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Abstract

In this paper, some inequalities involving the integral Taylor’s remainder are
obtained by using various well-known methods.
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1. Introduction
In [4] – [5], H. Gauchman has derived some new types of inequalities involving
Taylor’s remainder.

In [1], L. Bougoffa continued to create several integral inequalities involving
Taylor’s remainder.

The purpose of this paper is to give some supplements and improvements for
the results obtained in [1] – [3].

In [1], two notationsRn,f (c, x) andrn,f (a, b) have been adopted to denote
thenth Taylor’s remainder of functionf with centerc and the integral Taylor’s
remainder respectively, i.e.,

Rn,f (c, x) = f(x)−
n∑

k=0

f (n)(c)

n!
(x− c)k,

and

rn,f (a, b) =

∫ b

a

(b− x)n

n!
f (n+1)(x)dx.

However, it is evident that

Rn,f (a, b) =

∫ b

a

(b− x)n

n!
f (n+1)(x) dx = rn,f (a, b),

and

(−1)nRn,f (b, a) =

∫ b

a

(x− a)n

n!
f (n+1)(x) dx = (−1)nrn,f (b, a).
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So, we would like only to keep the notationRn,f (·, ·) in what follows.
We start by changing the order of integration to give a simple different proof

of Lemma 1.1 and Lemma 1.2 in [5] and [1]. i.e.,∫ b

a

Rn,f (a, x) dx =

∫ b

a

(∫ x

a

(x− t)n

n!
f (n+1)(t)dt

)
dx

=

∫ b

a

(∫ b

t

(x− t)n

n!
f (n+1)(t)dx

)
dt

=

∫ b

a

(b− t)n+1

(n + 1)!
f (n+1)(t)dt.

and

(−1)n+1

∫ b

a

Rn,f (b, x)dx =

∫ b

a

(∫ b

x

(t− x)n

n!
f (n+1)(t)dt

)
dx

=

∫ b

a

(∫ t

a

(t− x)n

n!
f (n+1)(t)dx

)
dt

=

∫ b

a

(t− a)n+1

(n + 1)!
f (n+1)(t)dt.
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2. Results Obtained via the Leibniz Formula
We prove the following theorem by using the Leibniz formula.

Theorem 2.1.Letf be a function defined on[a, b]. Assume thatf ∈ Cn+1([a, b]).
Then

(2.1)

∣∣∣∣∣
p∑

k=0

(−1)kCk
p Rn−k,f (a, b)

∣∣∣∣∣ ≤
p−1∑
k=0

Ck
p−1

∣∣f (n−k)(a)
∣∣ (b− a)n−k

(n− k)!
,

(2.2)

∣∣∣∣∣
p∑

k=0

(−1)n−k+1Ck
p Rn−k,f (b, a)

∣∣∣∣∣ ≤
p−1∑
k=0

Ck
p−1

∣∣f (n−k)(b)
∣∣ (b− a)n−k

(n− k)!
,

(2.3)

∣∣∣∣∣
p∑

k=0

(−1)kCk
p

∫ b

a

Rn−k,f (a, x)dx

∣∣∣∣∣
≤

p−1∑
k=0

Ck
p−1

∣∣f (n−k)(a)
∣∣ (b− a)n−k+1

(n− k + 1)!
,

(2.4)

∣∣∣∣∣
p∑

k=0

(−1)n−k+1Ck
p

∫ b

a

Rn−k,f (b, x)dx

∣∣∣∣∣
≤

p−1∑
k=0

Ck
p−1

∣∣f (n−k)(b)
∣∣ (b− a)n−k+1

(n− k + 1)!
,

whereCk
p = p!

(p−k)!k!
.
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Proof. We apply the following Leibniz formula

(FG)(p) = F (p)G + C1
pF

(p−1)G(1) + · · ·+ Cp−1
p F (1)G(p−1) + FG(P ),

provided the functionsF, G ∈ Cp([a, b]).
Let F (x) = f (n−p+1)(x), G(x) = (b−x)n

n!
. Then(

f (n−p+1)(x)
(b− x)n

n!

