# NEW BOUNDS FOR THE IDENTRIC MEAN OF TWO ARGUMENTS

#### **OMRAN KOUBA**

Department of Mathematics Higher Institute for Applied Sciences and Technology P.O. Box 31983, Damascus, Syria. EMail: omran\_kouba@hiast.edu.sy

| Received:             | 16 April, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Accepted:             | 27 June, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| Communicated by:      | J. Sandor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| 2000 AMS Sub. Class.: | 26D07, 26D20, 26E60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| Key words:            | Arithmetic mean, Geometric mean, Identric mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |
| Abstract:             | Given two positive real numbers x and y, let $A(x, y)$ , $G(x, y)$ , and $I(x, y)$ denote their arithmetic mean, geometric mean, and identric mean, respectively.<br>Also, let $K_p(x, y) = \sqrt[p]{\frac{2}{3}}A^p(x, y) + \frac{1}{3}G^p(x, y)$ for $p > 0$ . In this note we prove that $K_p(x, y) < I(x, y)$ for all positive real numbers $x \neq y$ if and only if $p \leq 6/5$ , and that $I(x, y) < K_p(x, y)$ for all positive real numbers $x \neq y$ if and only if $p \geq (\ln 3 - \ln 2)/(1 - \ln 2)$ . These results, complement and extend similar inequalities due to J. Sándor [2], J. Sándor and T. Trif [3], and H. Alzer and SL. Qiu [1]. | journo<br>in pur<br>mathe |



New Bounds for The Identric Mean

Omran Kouba

vol. 9, iss. 3, art. 71, 2008

| Title        | Title Page |  |  |  |  |
|--------------|------------|--|--|--|--|
| Contents     |            |  |  |  |  |
| ••           | ••         |  |  |  |  |
| •            | ►          |  |  |  |  |
| Page 1 of 14 |            |  |  |  |  |
| Go Back      |            |  |  |  |  |
| Full Screen  |            |  |  |  |  |
| Close        |            |  |  |  |  |

#### journal of inequalities in pure and applied mathematics

# Contents

| 1 | Introduction         | 3  |
|---|----------------------|----|
| 2 | Preliminaries        | 5  |
| 3 | Proof of Theorem 1.1 | 10 |
| 4 | Remarks              | 12 |



#### journal of inequalities in pure and applied mathematics

#### 1. Introduction

In this note we consider several means of two positive real numbers x and y. Recall that the arithmetic mean, the geometric mean and the identric mean are defined by  $A(x,y) = \frac{x+y}{2}$ ,  $G(x,y) = \sqrt{xy}$  and

$$I(x,y) = \begin{cases} \frac{1}{e} \left(\frac{x^x}{y^y}\right)^{\frac{1}{x-y}} & \text{if } x \neq y \\ x & \text{if } x = y \end{cases}$$

We also introduce the family  $(K_p(x, y))_{p>0}$  of means of x and y, defined by

$$K_{p}(x,y) = \sqrt[p]{\frac{2A^{p}(x,y) + G^{p}(x,y)}{3}}$$

Using the fact that, for  $\alpha > 1$ , the function  $t \mapsto t^{\alpha}$  is strictly convex on  $\mathbb{R}^*_+$ , and that for  $x \neq y$  we have A(x, y) > G(x, y) we conclude that, for  $x \neq y$ , the function  $p \mapsto K_p(x, y)$  is increasing on  $\mathbb{R}^*_+$ .

In [3] it is proved that  $I(x, y) < K_2(x, y)$  for all positive real numbers  $x \neq y$ . Clearly this implies that  $I(x, y) < K_p(x, y)$  for  $p \ge 2$  and  $x \ne y$  which is the upper (and easy) inequality of Theorem 1.2 of [4].

On the other hand, J. Sándor proved in [2] that  $K_1(x, y) < I(x, y)$  for all positive real numbers  $x \neq y$ , and this implies that  $K_p(x, y) < I(x, y)$  for  $p \leq 1$  and  $x \neq y$ .

