## NEW BOUNDS FOR THE IDENTRIC MEAN OF TWO ARGUMENTS

## OMRAN KOUBA

Department of Mathematics
Higher Institute for Applied Sciences and Technology
P.O. Box 31983, Damascus, Syria.

EMail: omran_kouba@hiast.edu.sy

16 April, 2008

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:

27 June, 2008
J. Sandor

26D07, 26D20, 26E60.
Arithmetic mean, Geometric mean, Identric mean.
Given two positive real numbers $x$ and $y$, let $A(x, y), G(x, y)$, and $I(x, y)$ denote their arithmetic mean, geometric mean, and identric mean, respectively. Also, let $K_{p}(x, y)=\sqrt[p]{\frac{2}{3} A^{p}(x, y)+\frac{1}{3} G^{p}(x, y)}$ for $p>0$. In this note we prove that $K_{p}(x, y)<I(x, y)$ for all positive real numbers $x \neq y$ if and only if $p \leq 6 / 5$, and that $I(x, y)<K_{p}(x, y)$ for all positive real numbers $x \neq y$ if and only if $p \geq(\ln 3-\ln 2) /(1-\ln 2)$. These results, complement and extend similar inequalities due to J. Sándor [2], J. Sándor and T. Trif [3], and H. Alzer and S.-L. Qiu [1].

## New Bounds for The

 Identric MeanOmran Kouba

Title Page

## Contents



Page 1 of 14
Go Back
Full Screen

## Close

## journal of inequalities in pure and applied mathematics

## Contents

1 Introduction 3
2 Preliminaries 5
3 Proof of Theorem $1.1 \quad 10$
4 Remarks $\mathbf{1 2}$

New Bounds for The Identric Mean

Omran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents

| $\mathbf{4}$ |  |
| :---: | :---: |
| $\mathbf{4}$ |  |
| Page 2 of 14 |  |
| Go Back |  |
| Full Screen |  |
| Close |  |

journal of inequalities in pure and applied mathematics
issn: 1443-575b

## 1. Introduction

In this note we consider several means of two positive real numbers $x$ and $y$. Recall that the arithmetic mean, the geometric mean and the identric mean are defined by $A(x, y)=\frac{x+y}{2}, G(x, y)=\sqrt{x y}$ and

$$
I(x, y)=\left\{\begin{array}{lll}
\frac{1}{e}\left(\frac{x^{x}}{y^{y}}\right)^{\frac{1}{x-y}} & \text { if } & x \neq y \\
x & \text { if } & x=y
\end{array}\right.
$$

We also introduce the family $\left(K_{p}(x, y)\right)_{p>0}$ of means of $x$ and $y$, defined by

$$
K_{p}(x, y)=\sqrt[p]{\frac{2 A^{p}(x, y)+G^{p}(x, y)}{3}}
$$

Using the fact that, for $\alpha>1$, the function $t \mapsto t^{\alpha}$ is strictly convex on $\mathbb{R}_{+}^{*}$, and that for $x \neq y$ we have $A(x, y)>G(x, y)$ we conclude that, for $x \neq y$, the function $p \mapsto K_{p}(x, y)$ is increasing on $\mathbb{R}_{+}^{*}$.

In [3] it is proved that $I(x, y)<K_{2}(x, y)$ for all positive real numbers $x \neq y$. Clearly this implies that $I(x, y)<K_{p}(x, y)$ for $p \geq 2$ and $x \neq y$ which is the upper (and easy) inequality of Theorem 1.2 of [4].

On the other hand, J. Sándor proved in [2] that $K_{1}(x, y)<I(x, y)$ for all positive real numbers $x \neq y$, and this implies that $K_{p}(x, y)<I(x, y)$ for $p \leq 1$ and $x \neq y$.

