journal of inequalities in pure and applied mathematics

http://jipam.vu.edu.au issn: 1443-5756

Volume 9 (2008), Issue 3, Article 71, 6 pp.

NEW BOUNDS FOR THE IDENTRIC MEAN OF TWO ARGUMENTS

OMRAN KOUBA

DEPARTMENT OF MATHEMATICS
HIGHER INSTITUTE FOR APPLIED SCIENCES AND TECHNOLOGY
P.O. BOX 31983, DAMASCUS, SYRIA.
omran_kouba@hiast.edu.sy

Received 16 April, 2008; accepted 27 June, 2008 Communicated by J. Sandor

ABSTRACT. Given two positive real numbers x and y, let A(x,y), G(x,y), and I(x,y) denote their arithmetic mean, geometric mean, and identric mean, respectively. Also, let $K_p(x,y) = \sqrt[p]{\frac{2}{3}}A^p(x,y) + \frac{1}{3}G^p(x,y)$ for p>0. In this note we prove that $K_p(x,y) < I(x,y)$ for all positive real numbers $x \neq y$ if and only if $p \leq 6/5$, and that $I(x,y) < K_p(x,y)$ for all positive real numbers $x \neq y$ if and only if $p \geq (\ln 3 - \ln 2)/(1 - \ln 2)$. These results, complement and extend similar inequalities due to J. Sándor [2], J. Sándor and T. Trif [3], and H. Alzer and S.-L. Qiu [1].

Key words and phrases: Arithmetic mean, Geometric mean, Identric mean.

2000 Mathematics Subject Classification. 26D07, 26D20, 26E60.

1. Introduction

In this note we consider several means of two positive real numbers x and y. Recall that the arithmetic mean, the geometric mean and the identric mean are defined by $A(x,y)=\frac{x+y}{2}$, $G(x,y)=\sqrt{xy}$ and

$$I(x,y) = \begin{cases} \frac{1}{e} \left(\frac{x^x}{y^y}\right)^{\frac{1}{x-y}} & \text{if} \quad x \neq y \\ x & \text{if} \quad x = y \end{cases}$$

We also introduce the family $(K_p(x,y))_{p>0}$ of means of x and y, defined by

$$K_p(x,y) = \sqrt[p]{\frac{2A^p(x,y) + G^p(x,y)}{3}}.$$

Using the fact that, for $\alpha>1$, the function $t\mapsto t^\alpha$ is strictly convex on \mathbb{R}_+^* , and that for $x\neq y$ we have A(x,y)>G(x,y) we conclude that, for $x\neq y$, the function $p\mapsto K_p(x,y)$ is increasing on \mathbb{R}_+^* .

In [3] it is proved that $I(x,y) < K_2(x,y)$ for all positive real numbers $x \neq y$. Clearly this implies that $I(x,y) < K_p(x,y)$ for $p \geq 2$ and $x \neq y$ which is the upper (and easy) inequality of Theorem 1.2 of [4].

2 OMRAN KOUBA

On the other hand, J. Sándor proved in [2] that $K_1(x,y) < I(x,y)$ for all positive real numbers $x \neq y$, and this implies that $K_p(x,y) < I(x,y)$ for $p \leq 1$ and $x \neq y$.

The aim of this note is to generalize the above-mentioned inequalities by determining exactly the sets

$$\mathcal{L} = \{ p > 0 : \forall (x, y) \in D, \ K_p(x, y) < I(x, y) \}$$

$$\mathcal{U} = \{ p > 0 : \forall (x, y) \in D, \ I(x, y) < K_p(x, y) \}$$

with $D=\{(x,y)\in\mathbb{R}_+^*\times\mathbb{R}_+^*:x\neq y\}$. Clearly, $\mathcal L$ and $\mathcal U$ are intervals since $p\mapsto K_p(x,y)$ is increasing. And the stated results show that

$$(0,1] \subset \mathcal{L} \subset (0,2)$$
 and $[2,+\infty) \subset \mathcal{U} \subset (1,+\infty)$.

The following theorem is the main result of this note.

Theorem 1.1. Let \mathcal{U} and \mathcal{L} be as above, then $\mathcal{L} = (0, p_0]$ and $\mathcal{U} = [p_1, +\infty)$ with

$$p_0 = \frac{6}{5} = 1.2$$
 and $p_1 = \frac{\ln 3 - \ln 2}{1 - \ln 2} \lessapprox 1.3214$.

2. Preliminaries

The following lemmas and corollary pave the way to the proof of Theorem 1.1.

