NEW BOUNDS FOR THE IDENTRIC MEAN OF TWO ARGUMENTS

OMRAN KOUBA
Department of Mathematics
Higher Institute for Applied Sciences and Technology
P.O. Box 31983, Damascus, Syria.
omran_kouba@hiast.edu.sy

Received 16 April, 2008; accepted 27 June, 2008
Communicated by J. Sandor

Abstract

Given two positive real numbers x and y, let $A(x, y), G(x, y)$, and $I(x, y)$ denote their arithmetic mean, geometric mean, and identric mean, respectively. Also, let $K_{p}(x, y)=$ $\sqrt[p]{\frac{2}{3} A^{p}(x, y)+\frac{1}{3} G^{p}(x, y)}$ for $p>0$. In this note we prove that $K_{p}(x, y)<I(x, y)$ for all positive real numbers $x \neq y$ if and only if $p \leq 6 / 5$, and that $I(x, y)<K_{p}(x, y)$ for all positive real numbers $x \neq y$ if and only if $p \geq(\ln 3-\ln 2) /(1-\ln 2)$. These results, complement and extend similar inequalities due to J. Sándor [2], J. Sándor and T. Trif [3], and H. Alzer and S.-L. Qiu [1].

Key words and phrases: Arithmetic mean, Geometric mean, Identric mean.

2000 Mathematics Subject Classification. 26D07, 26D20, 26E60.

1. Introduction

In this note we consider several means of two positive real numbers x and y. Recall that the arithmetic mean, the geometric mean and the identric mean are defined by $A(x, y)=\frac{x+y}{2}$, $G(x, y)=\sqrt{x y}$ and

$$
I(x, y)=\left\{\begin{array}{lll}
\frac{1}{e}\left(\frac{x^{x}}{y^{y}}\right)^{\frac{1}{x-y}} & \text { if } & x \neq y \\
x & \text { if } & x=y
\end{array}\right.
$$

We also introduce the family $\left(K_{p}(x, y)\right)_{p>0}$ of means of x and y, defined by

$$
K_{p}(x, y)=\sqrt[p]{\frac{2 A^{p}(x, y)+G^{p}(x, y)}{3}}
$$

Using the fact that, for $\alpha>1$, the function $t \mapsto t^{\alpha}$ is strictly convex on \mathbb{R}_{+}^{*}, and that for $x \neq y$ we have $A(x, y)>G(x, y)$ we conclude that, for $x \neq y$, the function $p \mapsto K_{p}(x, y)$ is increasing on \mathbb{R}_{+}^{*}.

In [3] it is proved that $I(x, y)<K_{2}(x, y)$ for all positive real numbers $x \neq y$. Clearly this implies that $I(x, y)<K_{p}(x, y)$ for $p \geq 2$ and $x \neq y$ which is the upper (and easy) inequality of Theorem 1.2 of [4].

On the other hand, J. Sándor proved in [2] that $K_{1}(x, y)<I(x, y)$ for all positive real numbers $x \neq y$, and this implies that $K_{p}(x, y)<I(x, y)$ for $p \leq 1$ and $x \neq y$.

The aim of this note is to generalize the above-mentioned inequalities by determining exactly the sets

$$
\begin{aligned}
\mathcal{L} & =\left\{p>0: \forall(x, y) \in D, K_{p}(x, y)<I(x, y)\right\} \\
\mathcal{U} & =\left\{p>0: \forall(x, y) \in D, I(x, y)<K_{p}(x, y)\right\}
\end{aligned}
$$

with $D=\left\{(x, y) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}: x \neq y\right\}$. Clearly, \mathcal{L} and \mathcal{U} are intervals since $p \mapsto K_{p}(x, y)$ is increasing. And the stated results show that

$$
(0,1] \subset \mathcal{L} \subset(0,2) \quad \text { and } \quad[2,+\infty) \subset \mathcal{U} \subset(1,+\infty)
$$