The aim of this note is to generalize the above-mentioned inequalities by determining exactly the sets

$$
\begin{aligned}
\mathcal{L} & =\left\{p>0: \forall(x, y) \in D, K_{p}(x, y)<I(x, y)\right\} \\
\mathcal{U} & =\left\{p>0: \forall(x, y) \in D, I(x, y)<K_{p}(x, y)\right\}
\end{aligned}
$$

## New Bounds for The

 Identric MeanOmran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents


Page 3 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
with $D=\left\{(x, y) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}: x \neq y\right\}$. Clearly, $\mathcal{L}$ and $\mathcal{U}$ are intervals since $p \mapsto K_{p}(x, y)$ is increasing. And the stated results show that

$$
(0,1] \subset \mathcal{L} \subset(0,2) \quad \text { and } \quad[2,+\infty) \subset \mathcal{U} \subset(1,+\infty)
$$

The following theorem is the main result of this note.
Theorem 1.1. Let $\mathcal{U}$ and $\mathcal{L}$ be as above, then $\mathcal{L}=\left(0, p_{0}\right]$ and $\mathcal{U}=\left[p_{1},+\infty\right)$ with

$$
p_{0}=\frac{6}{5}=1.2 \quad \text { and } \quad p_{1}=\frac{\ln 3-\ln 2}{1-\ln 2} \lesssim 1.3214 .
$$

New Bounds for The Identric Mean

Omran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents

journal of inequalities in pure and applied mathematics
issn: 1443-575b

## 2. Preliminaries

The following lemmas and corollary pave the way to the proof of Theorem 1.1.
Lemma 2.1. For $1<p<2$, let $h$ be the function defined on the interval $I=$ $[1,+\infty)$ by

$$
h(x)=\frac{(1-p+2 x) x^{1-2 / p}}{1+(2-p) x}
$$

(i) If $p \leq \frac{6}{5}$ then $h(x)<1$ for all $x>1$.
(ii) If $p>\frac{6}{5}$ then there exists $x_{0}$ in $(1,+\infty)$ such that $h(x)>1$ for $1<x<x_{0}$, and $h(x)<1$ for $x>x_{0}$.

New Bounds for The Identric Mean

Omran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents

$$
H(x)=\ln (1-p+2 x)+\frac{p-2}{p} \ln x-\ln (1+(2-p) x)
$$

Now, doing some algebra, we can reduce the derivative of $H$ to the following form,

$$
\begin{aligned}
H^{\prime}(x) & =\frac{2}{1-p+2 x}-\frac{2-p}{p x}-\frac{2-p}{1+(2-p) x} \\
& =-\frac{2(2-p)^{2} Q(x)}{p x(1-p+2 x)(1+(2-p) x)}
\end{aligned}
$$

with $Q$ the second degree polynomial given by

$$
Q(X)=X^{2}-\frac{(p-1)(4-p)}{(2-p)^{2}} X-\frac{p-1}{4-2 p}
$$

Proof. Clearly $h(x)>0$ for $x \geq 1$, so we will consider $H=\ln (h)$.
(

Page 5 of 14

## Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The key remark here is that, since the product of the zeros of $Q$ is negative, $Q$ must have two real zeros; one of them (say $z_{-}$) is negative, and the other (say $z_{+}$) is positive. In order to compare $z_{+}$to 1 , we evaluate $Q(1)$ to find that,

$$
Q(1)=1-\frac{(p-1)(4-p)}{(2-p)^{2}}-\frac{p-1}{4-2 p}=\frac{(6-5 p)(3-p)}{2(2-p)^{2}}
$$

so we have two cases to consider:

- If $p \leq \frac{6}{5}$, then $Q(1) \geq 0$, so we must have $z_{+} \leq 1$, and consequently $Q(x)>0$ for $x>1$. Hence $H^{\prime}(x)<0$ for $x>1$, and $H$ is decreasing on the interval $I$, but $H(1)=0$, so that $H(x)<0$ for $x>1$, which is equivalent to (i).
- If $p>\frac{6}{5}$, then $Q(1)<0$ so we must have $1<z_{+}$, and consequently, $Q(x)<0$ for $1 \leq x<z_{+}$and $Q(x)>0$ for $x>z_{+}$. therefore $H$ has the following table of variations:

| $x$ | 1 |  | $z_{+}$ |  | $+\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $H^{\prime}(x)$ |  | + | 0 | - |  |
| $H(x)$ | 0 | $\nearrow$ | $\frown$ | $\searrow$ | $-\infty$ |

Hence, the equation $H(x)=0$ has a unique solution $x_{0}$ which is greater than $z_{+}$, and $H(x)>0$ for $1<x<x_{0}$, whereas $H(x)<0$ for $x>x_{0}$. This proves (ii).

