈M(α) is contained in

Theorem 2.6. If f(z) ∈M(α), then

(2.4) |an| 5
Πn

j=2(j + 2α− 4)

(n− 1)!
(n = 2).

Proof. Let us define the functionp(z) by

p(z) =
α− zf ′(z)

f(z)

α− 1

for f(z) ∈ M(α). Thenp(z) is analytic inU, p(0) = 1 andRe(p(z)) > 0 (z ∈ U). Therefore,
if we write

p(z) = 1 +
∞∑

n=1

pnz
n,

then|pn| 5 2 (n = 1). Since

αf(z)− zf ′(z) = (α− 1)p(z)f(z),

we obtain that

(1− n)an = (α− 1)(pn−1 + a2pn−2 + a3pn−3 + · · ·+ an−1p1).

If n = 2, then−a2 = (α− 1)p1 implies that

|a2| = (α− 1)|p1| 5 2α− 2.

Thus the coefficient estimate (2.4) holds true forn = 2. Next, suppose that the coefficient
estimate

|ak| 5
∏k

j=2(j + 2α− 4)

(k − 1)!

is true for allk = 2, 3, 4, · · · , n. Then we have that

−nan+1 = (α− 1)(pn + a2pn−1 + a3pn−2 + · · ·+ anp1),
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so that

n|an+1| 5 (2α− 2)(1 + |a2|+ |a3|+ · · ·+ |an|)

5 (2α− 2)

(
1 + (2α− 2) +

(2α− 2)(2α− 1)

2!
+ · · ·+

Πn
j=2(j + 2α− 4)

(n− 1)!

)
= (2α− 2)

(
(2α− 1)2α(2α + 1) · · · (2α + n− 4)

(n− 2)!

+
(2α− 2)(2α− 1)2α · · · (2α + n− 4)

(n− 1)!

)
=

Πn+1
j=2 (j + 2α− 4)

(n− 1)!
.

Thus, the coefficient estimate (2.4) holds true for the case ofk = n + 1. Applying the mathe-
matical induction for the coefficient estimate (2.4), we complete the proof of Theorem 2.6.�

For the functionsf(z) belonging to the classN (α), we also have
Theorem 2.7. If f(z) ∈ N (α), then

|an| 5
∏n

j=2(j + 2α− 4)

n!
(n = 2).

Remark 2.8. We can not show that Theorem 2.6 and Theorem 2.7 are sharp. If we can prove
that Theorem 2.6 is sharp, then the sharpness of Theorem 2.7 follows.
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