The following theorem is the main result of this note.
Theorem 1.1. Let \mathcal{U} and \mathcal{L} be as above, then $\mathcal{L}=\left(0, p_{0}\right]$ and $\mathcal{U}=\left[p_{1},+\infty\right)$ with

$$
p_{0}=\frac{6}{5}=1.2 \quad \text { and } \quad p_{1}=\frac{\ln 3-\ln 2}{1-\ln 2} \lesssim 1.3214 .
$$

2. Preliminaries

The following lemmas and corollary pave the way to the proof of Theorem 1.1 .
Lemma 2.1. For $1<p<2$, let h be the function defined on the interval $I=[1,+\infty)$ by

$$
h(x)=\frac{(1-p+2 x) x^{1-2 / p}}{1+(2-p) x}
$$

(i) If $p \leq \frac{6}{5}$ then $h(x)<1$ for all $x>1$.
(ii) If $p>\frac{6}{5}$ then there exists x_{0} in $(1,+\infty)$ such that $h(x)>1$ for $1<x<x_{0}$, and $h(x)<1$ for $x>x_{0}$.
Proof. Clearly $h(x)>0$ for $x \geq 1$, so we will consider $H=\ln (h)$.

$$
H(x)=\ln (1-p+2 x)+\frac{p-2}{p} \ln x-\ln (1+(2-p) x)
$$

Now, doing some algebra, we can reduce the derivative of H to the following form,

$$
\begin{aligned}
H^{\prime}(x) & =\frac{2}{1-p+2 x}-\frac{2-p}{p x}-\frac{2-p}{1+(2-p) x} \\
& =-\frac{2(2-p)^{2} Q(x)}{p x(1-p+2 x)(1+(2-p) x)}
\end{aligned}
$$

with Q the second degree polynomial given by

$$
Q(X)=X^{2}-\frac{(p-1)(4-p)}{(2-p)^{2}} X-\frac{p-1}{4-2 p}
$$

The key remark here is that, since the product of the zeros of Q is negative, Q must have two real zeros; one of them (say z_{-}) is negative, and the other (say z_{+}) is positive. In order to compare z_{+}to 1 , we evaluate $Q(1)$ to find that,

$$
Q(1)=1-\frac{(p-1)(4-p)}{(2-p)^{2}}-\frac{p-1}{4-2 p}=\frac{(6-5 p)(3-p)}{2(2-p)^{2}},
$$

so we have two cases to consider:

- If $p \leq \frac{6}{5}$, then $Q(1) \geq 0$, so we must have $z_{+} \leq 1$, and consequently $Q(x)>0$ for $x>1$. Hence $H^{\prime}(x)<0$ for $x>1$, and H is decreasing on the interval I, but $H(1)=0$, so that $H(x)<0$ for $x>1$, which is equivalent to (i).
- If $p>\frac{6}{5}$, then $Q(1)<0$ so we must have $1<z_{+}$, and consequently, $Q(x)<0$ for $1 \leq x<z_{+}$and $Q(x)>0$ for $x>z_{+}$. therefore H has the following table of variations:

x	1		z_{+}		$+\infty$
$H^{\prime}(x)$		+	0	-	
$H(x)$	0	\nearrow	\frown	\searrow	$-\infty$

Hence, the equation $H(x)=0$ has a unique solution x_{0} which is greater than z_{+}, and $H(x)>0$ for $1<x<x_{0}$, whereas $H(x)<0$ for $x>x_{0}$. This proves (ii).
The proof of Lemma 2.1 is now complete.
Lemma 2.2. For $1<p<2$, let f_{p} be the function defined on \mathbb{R}_{+}^{*} by

$$
f_{p}(t)=\frac{t}{\tanh t}-1-\frac{1}{p} \ln \left(\frac{2 \cosh ^{p} t+1}{3}\right),
$$