)(p)

=

p∑
k=0

(−1)kCk
p f (n−k+1)(x)

(b− x)n−k

(n− k)!
.

Integrating both sides of the preceding equation with respect tox from a to b
gives us[(

f (n−p+1)(x)
(b− x)n

n!

)(p−1)
]x=b

x=a

=

p∑
k=0

(−1)kCk
p

∫ b

a

f (n−k+1)(x)
(b− x)n−k

(n− k)!
dx.

The integral on the right isRn−k,f (a, x), and to evaluate the term on the left
hand side, we must again apply the Leibniz formula, obtaining

−
p−1∑
k=0

(−1)kCk
p−1f

(n−k)(a)
(b− a)n−k

(n− k)!
=

p∑
k=0

(−1)kCk
p Rn−k,f (a, b).

Consequently,∣∣∣∣∣
p∑

k=0

(−1)kCk
p Rn−k,f (a, b)

∣∣∣∣∣ ≤
p−1∑
k=0

Ck
p−1

∣∣f (n−k)(a)
∣∣ (b− a)n−k

(n− k)!
,
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which proves (2.1).
For the proof of (2.2), we take

F (x) = f (n−p+1)(x), G(x) =
(x− a)n

n!
.

For the proof of (2.3), we take

F (x) = f (n−p+1)(x), G(x) =
(b− x)n+1

(n + 1)!
.

For the proof of (2.4), we take

F (x) = f (n−p+1)(x), G(x) =
(x− a)n+1

(n + 1)!
.

Remark 1. It should be noticed that (2.3) and (2.4) have been mentioned and
proved in [1] with some misprints in the conclusion.
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3. Results Obtained by a Variant of the Grüss In-
equality

The following is a variant of the Grüss inequality which has been proved almost
at the same time by X.L. Cheng and J. Sun in [3] as well as M. Matíc in [6]
respectively.

Let h, g : [a, b] → R be two integrable functions such thatγ ≤ g(x) ≤ Γ for
some constantsγ, Γ for all x ∈ [a, b]. Then

(3.1)

∣∣∣∣∫ b

a

h(x)g(x) dx− 1

b− a

∫ b

a

h(x) dx

∫ b

a

g(x)dx

∣∣∣∣
≤ 1

2

(∫ b

a

∣∣∣∣h(x)− 1

b− a

∫ b

a

h(y)dy

∣∣∣∣ dx

)
(Γ− γ).

Theorem 3.1.Letf(x) be a function defined on[a, b] such thatf ∈ Cn+1([a, b])
andm ≤ f (n+1)(x) ≤ M for eachx ∈ [a, b], wherem andM are constants.
Then

(3.2)

∣∣∣∣Rn,f (a, b)− f (n)(b)− f (n)(a)

(n + 1)!
(b− a)n

∣∣∣∣ ≤ n(b− a)n+1(M −m)

(n + 1)!(n + 1) n
√

n + 1
,

(3.3)

∣∣∣∣(−1)n+1Rn,f (b, a)− f (n)(b)− f (n)(a)

(n + 1)!
(b− a)n

∣∣∣∣
≤ n(b− a)n+1(M −m)

(n + 1)!(n + 1) n
√

n + 1
,
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(3.4)

∣∣∣∣∫ b

a

Rn,f (a, x) dx− f (n)(b)− f (n)(a)

(n + 2)!
(b− a)n+1

∣∣∣∣
≤ (n + 1)(b− a)n+2(M −m)

(n + 2)!(n + 2) n+1
√

n + 2

and

(3.5)

∣∣∣∣(−1)n+1

∫ b

a

Rn,f (b, x) dx− f (n)(b)− f (n)(a)

(n + 2)!
(b− a)n+1

∣∣∣∣
≤ (n + 1)(b− a)n+2(M −m)

(n + 2)!(n + 2) n+1
√

n + 2
.