The aim of this note is to generalize the above-mentioned inequalities by determining exactly the sets

 $\mathcal{L} = \{ p > 0 : \forall (x, y) \in D, \ K_p(x, y) < I(x, y) \}$  $\mathcal{U} = \{ p > 0 : \forall (x, y) \in D, \ I(x, y) < K_p(x, y) \}$ 



New Bounds for The **Identric Mean** Omran Kouba vol. 9, iss. 3, art. 71, 2008 **Title Page** Contents 44 Page 3 of 14 Go Back Full Screen Close

#### journal of inequalities in pure and applied mathematics

with  $D = \{(x, y) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+ : x \neq y\}$ . Clearly,  $\mathcal{L}$  and  $\mathcal{U}$  are intervals since  $p \mapsto K_p(x, y)$  is increasing. And the stated results show that

 $(0,1] \subset \mathcal{L} \subset (0,2)$  and  $[2,+\infty) \subset \mathcal{U} \subset (1,+\infty)$ .

The following theorem is the main result of this note.

**Theorem 1.1.** Let  $\mathcal{U}$  and  $\mathcal{L}$  be as above, then  $\mathcal{L} = (0, p_0]$  and  $\mathcal{U} = [p_1, +\infty)$  with

$$p_0 = \frac{6}{5} = 1.2$$
 and  $p_1 = \frac{\ln 3 - \ln 2}{1 - \ln 2} \lesssim 1.3214.$ 



| Omran Kouba<br>vol. 9, iss. 3, art. 71, 2008 |      |  |  |  |
|----------------------------------------------|------|--|--|--|
|                                              |      |  |  |  |
| Title                                        | Page |  |  |  |
| Contents                                     |      |  |  |  |
| 44 <b>&gt;&gt;</b>                           |      |  |  |  |
| •                                            | ►    |  |  |  |
| Page 4 of 14                                 |      |  |  |  |
| Go Back                                      |      |  |  |  |
| Full Screen                                  |      |  |  |  |
| Close                                        |      |  |  |  |

#### journal of inequalities in pure and applied mathematics

#### 2. Preliminaries

The following lemmas and corollary pave the way to the proof of Theorem 1.1.

**Lemma 2.1.** For  $1 , let h be the function defined on the interval <math>I = [1, +\infty)$  by

$$h(x) = \frac{(1-p+2x)x^{1-2/p}}{1+(2-p)x},$$

(*i*) If  $p \le \frac{6}{5}$  then h(x) < 1 for all x > 1.

(ii) If  $p > \frac{6}{5}$  then there exists  $x_0$  in  $(1, +\infty)$  such that h(x) > 1 for  $1 < x < x_0$ , and h(x) < 1 for  $x > x_0$ .

*Proof.* Clearly h(x) > 0 for  $x \ge 1$ , so we will consider  $H = \ln(h)$ .

$$H(x) = \ln(1 - p + 2x) + \frac{p - 2}{p} \ln x - \ln(1 + (2 - p)x)$$

Now, doing some algebra, we can reduce the derivative of H to the following form,

$$H'(x) = \frac{2}{1 - p + 2x} - \frac{2 - p}{px} - \frac{2 - p}{1 + (2 - p)x}$$
$$= -\frac{2(2 - p)^2 Q(x)}{px(1 - p + 2x)(1 + (2 - p)x)},$$

with Q the second degree polynomial given by

$$Q(X) = X^{2} - \frac{(p-1)(4-p)}{(2-p)^{2}}X - \frac{p-1}{4-2p}.$$





#### journal of inequalities in pure and applied mathematics

The key remark here is that, since the product of the zeros of Q is negative, Q must have two real zeros; one of them (say  $z_{-}$ ) is negative, and the other (say  $z_{+}$ ) is positive. In order to compare  $z_{+}$  to 1, we evaluate Q(1) to find that,

$$Q(1) = 1 - \frac{(p-1)(4-p)}{(2-p)^2} - \frac{p-1}{4-2p} = \frac{(6-5p)(3-p)}{2(2-p)^2},$$

so we have two cases to consider:

- If p ≤ <sup>6</sup>/<sub>5</sub>, then Q(1) ≥ 0, so we must have z<sub>+</sub> ≤ 1, and consequently Q(x) > 0 for x > 1. Hence H'(x) < 0 for x > 1, and H is decreasing on the interval I, but H(1) = 0, so that H(x) < 0 for x > 1, which is equivalent to (i).
- If  $p > \frac{6}{5}$ , then Q(1) < 0 so we must have  $1 < z_+$ , and consequently, Q(x) < 0 for  $1 \le x < z_+$  and Q(x) > 0 for  $x > z_+$ . therefore *H* has the following table of variations:

| x     | 1   | $z_+$ |            | $+\infty$ |
|-------|-----|-------|------------|-----------|
| H'(x) | +   | 0     | _          |           |
| H(x)  | 0 / |       | $\searrow$ | $-\infty$ |

Hence, the equation H(x) = 0 has a unique solution  $x_0$  which is greater than  $z_+$ , and H(x) > 0 for  $1 < x < x_0$ , whereas H(x) < 0 for  $x > x_0$ . This proves (ii).