(i) If $p \leq \frac{6}{5}$ then f_{p} is increasing on \mathbb{R}_{+}^{*}.
(ii) If $p>\frac{6}{5}$ then there exists t_{p} in \mathbb{R}_{+}^{*} such that f_{p} is decreasing on $\left(0, t_{p}\right.$], and increasing on $\left[t_{p},+\infty\right)$.
Proof. First we note that

$$
f_{p}^{\prime}(t)=\frac{1}{\sinh ^{2} t}\left(\sinh t \cosh t-t-\frac{2 \sinh ^{3} t}{\left(2+\cosh ^{-p} t\right) \cosh t}\right)
$$

so if we define the function g on \mathbb{R}_{+}^{*} by

$$
g(t)=\sinh t \cosh t-t-\frac{2 \sinh ^{3} t}{\left(2+\cosh ^{-p} t\right) \cosh t},
$$

we find that

$$
\begin{aligned}
g^{\prime}(t) & =2 \sinh ^{2} t-\frac{6 \sinh ^{2} t}{2+\cosh ^{-p} t}+\frac{2 \sinh ^{4} t\left(2+(1-p) \cosh ^{-p} t\right)}{\left(2+\cosh ^{-p} t\right)^{2} \cosh ^{2} t} \\
& =\frac{2 \tanh ^{2} t\left(\left(1+(2-p) \cosh ^{p} t\right) \cosh ^{2} t-\left(1-p+2 \cosh ^{p} t\right) \cosh ^{p} t\right)}{\left(1+2 \cosh ^{p} t\right)^{2}} \\
& =\frac{2 \sinh ^{2} t\left(1+(2-p) \cosh ^{p} t\right)}{\left(1+2 \cosh ^{p} t\right)^{2}}\left(1-\frac{\left(1-p+2 \cosh ^{p} t\right) \cosh ^{p} t}{\left(1+(2-p) \cosh ^{p} t\right) \cosh ^{2} t}\right) \\
& =\frac{2 \sinh ^{2} t\left(1+(2-p) \cosh ^{p} t\right)}{\left(1+2 \cosh ^{p} t\right)^{2}}\left(1-h\left(\cosh ^{p} t\right)\right)
\end{aligned}
$$

where h is the function defined in Lemma 2.1. This allows us to conclude, as follows:

- If $p \leq \frac{6}{5}$, then using Lemma 2.1, we conclude that $h\left(\cosh ^{p} t\right)<1$ for $t>0$, so g^{\prime} is positive on \mathbb{R}_{+}^{*}. Now, by the fact that $g(0)=0$ and that g is increasing on \mathbb{R}_{+}^{*} we conclude that $g(t)$ is positive for $t>0$, therefore f_{p} is increasing on \mathbb{R}_{+}^{*}. This proves (i).
- If $p>\frac{6}{5}$, then using Lemma 2.1, and the fact that $t \mapsto \cosh ^{p} t$ defines an increasing bijection from \mathbb{R}_{+}^{*} onto $(1,+\infty)$, we conclude that g has the following table of variations:

t	0		t_{0}		$+\infty$
$g^{\prime}(t)$		-	0	+	
$g(t)$	0	\searrow	\smile	\nearrow	$+\infty$

with $t_{0}=\arg \cosh \sqrt[p]{x_{0}}$. Hence, the equation $g(t)=0$ has a unique positive solution t_{p}, and $g(t)<0$ for $0<t<t_{p}$, whereas $g(t)>0$ for $t>t_{p}$, and (ii) follows.
This achieves the proof of Lemma 2.2
Now, using the fact that

$$
\lim _{t \rightarrow 0} f_{p}(t)=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} f_{p}(t)=\ln \left(\frac{2}{e} \sqrt[p]{\frac{3}{2}}\right)
$$

the following corollary follows.
Corollary 2.3. For $1<p<2$, let f_{p} be the function defined in Lemma 2.2 .
(i) If $p \leq \frac{6}{5}$, then f_{p} has the following table of variations:

t	0	$+\infty$	
$f_{p}(t)$	0	\nearrow	$\ln \left(\frac{2}{e} \sqrt[p]{\frac{3}{2}}\right)$

