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ABSTRACT. Using a standard argument, the following inequality between the sum of squares
and the exponential of sum of a nonnegative sequence is established:
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wheren > 2, xz; > 0for1 <i <n, and the constalg3 is the best possible.
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1. INTRODUCTION

In the 2004 Master Graduate Admission Examination of Mathematical Analysis of the Bei-
jing Institute of Technology, the following inequality, which was brought up by one of the
author’s students, was asked to be shown:(Eoy) € [0, 00) x [0, c0), show

2 2
(1.1) i Zy <exp(z+y—2).
The aim of this paper is to give a generalization of inequd]lity] (1.1).
For our own convenience, we introduce the following notations:

(1.2) [0, 00)" & [0,00) x [0,00) x - x [0, 00)
and ’
(1.3) (0, 00)" é£0,oo) x (0,00) x -+ x (0,00)

for n € N, whereN denotes the set of all positive integers.

112-07


mailto:qifeng@hpu.edu.cn
http://rgmia.vu.edu.au/qi.html
http://www.ams.org/msc/

The main results of this paper are the following theorems.

Theorem 1.1.For (21,22, ...,2,) € [0,00)" andn > 2, inequality

2 n n
€ 2
(1.4) ZZZI x; < exp (; J?Z)
is valid. Equality in(1.4) holds ifz; = 2 for some given <i <nandz; =0forall1 <j <n
with j # 1. So, the constarﬁi in (1.4)is the best possible.

Theorem 1.2. Let{z;}°, be a nonnegative sequence such thjt, =; < co. Then

2 o0 oo
€ 2
(1.5) Z; x; < exp (; :IZZ> :
Equality in(X.5) holds ifz; = 2 for some giveri € N andz; = 0 for all j € N with j # 4. So,
the constan%2 in (1.5)is the best possible.

Remark 1.3. Takingn = 2 and(xzy, z2) = (z,y) in (1.4) easily leads to inequality (1.1).
Takingz; = x andz; = y for some given, j € Nandx;, = 0 for all £ € N with £ # 7 and
k # j in inequality [1.5) also clearly leads to inequality (1.1).

Remark 1.4. Inequality [1.4) can be rewritten as

2 n n
1.6 N2 < e”i
o i<l
or
e o
1.7) 7 lllz < expllz],,
wherez = (zy,...,,) and| - ||, denotes the-norm.

Remark 1.5. Inequality [1.5) can be rewritten as

9 0 o
(1.8) %;xf < geﬂ
which is equivalent to inequality (1.7) far = (21,2, ...) € [0, 00).
Remark 1.6. Takingz; = | for i € Nin (I.4) and rearranging gives
(2.9) 2—2In2+1n <zn212> §zn:1

=1 t =1 g

Takingz; = Zi fori € Nands > 1in (I.5) and rearranging gives

(1.10) 2—2In2+1n (i Zzis) =2—2In2+ In[((2s)] < i%s = ((s),

=1

where( denotes the well known Riemann Zeta function.
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2. PROOFS OF THEOREMS

Now we are in a position to prove our theorems.

Proof of Theorerpi T]1Let
(21) f(l‘1,$2,...,$n) =1In (Zx?) — z;
i=1 i=1
for (1, 2a,...,2,) € [0,00)"\ {(0,0,...,0)}. Simple calculation results in
Of (x1,72,...,2p) 21},
2.2 — 1
=2 Oy > i T 7
(2.3) O f (a1, oy ..., xp) B 2 (Z?;ék x; — x%)
| % et
2
. 4
(24) 0 f(l'l,l'g, 7‘1.71) _ ffme -
02,02, (", a2)

wherel < k, ¢, m < n and? # m. The system of equations

6f(:v1, To, ... ,ZL‘n)

(2.5) =0 for 1<k <n,

8:Ek
which is equivalent to
itk
has a unique nonzero solutien= 2 for 1 < i < n. Thus, the poin(2, 2, ..., 2) is a unique
critical point of the functionf(zy, zs, ..., x,), which is located in the interior gf), co)™ \

{(0,0,...,0)}.

Straightforward computation gives us

Pr(2,2....2) n_2

n’n’

(2.7) ox? T2
2£(2 2 2
6f(n’n""’n):_1’
alL‘gaJZm
Of(2,2,...,2) 0f(3,2,...,2) Pf(2,2,...,2)
ox? 0x107 Ox10x;
32]0(2 2 2) 82]‘(2 2 2) 82]”(2 2 2)
(2.8) D; = 0x901; 013 o 0x0x;
Pr(2,2,.2) &f(2,2,...2) Pr(2,2,...2)
0x,;0x, 0x;0x 0x?
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Since
>0, ifi<3,
(2.9) D;<=0, ifi=3g,
<0, ifi>3g,

itis affirmed that the critical point2, 2, . . ., 2) located in the interior off), c0)™\{(0,0, ...,0)}
is not an extremal point of the functiof{z,, xo, . .., ;).
The boundary of0, oo)™ \ {(0,0,...,0)}is U} [0,00)" x {0} x [0, 00)" 1.

On the sef0, 00)"~! x {0} \ {(0,0,...,0)}, itis concluded that

n—1 n—1
(2.10) fz1,...,2,-1,0) =In (in) —Zxk.
k=1 k=1

By the same standard argument as above, it is deduced that the unique critical point, located
in the interior of[0, co)"~* x {0} \ {(0,0,...,0)}, of f(z1,...,2,—1,0) is (-3, ..., =25, 0)
which is not an extremal point gf(zy, ..., z,_1,0).

By induction, in the interior of the sé, co)’ x\{O} X - X {O}/\{(O, 0,...,0)}for2 <i <

-~

n — i times
n, there is no extremal point of(xy, ..., 2;,0,...,0).
On the set0,00) x {0} x --- x {0}, itis easy to obtain that the function

n—Irtimes
f(x1,0,...,0) =2Inzy — 2y
has a maximal point; = 2 and the maximal value equaf$2,0,...,0) =2In2 — 2.
Considering that the functiofi(xy, z», . .., x,,) is sSymmetric with respect to all permutations
of then variablesr; for 1 < i < n and by induction, we obtain the following conclusion: The

maximal value of the functiotf(z4, ..., x,) on the sef0,00)” \ {(0,0,...,0)}is2In2 — 2.
Therefore, it follows that

(2.11) f(z1,29,...,2,) =1n <Z$ZZ> —ZﬂfiSQlHQ—Q,
i=1 i=1

which is equivalent to inequality (1.4), on the $&too)” \ {(0,0,...,0)}.
It is clear that inequality] (1]4) holds also at the pdint. . ., 0). Hence, the proof of Theorem
[1.7 is complete. O

Proof of Theorerp 1}2This can be concluded by letting— oo in Theorenj 1.]1. O
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3. OPEN PROBLEMS
Finally, the following problems can be proposed.

Open Problem 1. For (z1,2,...,2,) € [0,00)" andn > 2, determine the best possible
constantsy,, A\, € Rand0 < (3, u, < oo such that

(3.1) ann: 28" < exp (zn: :L"> < unzn: ),

Open Problem 2. What is the integral analogue of the double inequaf#y)?

Open Problem 3. Can one find applications and practical meanings in mathematics for in-
equality(3.7) and its integral analogues?
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