Lemma 2.1. For $1 , let h be the function defined on the interval <math>I = [1, +\infty)$ by

$$h(x) = \frac{(1 - p + 2x)x^{1 - 2/p}}{1 + (2 - p)x},$$

- (i) If $p \leq \frac{6}{5}$ then h(x) < 1 for all x > 1. (ii) If $p > \frac{6}{5}$ then there exists x_0 in $(1, +\infty)$ such that h(x) > 1 for $1 < x < x_0$, and

Proof. Clearly h(x) > 0 for $x \ge 1$, so we will consider $H = \ln(h)$.

$$H(x) = \ln(1 - p + 2x) + \frac{p - 2}{p} \ln x - \ln(1 + (2 - p)x).$$

Now, doing some algebra, we can reduce the derivative of H to the following form,

$$H'(x) = \frac{2}{1 - p + 2x} - \frac{2 - p}{px} - \frac{2 - p}{1 + (2 - p)x}$$
$$= -\frac{2(2 - p)^2 Q(x)}{px(1 - p + 2x)(1 + (2 - p)x)},$$

with Q the second degree polynomial given by

$$Q(X) = X^{2} - \frac{(p-1)(4-p)}{(2-p)^{2}}X - \frac{p-1}{4-2p}.$$

The key remark here is that, since the product of the zeros of Q is negative, Q must have two real zeros; one of them (say z_{-}) is negative, and the other (say z_{+}) is positive. In order to compare z_+ to 1, we evaluate Q(1) to find that,

$$Q(1) = 1 - \frac{(p-1)(4-p)}{(2-p)^2} - \frac{p-1}{4-2p} = \frac{(6-5p)(3-p)}{2(2-p)^2},$$

so we have two cases to consider:

- If $p \leq \frac{6}{5}$, then $Q(1) \geq 0$, so we must have $z_+ \leq 1$, and consequently Q(x) > 0 for x > 1. Hence H'(x) < 0 for x > 1, and H is decreasing on the interval I, but H(1) = 0, so that H(x) < 0 for x > 1, which is equivalent to (i).
- If $p > \frac{6}{5}$, then Q(1) < 0 so we must have $1 < z_+$, and consequently, Q(x) < 0 for $1 \le x < z_+$ and Q(x) > 0 for $x > z_+$. therefore H has the following table of variations:

x	1		z_{+}		$+\infty$
H'(x)		+	0	_	
H(x)	0	7	$\overline{}$	\	$-\infty$

Hence, the equation H(x) = 0 has a unique solution x_0 which is greater than z_+ , and H(x) > 0 for $1 < x < x_0$, whereas H(x) < 0 for $x > x_0$. This proves (ii).

The proof of Lemma 2.1 is now complete.

Lemma 2.2. For $1 , let <math>f_p$ be the function defined on \mathbb{R}_+^* by

$$f_p(t) = \frac{t}{\tanh t} - 1 - \frac{1}{p} \ln \left(\frac{2 \cosh^p t + 1}{3} \right),$$

- (i) If $p \leq \frac{6}{5}$ then f_p is increasing on \mathbb{R}_+^* .
- (ii) If $p > \frac{6}{5}$ then there exists t_p in \mathbb{R}_+^* such that f_p is decreasing on $(0, t_p]$, and increasing on $[t_p, +\infty)$.

Proof. First we note that

$$f_p'(t) = \frac{1}{\sinh^2 t} \left(\sinh t \cosh t - t - \frac{2 \sinh^3 t}{(2 + \cosh^{-p} t) \cosh t} \right),$$

so if we define the function g on \mathbb{R}_+^* by

$$g(t) = \sinh t \cosh t - t - \frac{2\sinh^3 t}{(2 + \cosh^{-p} t)\cosh t},$$

we find that

$$\begin{split} g'(t) &= 2\sinh^2 t - \frac{6\sinh^2 t}{2 + \cosh^p t} + \frac{2\sinh^4 t(2 + (1-p)\cosh^p t)}{(2 + \cosh^p t)^2 \cosh^2 t} \\ &= \frac{2\tanh^2 t \left((1 + (2-p)\cosh^p t)\cosh^p t \right)\cosh^2 t - (1-p+2\cosh^p t)\cosh^p t \right)}{(1 + 2\cosh^p t)^2} \\ &= \frac{2\sinh^2 t \left(1 + (2-p)\cosh^p t \right)}{(1 + 2\cosh^p t)^2} \left(1 - \frac{(1-p+2\cosh^p t)\cosh^p t)\cosh^p t}{(1 + (2-p)\cosh^p t)\cosh^p t} \right) \\ &= \frac{2\sinh^2 t \left(1 + (2-p)\cosh^p t \right)}{(1 + 2\cosh^p t)^2} \left(1 - h(\cosh^p t) \right) \end{split}$$

where h is the function defined in Lemma 2.1. This allows us to conclude, as follows:

- If $p \leq \frac{6}{5}$, then using Lemma 2.1, we conclude that $h(\cosh^p t) < 1$ for t > 0, so g' is positive on \mathbb{R}_+^* . Now, by the fact that g(0) = 0 and that g is increasing on \mathbb{R}_+^* we conclude that g(t) is positive for t > 0, therefore f_p is increasing on \mathbb{R}_+^* . This proves (i).
- If $p > \frac{6}{5}$, then using Lemma 2.1, and the fact that $t \mapsto \cosh^p t$ defines an increasing bijection from \mathbb{R}_+^* onto $(1, +\infty)$, we conclude that g has the following table of variations:

4 Omran Kouba

t	0		t_0		$+\infty$
g'(t)		_	0	+	
g(t)	0	>	$\overline{}$	7	$+\infty$

with $t_0 = \operatorname{arg} \cosh \sqrt[p]{x_0}$. Hence, the equation g(t) = 0 has a unique positive solution t_p , and g(t) < 0 for $0 < t < t_p$, whereas g(t) > 0 for $t > t_p$, and (ii) follows.

This achieves the proof of Lemma 2.2.

Now, using the fact that

$$\lim_{t\to 0} f_p(t) = 0$$
 and $\lim_{t\to \infty} f_p(t) = \ln\left(\frac{2}{e}\sqrt[p]{\frac{3}{2}}\right),$

the following corollary follows.

Corollary 2.3. For $1 , let <math>f_p$ be the function defined in Lemma 2.2.

(i) If $p \leq \frac{6}{5}$, then f_p has the following table of variations:

t	0		$+\infty$
$f_p(t)$	0	7	$\ln\left(\frac{2}{e}\sqrt[p]{\frac{3}{2}}\right)$

(ii) If $p > \frac{6}{5}$ then f_p has the following table of variations:

t	0				$+\infty$
$f_p(t)$	0	\	<u> </u>	7	$\ln\left(\frac{2}{e}\sqrt[p]{\frac{3}{2}}\right)$

In particular, for 1 , we have proved the following statements.

$$(2.1) \qquad (\forall t > 0, f_p(t) > 0) \Longleftrightarrow p \le p_0,$$

(2.2)
$$(\forall t > 0, \ f_p(t) < 0) \Longleftrightarrow \ln\left(\frac{2}{e}\sqrt[p]{\frac{3}{2}}\right) \le 0 \Longleftrightarrow p \ge p_1$$

where p_0 and p_1 are defined in the statement of Theorem 1.1.

3. Proof of Theorem 1.1

Proof. In what follows, we use the notation of the preceding corollary.

• First, consider some p in \mathcal{L} , then for all (x,y) in D we have $K_p(x,y) < I(x,y)$. This implies that

$$\forall t > 0. \quad \ln(K_p(e^t, e^{-t})) < \ln(I(e^t, e^{-t})),$$

but $I(e^t,e^{-t})=\exp\left(\frac{t}{\tanh t}-1\right)$ and $A(e^t,e^{-t})=\cosh t$, so we have

$$\forall t > 0, \quad \frac{t}{\tanh t} - 1 - \frac{1}{p} \ln \left(\frac{2 \cosh^p t + 1}{3} \right) > 0,$$

Now, if p > 1, this proves that $f_p(t) > 0$ for every positive t, so we deduce from (2.1) that $p \leq p_0$. Hence $\mathcal{L} \subset (0, p_0]$.

- Conversely, consider a pair (x,y) from D, and define t as $\ln\left(\frac{\max(x,y)}{\sqrt{xy}}\right)$. Now, using (2.1) we conclude that $f_{p_0}(t) > 0$, and this is equivalent to $K_{p_0}(x,y) < I(x,y)$. Therefore, $p_0 \in \mathcal{L}$ and consequently $(0,p_0] \subset \mathcal{L}$. This achieves the proof of the first equality, that is $\mathcal{L} = (0,p_0]$.
- Second, consider some p in \mathcal{U} , then for all (x,y) in D we have $I(x,y) < K_p(x,y)$. This implies that

$$\forall t > 0, \quad \ln(K_p(e^t, e^{-t})) > \ln(I(e^t, e^{-t})),$$

so we have

$$\forall t > 0, \quad \frac{t}{\tanh t} - 1 - \frac{1}{p} \ln \left(\frac{2 \cosh^p t + 1}{3} \right) < 0,$$

Now, if p < 2, this proves that $f_p(t) < 0$ for every positive t, so we deduce from (2.2) that $p \ge p_1$. Hence $\mathcal{U} \subset [p_1, \infty)$.