The proof of Lemma 2.1 is now complete.

**Lemma 2.2.** For  $1 , let <math>f_p$  be the function defined on  $\mathbb{R}^*_+$  by

$$f_p(t) = \frac{t}{\tanh t} - 1 - \frac{1}{p} \ln\left(\frac{2\cosh^p t + 1}{3}\right),$$



# in pure and applied mathematics

- (i) If  $p \leq \frac{6}{5}$  then  $f_p$  is increasing on  $\mathbb{R}^*_+$ .
- (ii) If  $p > \frac{6}{5}$  then there exists  $t_p$  in  $\mathbb{R}^*_+$  such that  $f_p$  is decreasing on  $(0, t_p]$ , and increasing on  $[t_p, +\infty)$ .

*Proof.* First we note that

$$f'_p(t) = \frac{1}{\sinh^2 t} \left( \sinh t \cosh t - t - \frac{2 \sinh^3 t}{(2 + \cosh^{-p} t) \cosh t} \right),$$

so if we define the function g on  $\mathbb{R}^*_+$  by

$$g(t) = \sinh t \cosh t - t - \frac{2\sinh^3 t}{(2 + \cosh^{-p} t)\cosh t},$$

we find that

$$\begin{split} g'(t) &= 2\sinh^2 t - \frac{6\sinh^2 t}{2 + \cosh^{-p} t} + \frac{2\sinh^4 t(2 + (1-p)\cosh^{-p} t)}{(2 + \cosh^{-p} t)^2 \cosh^2 t} \\ &= \frac{2\tanh^2 t \left((1 + (2-p)\cosh^p t)\cosh^p t)\cosh^2 t - (1-p+2\cosh^p t)\cosh^p t\right)}{(1 + 2\cosh^p t)^2} \\ &= \frac{2\sinh^2 t \left(1 + (2-p)\cosh^p t\right)}{(1 + 2\cosh^p t)^2} \left(1 - \frac{(1-p+2\cosh^p t)\cosh^p t}{(1 + (2-p)\cosh^p t)\cosh^2 t}\right) \\ &= \frac{2\sinh^2 t \left(1 + (2-p)\cosh^p t\right)}{(1 + 2\cosh^p t)^2} \left(1 - h(\cosh^p t)\right) \end{split}$$

where h is the function defined in Lemma 2.1. This allows us to conclude, as follows:

• If  $p \leq \frac{6}{5}$ , then using Lemma 2.1, we conclude that  $h(\cosh^p t) < 1$  for t > 0, so g' is positive on  $\mathbb{R}^*_+$ . Now, by the fact that g(0) = 0 and that g is increasing



**Identric Mean Omran Kouba** vol. 9, iss. 3, art. 71, 2008 **Title Page** Contents 44 ► Page 7 of 14 Go Back **Full Screen** Close journal of inequalities in pure and applied mathematics

on  $\mathbb{R}^*_+$  we conclude that g(t) is positive for t > 0, therefore  $f_p$  is increasing on  $\mathbb{R}^*_+$ . This proves (i).

If p > <sup>6</sup>/<sub>5</sub>, then using Lemma 2.1, and the fact that t → cosh<sup>p</sup> t defines an increasing bijection from ℝ<sup>\*</sup><sub>+</sub> onto (1, +∞), we conclude that g has the following table of variations:

| t     | 0 |            | $t_0$    |   | $+\infty$ |
|-------|---|------------|----------|---|-----------|
| g'(t) |   | _          | 0        | + |           |
| g(t)  | 0 | $\searrow$ | $\smile$ | ~ | $+\infty$ |

with  $t_0 = \arg \cosh \sqrt[p]{x_0}$ . Hence, the equation g(t) = 0 has a unique positive solution  $t_p$ , and g(t) < 0 for  $0 < t < t_p$ , whereas g(t) > 0 for  $t > t_p$ , and (ii) follows.

