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Abstract: Using a standard argument, the following inequality between the sum of squares
and the exponential of sum of a nonnegative sequence is established:
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)
,

wheren ≥ 2, xi ≥ 0 for 1 ≤ i ≤ n, and the constante
2

4
is the best possible.
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1. Introduction

In the 2004 Master Graduate Admission Examination of Mathematical Analysis of
the Beijing Institute of Technology, the following inequality, which was brought up
by one of the author’s students, was asked to be shown: For(x, y) ∈ [0,∞)× [0,∞),
show

(1.1)
x2 + y2

4
≤ exp(x + y − 2).

The aim of this paper is to give a generalization of inequality (1.1).
For our own convenience, we introduce the following notations:

(1.2) [0,∞)n , [0,∞)× [0,∞)× · · · × [0,∞)︸ ︷︷ ︸
n times

and

(1.3) (0,∞)n , (0,∞)× (0,∞)× · · · × (0,∞)︸ ︷︷ ︸
n times

for n ∈ N, whereN denotes the set of all positive integers.
The main results of this paper are the following theorems.

Theorem 1.1.For (x1, x2, . . . , xn) ∈ [0,∞)n andn ≥ 2, inequality

(1.4)
e2

4

n∑
i=1

x2
i ≤ exp

(
n∑

i=1

xi

)
is valid. Equality in(1.4) holds ifxi = 2 for some given1 ≤ i ≤ n andxj = 0 for
all 1 ≤ j ≤ n with j 6= i. So, the constante

2

4
in (1.4) is the best possible.
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Theorem 1.2.Let{xi}∞i=1 be a nonnegative sequence such that
∑∞

i=1 xi < ∞. Then

(1.5)
e2

4

∞∑
i=1

x2
i ≤ exp

(
∞∑
i=1

xi

)
.

Equality in(1.5) holds ifxi = 2 for some giveni ∈ N andxj = 0 for all j ∈ N with
j 6= i. So, the constante

2

4
in (1.5) is the best possible.

Remark1. Taking n = 2 and(x1, x2) = (x, y) in (1.4) easily leads to inequality
(1.1).

Takingxi = x andxj = y for some giveni, j ∈ N andxk = 0 for all k ∈ N with
k 6= i andk 6= j in inequality (1.5) also clearly leads to inequality (1.1).

Remark2. Inequality (1.4) can be rewritten as

(1.6)
e2

4

n∑
i=1

x2
i ≤

n∏
i=1

exi

or

(1.7)
e2

4
‖x‖2

2 ≤ exp ‖x‖1 ,

wherex = (x1, . . . , xn) and‖ · ‖p denotes thep-norm.

Remark3. Inequality (1.5) can be rewritten as

(1.8)
e2

4

∞∑
i=1

x2
i ≤

∞∏
i=1

exi

which is equivalent to inequality (1.7) for x = (x1, x2, . . . ) ∈ [0,∞)∞.
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Remark4. Takingxi = 1
i

for i ∈ N in (1.4) and rearranging gives

(1.9) 2− 2 ln 2 + ln

(
n∑

i=1

1

i2

)
≤

n∑
i=1

1

i
.

Takingxi = 1
is

for i ∈ N ands > 1 in (1.5) and rearranging gives

(1.10) 2− 2 ln 2 + ln

(
∞∑
i=1

1

i2s

)
= 2− 2 ln 2 + ln[ζ(2s)] ≤

∞∑
i=1

1

is
= ζ(s),

whereζ denotes the well known Riemann Zeta function.
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2. Proofs of Theorems

Now we are in a position to prove our theorems.

Proof of Theorem1.1. Let

(2.1) f(x1, x2, . . . , xn) = ln

(
n∑

i=1

x2
i

)
−

n∑
i=1

xi

for (x1, x2, . . . , xn) ∈ [0,∞)n \ {(0, 0, . . . , 0)}. Simple calculation results in

∂f(x1, x2, . . . , xn)

∂xk

=
2xk∑n
i=1 x2

i

− 1,(2.2)

∂2f(x1, x2, . . . , xn)

∂x2
k

=
2
(∑n

i6=k x2
i − x2

k

)
(
∑n

i=1 x2
i )

2 ,(2.3)

∂2f(x1, x2, . . . , xn)

∂x`∂xm

= − 4x`xm

(
∑n

i=1 x2
i )

2 ,(2.4)

where1 ≤ k, `, m ≤ n and` 6= m. The system of equations

(2.5)
∂f(x1, x2, . . . , xn)