(ii) If $p>\frac{6}{5}$ then f_{p} has the following table of variations:

t	0			$+\infty$	
$f_{p}(t)$	0	\searrow	\smile	\nearrow	$\ln \left(\frac{2}{e} \sqrt[p]{\frac{3}{2}}\right)$

In particular, for $1<p<2$, we have proved the following statements.

$$
\begin{align*}
& \left(\forall t>0, f_{p}(t)>0\right) \Longleftrightarrow p \leq p_{0} \tag{2.1}\\
& \left(\forall t>0, f_{p}(t)<0\right) \Longleftrightarrow \ln \left(\frac{2}{e} \sqrt[p]{\frac{3}{2}}\right) \leq 0 \Longleftrightarrow p \geq p_{1} \tag{2.2}
\end{align*}
$$

where p_{0} and p_{1} are defined in the statement of Theorem 1.1.

3. Proof of Theorem 1.1

Proof. In what follows, we use the notation of the preceding corollary.

- First, consider some p in \mathcal{L}, then for all (x, y) in D we have $K_{p}(x, y)<I(x, y)$. This implies that

$$
\forall t>0 . \quad \ln \left(K_{p}\left(e^{t}, e^{-t}\right)\right)<\ln \left(I\left(e^{t}, e^{-t}\right)\right),
$$

but $I\left(e^{t}, e^{-t}\right)=\exp \left(\frac{t}{\tanh t}-1\right)$ and $A\left(e^{t}, e^{-t}\right)=\cosh t$, so we have

$$
\forall t>0, \quad \frac{t}{\tanh t}-1-\frac{1}{p} \ln \left(\frac{2 \cosh ^{p} t+1}{3}\right)>0,
$$

Now, if $p>1$, this proves that $f_{p}(t)>0$ for every positive t, so we deduce from (2.1) that $p \leq p_{0}$. Hence $\mathcal{L} \subset\left(0, p_{0}\right]$.

- Conversely, consider a pair (x, y) from D, and define t as $\ln \left(\frac{\max (x, y)}{\sqrt{x y}}\right)$. Now, using (2.1) we conclude that $f_{p_{0}}(t)>0$, and this is equivalent to $K_{p_{0}}(x, y)<I(x, y)$. Therefore, $p_{0} \in \mathcal{L}$ and consequently $\left(0, p_{0}\right] \subset \mathcal{L}$. This achieves the proof of the first equality, that is $\mathcal{L}=\left(0, p_{0}\right]$.
- Second, consider some p in \mathcal{U}, then for all (x, y) in D we have $I(x, y)<K_{p}(x, y)$. This implies that

$$
\forall t>0, \quad \ln \left(K_{p}\left(e^{t}, e^{-t}\right)\right)>\ln \left(I\left(e^{t}, e^{-t}\right)\right),
$$

so we have

$$
\forall t>0, \quad \frac{t}{\tanh t}-1-\frac{1}{p} \ln \left(\frac{2 \cosh ^{p} t+1}{3}\right)<0,
$$

Now, if $p<2$, this proves that $f_{p}(t)<0$ for every positive t, so we deduce from (2.2) that $p \geq p_{1}$. Hence $\mathcal{U} \subset\left[p_{1}, \infty\right)$.

- Conversely, consider a pair (x, y) from D, and as before define $t=\ln \left(\frac{\max (x, y)}{\sqrt{x y}}\right)$. Now, using (2.2) we obtain $f_{p_{1}}(t)<0$, and this is equivalent to $I(x, y)<K_{p_{1}}(x, y)$. Therefore, $p_{1} \in \mathcal{U}$ and consequently $\left[p_{1}, \infty\right) \subset \mathcal{U}$. This achieves the proof of the second equality, that is $\mathcal{U}=\left[p_{1}, \infty\right)$.
This concludes the proof of the main Theorem 1.1.