• Conversely, consider a pair (x,y) from D, and as before define $t = \ln\left(\frac{\max(x,y)}{\sqrt{xy}}\right)$. Now, using (2.2) we obtain $f_{p_1}(t) < 0$, and this is equivalent to $I(x,y) < K_{p_1}(x,y)$. Therefore, $p_1 \in \mathcal{U}$ and consequently $[p_1,\infty) \subset \mathcal{U}$. This achieves the proof of the second equality, that is $\mathcal{U} = [p_1,\infty)$.

This concludes the proof of the main Theorem 1.1.

4. REMARKS

Remark 1. The same approach, as in the proof of Theorem 1.1 can be used to prove that for $\lambda \leq 2/3$ and $p \leq \frac{3-\lambda-\sqrt{(1-\lambda)(3\lambda+1)}}{(1-\lambda)^2+1}$ we have

$$\sqrt[p]{\lambda A^p(x,y) + (1-\lambda)G^p(x,y)} < I(x,y)$$

for all positive real numbers $x \neq y$. Similarly, we can also prove that for $\lambda \geq 2/3$ and $p \geq \frac{\ln \lambda}{\ln 2 - 1}$ we have

$$I(x,y) < \sqrt[p]{\lambda A^p(x,y) + (1-\lambda)G^p(x,y)}.$$

for all positive real numbers $x \neq y$. We leave the details to the interested reader.

Remark 2. The inequality $I(x,y) < \sqrt{\frac{2}{3}A^2(x,y) + \frac{1}{3}G^2(x,y)}$ was proved in [3] using power series. Another proof can be found in [4] using the Gauss quadrature formula. It can also be seen as a consequence of our main theorem. Here, we will show that this inequality can be proved elementarily as a consequence of Jensen's inequality.

Let us recall that ln(I(x,y)) can be expressed as follows

$$\ln(I(x,y)) = \int_0^1 \ln(tx + (1-t)y) \, dt = \int_0^1 \ln((1-t)x + ty) \, dt.$$

Therefore.

$$2\ln(I(x,y)) = \int_0^1 \ln((tx + (1-t)y)((1-t)x + ty)) dt,$$

but

$$(tx + (1-t)y)((1-t)x + ty) = (1 - (2t-1)^2)A^2(x,y) + (2t-1)^2G^2(x,y),$$

6 Omran Kouba

so that, by $u \leftarrow 2t - 1$, we obtain,

$$2\ln(I(x,y)) = \frac{1}{2} \int_{-1}^{1} \ln((1-u^2)A^2(x,y) + u^2G^2(x,y)) du$$
$$= \int_{0}^{1} \ln((1-u^2)A^2(x,y) + u^2G^2(x,y)) du.$$

Hence,

$$I^{2}(x,y) = \exp\left(\int_{0}^{1} \ln((1-u^{2})A^{2}(x,y) + u^{2}G^{2}(x,y)) du\right)$$

Now, the function $t \mapsto e^t$ is strictly convex, and the integrand is a continuous non-constant function when $x \neq y$, so using Jensen's inequality we obtain

$$I^{2}(x,y) < \int_{0}^{1} \exp\left(\ln((1-u^{2})A^{2}(x,y) + u^{2}G^{2}(x,y))\right) du = \frac{2}{3}A^{2}(x,y) + \frac{1}{3}G^{2}(x,y).$$

REFERENCES

- [1] H. ALZER AND S.-L. QIU, Inequalities for means in two variables, *Arch. Math. (Basel)*, **80** (2003), 201–215.
- [2] J. SÁNDOR, A note on some inequalities for means, Arch. Math. (Basel), 56 (1991), 471–473.
- [3] J. SÁNDOR, AND T. TRIF, Some new inequalities for means of two arguments, *Int. J. Math. Math. Sci.*, **25** (2001), 525–535.
- [4] T. TRIF, Note on certain inequalities for means in two variables, *J. Inequal. Pure and Appl. Math.*, **6**(2) (2005), Art. 43. [ONLINE: http://jipam.vu.edu.au/article.php?sid=512].