∂xk

= 0 for 1 ≤ k ≤ n,

which is equivalent to

(2.6)
∑
i6=k

x2
i + (xk − 1)2 = 1 for 1 ≤ k ≤ n,

has a unique nonzero solutionxi = 2
n

for 1 ≤ i ≤ n. Thus, the point
(

2
n
, 2

n
, . . . , 2

n

)
is a unique critical point of the functionf(x1, x2, . . . , xn), which is located in the
interior of [0,∞)n \ {(0, 0, . . . , 0)}.
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Straightforward computation gives us

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x2

k

=
n− 2

2
,(2.7)

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x`∂xm

= −1,

Di =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x2

1

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x1∂x2

· · ·
∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x1∂xi

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x2∂x1

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x2

2

· · ·
∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x2∂xi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂xi∂x1

∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂xi∂x2

· · ·
∂2f
(

2
n
, 2

n
, . . . , 2

n

)
∂x2

i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.8)

=

∣∣∣∣∣∣∣∣∣∣∣∣

n− 2

2
−1 · · · −1

−1
n− 2

2
· · · −1

. . . . . . . . . . . . . . . . . . . . . . . . . .

−1 −1 · · · n− 2

2

∣∣∣∣∣∣∣∣∣∣∣∣
=
[n− 2

2
+ (i− 1)(−1)

][n− 2

2
− (−1)

]i−1

=
(n

2
− i
)(n

2

)i−1

.
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Since

(2.9) Di


> 0, if i < n

2
,

= 0, if i = n
2
,

< 0, if i > n
2
,

it is affirmed that the critical point
(

2
n
, 2

n
, . . . , 2

n

)
located in the interior of[0,∞)n \

{(0, 0, . . . , 0)} is not an extremal point of the functionf(x1, x2, . . . , xn).
The boundary of[0,∞)n \ {(0, 0, . . . , 0)} is∪n−1

i=0 [0,∞)i × {0} × [0,∞)n−i−1.
On the set[0,∞)n−1 × {0} \ {(0, 0, . . . , 0)}, it is concluded that

(2.10) f(x1, . . . , xn−1, 0) = ln

(
n−1∑
k=1

x2
k

)
−

n−1∑
k=1

xk.

By the same standard argument as above, it is deduced that the unique critical point,
located in the interior of[0,∞)n−1 × {0} \ {(0, 0, . . . , 0)}, of f(x1, . . . , xn−1, 0) is(

2
n−1

, . . . , 2
n−1

, 0
)

which is not an extremal point off(x1, . . . , xn−1, 0).
By induction, in the interior of the set[0,∞)i×{0} × · · · × {0}︸ ︷︷ ︸

n− i times

\{(0, 0, . . . , 0)}

for 2 ≤ i ≤ n, there is no extremal point off(x1, . . . , xi, 0, . . . , 0).
On the set(0,∞)× {0} × · · · × {0}︸ ︷︷ ︸

n− 1 times

, it is easy to obtain that the function

f(x1, 0, . . . , 0) = 2 ln x1 − x1

has a maximal pointx1 = 2 and the maximal value equalsf(2, 0, . . . , 0) = 2 ln 2−2.
Considering that the functionf(x1, x2, . . . , xn) is symmetric with respect to all

permutations of then variablesxi for 1 ≤ i ≤ n and by induction, we obtain the
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following conclusion: The maximal value of the functionf(x1, . . . , xn) on the set
[0,∞)n \ {(0, 0, . . . , 0)} is 2 ln 2− 2. Therefore, it follows that

(2.11) f(x1, x2, . . . , xn) = ln

(
n∑

i=1

x2
i

)
−

n∑
i=1

xi ≤ 2 ln 2− 2,

which is equivalent to inequality (1.4), on the set[0,∞)n \ {(0, 0, . . . , 0)}.
It is clear that inequality (1.4) holds also at the point(0, . . . , 0). Hence, the proof

of Theorem1.1 is complete.

Proof of Theorem1.2. This can be concluded by lettingn →∞ in Theorem1.1.
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3. Open Problems

Finally, the following problems can be proposed.

Open Problem 1. For (x1, x2, . . . , xn) ∈ [0,∞)n and n ≥ 2, determine the best
possible constantsαn, λn ∈ R and0 < βn, µn < ∞ such that

(3.1) βn

n∑
i=1

xαn
i ≤ exp

(
n∑

i=1

xi

)
≤ µn

n∑
i=1

xλn
i .

Open Problem 2. What is the integral analogue of the double inequality(3.1)?

Open Problem 3.Can one find applications and practical meanings in mathematics
for inequality(3.1) and its integral analogues?
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