4. Remarks

Remark 1. The same approach, as in the proof of Theorem 1.1 can be used to prove that for $\lambda \leq 2 / 3$ and $p \leq \frac{3-\lambda-\sqrt{(1-\lambda)(3 \lambda+1)}}{(1-\lambda)^{2}+1}$ we have

$$
\sqrt[p]{\lambda A^{p}(x, y)+(1-\lambda) G^{p}(x, y)}<I(x, y)
$$

for all positive real numbers $x \neq y$. Similarly, we can also prove that for $\lambda \geq 2 / 3$ and $p \geq$ $\frac{\ln \lambda}{\ln 2-1}$ we have

$$
I(x, y)<\sqrt[p]{\lambda A^{p}(x, y)+(1-\lambda) G^{p}(x, y)}
$$

for all positive real numbers $x \neq y$. We leave the details to the interested reader.
Remark 2. The inequality $I(x, y)<\sqrt{\frac{2}{3} A^{2}(x, y)+\frac{1}{3} G^{2}(x, y)}$ was proved in [3] using power series. Another proof can be found in [4] using the Gauss quadrature formula. It can also be seen as a consequence of our main theorem. Here, we will show that this inequality can be proved elementarily as a consequence of Jensen's inequality.

Let us recall that $\ln (I(x, y))$ can be expressed as follows

$$
\ln (I(x, y))=\int_{0}^{1} \ln (t x+(1-t) y) d t=\int_{0}^{1} \ln ((1-t) x+t y) d t
$$

Therefore,

$$
2 \ln (I(x, y))=\int_{0}^{1} \ln ((t x+(1-t) y)((1-t) x+t y)) d t,
$$

but

$$
(t x+(1-t) y)((1-t) x+t y)=\left(1-(2 t-1)^{2}\right) A^{2}(x, y)+(2 t-1)^{2} G^{2}(x, y)
$$

so that, by $u \leftarrow 2 t-1$, we obtain,

$$
\begin{aligned}
2 \ln (I(x, y)) & =\frac{1}{2} \int_{-1}^{1} \ln \left(\left(1-u^{2}\right) A^{2}(x, y)+u^{2} G^{2}(x, y)\right) d u \\
& =\int_{0}^{1} \ln \left(\left(1-u^{2}\right) A^{2}(x, y)+u^{2} G^{2}(x, y)\right) d u
\end{aligned}
$$

Hence,

$$
I^{2}(x, y)=\exp \left(\int_{0}^{1} \ln \left(\left(1-u^{2}\right) A^{2}(x, y)+u^{2} G^{2}(x, y)\right) d u\right)
$$

Now, the function $t \mapsto e^{t}$ is strictly convex, and the integrand is a continuous non-constant function when $x \neq y$, so using Jensen's inequality we obtain

$$
I^{2}(x, y)<\int_{0}^{1} \exp \left(\ln \left(\left(1-u^{2}\right) A^{2}(x, y)+u^{2} G^{2}(x, y)\right)\right) d u=\frac{2}{3} A^{2}(x, y)+\frac{1}{3} G^{2}(x, y) .
$$

References

[1] H. ALZER And S.-L. QIU, Inequalities for means in two variables, Arch. Math. (Basel), 80 (2003), 201-215.
[2] J. SÁNDOR, A note on some inequalities for means, Arch. Math. (Basel), 56 (1991), 471-473.
[3] J. SÁNDOR, AND T. TRIF, Some new inequalities for means of two arguments, Int. J. Math. Math. Sci., 25 (2001), 525-535.
[4] T. TRIF, Note on certain inequalities for means in two variables, J. Inequal. Pure and Appl. Math., 6(2) (2005), Art. 43. [ONLINE: http://jipam.vu.edu.au/article.php?sid=512].