Proof. To prove (3.2), settingg(x) = f (n+1)(x) andh(x) = (b−x)n

n!
in (3.1), we

obtain ∣∣∣∣Rn,f (a, b)− f (n)(b)− f (n)(a)

(n + 1)!
(b− a)n

∣∣∣∣
≤ M −m

2

∫ b

a

∣∣∣∣(b− x)n

n!
− (b− a)n

(n + 1)!

∣∣∣∣ dx

=
n(b− a)n+1(M −m)

(n + 1)!(n + 1) n
√

n + 1
.

The proofs of (3.3), (3.4) and (3.5) are similar and so are omitted.

Remark 2. It should be noticed that Theorem3.1 improves Theorem 3.1 in [1]
and Theorem 2.1 in [5].
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4. Results Obtained via the Steffensen Inequality
In [2] we can find a general version of the well-known Steffensen inequality
as follows: Leth : [a, b] → R be a nonincreasing mapping on[a, b] andg :
[a, b] → R be an integrable mapping on[a, b] with

φ ≤ g(x) ≤ Φ, for all x ∈ [a, b],

then

φ

∫ b−λ

a

h(x)dx + Φ

∫ b

b−λ

h(x)dx ≤
∫ b

a

h(x)g(x)dx(4.1)

≤ Φ

∫ a+λ

a

h(x)dx + φ

∫ b

a+λ

h(x)dx,

where

(4.2) λ =

∫ b

a

G(x) dx, G(x) =
g(x)− φ

Φ− φ
, Φ 6= φ.

Theorem 4.1. Let f : [a, b] → R be a mapping such thatf(x) ∈ Cn+1([a, b])
andm ≤ f (n+1)(x) ≤ M for eachx ∈ [a, b], wherem andM are constants.
Then

m(b− a)n+1 + (M −m)λn+1

(n + 1)!
(4.3)

≤ Rn,f (a, b)

≤ M(b− a)n+1 − (M −m)(b− a− λ)n+1

(n + 1)!
,
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m(b− a)n+1 + (M −m)λn+1

(n + 1)!
(4.4)

≤ (−1)n+1Rn,f (b, a)

≤ M(b− a)n+1 − (M −m)(b− a− λ)n+1

(n + 1)!
,

m(b− a)n+2 + (M −m)λn+2

(n + 2)!
(4.5)

≤
∫ b

a

Rn,f (a, x)dx

≤ M(b− a)n+2 − (M −m)(b− a− λ)n+2

(n + 2)!
,

and

m(b− a)n+2 + (M −m)λn+2

(n + 2)!
(4.6)

≤ (−1)n+1

∫ b

a

Rn,f (b, x)dx

≤ M(b− a)n+2 − (M −m)(b− a− λ)n+2

(n + 2)!
,

whereλ = f(b)−f(a)−m(b−a)
M−m

.
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Proof. Observe that(b−x)n

n!
is a decreasing function ofx on [a, b], then by (4.1)

and (4.2) we have

m

∫ b−λ

a

(b− x)n

n!
dx + M

∫ b

b−λ

(b− x)n

n!
dx

≤
∫ b

a

(b− x)n

n!
f (n+1)(x)dx

≤ M

∫ a+λ

a

(b− x)n

n!
dx + m

∫ b

a+λ

(b− x)n

n!
dx

with

λ =

∫ b

a

f (n+1)(x)−m

M −m
dx =

f (n)(b)− f (n)(a)−m(b− a)

M −m
,

and (4.3) follows.
Since(x−a)n

n!
is a increasing function ofx on [a, b], then

M

∫ a+λ

a

(x− a)n

n!
dx + m

∫ b

a+λ

(x− a)n

n!
dx

≤
∫ b

a

(x− a)n

n!
f (n+1)(x)dx

≤ m

∫ b−λ

a

(x− a)n

n!
dx + M

∫ b

b−λ

(x− a)n

n!
dx,

and (4.4) follows.
The proofs of (4.5) and (4.6) are similar and so are omitted.
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Remark 3. It should be mentioned that (4.5) and (4.6) have also been proved
in [4]
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