This achieves the proof of Lemma 2.2.

Now, using the fact that

$$\lim_{t \to 0} f_p(t) = 0 \quad \text{and} \quad \lim_{t \to \infty} f_p(t) = \ln\left(\frac{2}{e}\sqrt[p]{\frac{3}{2}}\right),$$

the following corollary follows.

**Corollary 2.3.** For  $1 , let <math>f_p$  be the function defined in Lemma 2.2.

(i) If  $p \leq \frac{6}{5}$ , then  $f_p$  has the following table of variations:

| t        | 0 |   | $+\infty$                                          |
|----------|---|---|----------------------------------------------------|
| $f_p(t)$ | 0 | 7 | $\ln\left(\frac{2}{e}\sqrt[p]{\frac{3}{2}}\right)$ |



#### journal of inequalities in pure and applied mathematics

(ii) If  $p > \frac{6}{5}$  then  $f_p$  has the following table of variations:



In particular, for 1 , we have proved the following statements.

(2.1) 
$$(\forall t > 0, f_p(t) > 0) \iff p \le p_0,$$

(2.2) 
$$(\forall t > 0, f_p(t) < 0) \iff \ln\left(\frac{2}{e}\sqrt[p]{3}{2}\right) \le 0 \iff p \ge p_1$$

where  $p_0$  and  $p_1$  are defined in the statement of Theorem 1.1.



### **3. Proof of Theorem 1.1**

*Proof.* In what follows, we use the notation of the preceding corollary.

• First, consider some p in  $\mathcal{L}$ , then for all (x, y) in D we have  $K_p(x, y) < I(x, y)$ . This implies that

$$\forall t > 0.$$
  $\ln(K_p(e^t, e^{-t})) < \ln(I(e^t, e^{-t}))$ 

but  $I(e^t, e^{-t}) = \exp\left(\frac{t}{\tanh t} - 1\right)$  and  $A(e^t, e^{-t}) = \cosh t$ , so we have

$$\forall t > 0, \quad \frac{t}{\tanh t} - 1 - \frac{1}{p} \ln\left(\frac{2\cosh^p t + 1}{3}\right) > 0$$

Now, if p > 1, this proves that  $f_p(t) > 0$  for every positive t, so we deduce from (2.1) that  $p \le p_0$ . Hence  $\mathcal{L} \subset (0, p_0]$ .

- Conversely, consider a pair (x, y) from D, and define t as ln (max(x,y)/√xy). Now, using (2.1) we conclude that f<sub>p0</sub>(t) > 0, and this is equivalent to K<sub>p0</sub>(x, y) < I(x, y). Therefore, p<sub>0</sub> ∈ L and consequently (0, p<sub>0</sub>] ⊂ L. This achieves the proof of the first equality, that is L = (0, p<sub>0</sub>].
- Second, consider some p in U, then for all (x, y) in D we have  $I(x, y) < K_p(x, y)$ . This implies that

$$\forall t > 0, \quad \ln(K_p(e^t, e^{-t})) > \ln(I(e^t, e^{-t})),$$

so we have

$$\forall t > 0, \quad \frac{t}{\tanh t} - 1 - \frac{1}{p} \ln\left(\frac{2\cosh^p t + 1}{3}\right) < 0,$$



New Bounds for The **Identric Mean Omran Kouba** vol. 9, iss. 3, art. 71, 2008 **Title Page** Contents 44 ◀ ► Page 10 of 14 Go Back Full Screen Close journal of inequalities in pure and applied

mathematics

Now, if p < 2, this proves that  $f_p(t) < 0$  for every positive t, so we deduce from (2.2) that  $p \ge p_1$ . Hence  $\mathcal{U} \subset [p_1, \infty)$ .

Conversely, consider a pair (x, y) from D, and as before define t = ln (max(x,y))/(\sqrt{xy}).
Now, using (2.2) we obtain f<sub>p1</sub>(t) < 0, and this is equivalent to I(x, y) < K<sub>p1</sub>(x, y). Therefore, p<sub>1</sub> ∈ U and consequently [p<sub>1</sub>, ∞) ⊂ U. This achieves the proof of the second equality, that is U = [p<sub>1</sub>, ∞).

This concludes the proof of the main Theorem 1.1.



 $\square$ 

mathematics

#### 4. Remarks

*Remark* 1. The same approach, as in the proof of Theorem 1.1 can be used to prove that for  $\lambda \leq 2/3$  and  $p \leq \frac{3-\lambda-\sqrt{(1-\lambda)(3\lambda+1)}}{(1-\lambda)^2+1}$  we have

 $\sqrt[p]{\lambda A^p(x,y) + (1-\lambda)G^p(x,y)} < I(x,y)$ 

for all positive real numbers  $x \neq y$ . Similarly, we can also prove that for  $\lambda \geq 2/3$  and  $p \geq \frac{\ln \lambda}{\ln 2 - 1}$  we have

$$I(x,y) < \sqrt[p]{\lambda A^p(x,y) + (1-\lambda)G^p(x,y)}$$

for all positive real numbers  $x \neq y$ . We leave the details to the interested reader.

*Remark* 2. The inequality  $I(x,y) < \sqrt{\frac{2}{3}A^2(x,y) + \frac{1}{3}G^2(x,y)}$  was proved in [3] using power series. Another proof can be found in [4] using the Gauss quadrature formula. It can also be seen as a consequence of our main theorem. Here, we will show that this inequality can be proved elementarily as a consequence of Jensen's inequality.

Let us recall that  $\ln(I(x, y))$  can be expressed as follows

$$\ln(I(x,y)) = \int_0^1 \ln(tx + (1-t)y) \, dt = \int_0^1 \ln((1-t)x + ty) \, dt.$$

Therefore,

$$2\ln(I(x,y)) = \int_0^1 \ln\left((tx + (1-t)y)((1-t)x + ty)\right) dt,$$

but

$$(tx + (1-t)y)((1-t)x + ty) = (1 - (2t-1)^2)A^2(x,y) + (2t-1)^2G^2(x,y),$$



Close

#### journal of inequalities in pure and applied mathematics

so that, by  $u \leftarrow 2t - 1$ , we obtain,

$$2\ln(I(x,y)) = \frac{1}{2} \int_{-1}^{1} \ln((1-u^2)A^2(x,y) + u^2G^2(x,y)) \, du$$
$$= \int_{0}^{1} \ln((1-u^2)A^2(x,y) + u^2G^2(x,y)) \, du.$$

Hence,

$$I^{2}(x,y) = \exp\left(\int_{0}^{1} \ln((1-u^{2})A^{2}(x,y) + u^{2}G^{2}(x,y)) \, du\right)$$

Now, the function  $t \mapsto e^t$  is strictly convex, and the integrand is a continuous nonconstant function when  $x \neq y$ , so using Jensen's inequality we obtain

$$I^{2}(x,y) < \int_{0}^{1} \exp\left(\ln((1-u^{2})A^{2}(x,y) + u^{2}G^{2}(x,y))\right) du = \frac{2}{3}A^{2}(x,y) + \frac{1}{3}G^{2}(x,y).$$

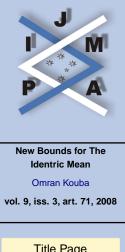


New Bounds for The **Identric Mean Omran Kouba** vol. 9, iss. 3, art. 71, 2008 **Title Page** Contents 44 ◀ Page 13 of 14 Go Back Full Screen Close

#### journal of inequalities in pure and applied mathematics

# References

- [1] H. ALZER AND S.-L. QIU, Inequalities for means in two variables, *Arch. Math.* (*Basel*), **80** (2003), 201–215.
- [2] J. SÁNDOR, A note on some inequalities for means, Arch. Math. (Basel), 56 (1991), 471–473.
- [3] J. SÁNDOR, AND T. TRIF, Some new inequalities for means of two arguments, *Int. J. Math. Math. Sci.*, **25** (2001), 525–535.
- [4] T. TRIF, Note on certain inequalities for means in two variables, *J. Inequal. Pure* and Appl. Math., 6(2) (2005), Art. 43. [ONLINE: http://jipam.vu.edu. au/article.php?sid=512].



| Title Page    |    |  |  |  |
|---------------|----|--|--|--|
| Contents      |    |  |  |  |
| 44            | •• |  |  |  |
| •             |    |  |  |  |
| Page 14 of 14 |    |  |  |  |
| Go Back       |    |  |  |  |
| Full Screen   |    |  |  |  |
| Close         |    |  |  |  |
|               |    |  |  |  |

#### journal of inequalities in pure and applied mathematics