New Bounds for The Identric Mean

Omran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents


Page 6 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
(i) If $p \leq \frac{6}{5}$ then $f_{p}$ is increasing on $\mathbb{R}_{+}^{*}$.
(ii) If $p>\frac{6}{5}$ then there exists $t_{p}$ in $\mathbb{R}_{+}^{*}$ such that $f_{p}$ is decreasing on $\left(0, t_{p}\right]$, and increasing on $\left[t_{p},+\infty\right)$.

## Proof. First we note that

$$
f_{p}^{\prime}(t)=\frac{1}{\sinh ^{2} t}\left(\sinh t \cosh t-t-\frac{2 \sinh ^{3} t}{\left(2+\cosh ^{-p} t\right) \cosh t}\right)
$$

so if we define the function $g$ on $\mathbb{R}_{+}^{*}$ by

$$
g(t)=\sinh t \cosh t-t-\frac{2 \sinh ^{3} t}{\left(2+\cosh ^{-p} t\right) \cosh t}
$$

we find that

$$
\begin{aligned}
g^{\prime}(t) & =2 \sinh ^{2} t-\frac{6 \sinh ^{2} t}{2+\cosh ^{-p} t}+\frac{2 \sinh ^{4} t\left(2+(1-p) \cosh ^{-p} t\right)}{\left(2+\cosh ^{-p} t\right)^{2} \cosh ^{2} t} \\
& =\frac{2 \tanh ^{2} t\left(\left(1+(2-p) \cosh ^{p} t\right) \cosh ^{2} t-\left(1-p+2 \cosh ^{p} t\right) \cosh ^{p} t\right)}{\left(1+2 \cosh ^{p} t\right)^{2}} \\
& =\frac{2 \sinh ^{2} t\left(1+(2-p) \cosh ^{p} t\right)}{\left(1+2 \cosh ^{p} t\right)^{2}}\left(1-\frac{\left(1-p+2 \cosh ^{p} t\right) \cosh ^{p} t}{\left(1+(2-p) \cosh ^{p} t\right) \cosh ^{2} t}\right) \\
& =\frac{2 \sinh ^{2} t\left(1+(2-p) \cosh ^{p} t\right)}{\left(1+2 \cosh ^{p} t\right)^{2}}\left(1-h\left(\cosh ^{p} t\right)\right)
\end{aligned}
$$

where $h$ is the function defined in Lemma 2.1. This allows us to conclude, as follows:

- If $p \leq \frac{6}{5}$, then using Lemma 2.1, we conclude that $h\left(\cosh ^{p} t\right)<1$ for $t>0$, so $g^{\prime}$ is positive on $\mathbb{R}_{+}^{*}$. Now, by the fact that $g(0)=0$ and that $g$ is increasing


## New Bounds for The

 Identric MeanOmran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents


Page 7 of 14

## Go Back

Full Screen

## Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
on $\mathbb{R}_{+}^{*}$ we conclude that $g(t)$ is positive for $t>0$, therefore $f_{p}$ is increasing on $\mathbb{R}_{+}^{*}$. This proves (i).

- If $p>\frac{6}{5}$, then using Lemma 2.1, and the fact that $t \mapsto \cosh ^{p} t$ defines an increasing bijection from $\mathbb{R}_{+}^{*}$ onto $(1,+\infty)$, we conclude that $g$ has the following table of variations:

| $t$ | 0 |  | $t_{0}$ |  | $+\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $g^{\prime}(t)$ |  | - | 0 | + |  |
| $g(t)$ | 0 | $\searrow$ | $\smile$ | $\nearrow$ | $+\infty$ |

with $t_{0}=\arg \cosh \sqrt[p]{x_{0}}$. Hence, the equation $g(t)=0$ has a unique positive solution $t_{p}$, and $g(t)<0$ for $0<t<t_{p}$, whereas $g(t)>0$ for $t>t_{p}$, and (ii) follows.

## New Bounds for The

 Identric MeanOmran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents
This achieves the proof of Lemma 2.2.
Now, using the fact that

$$
\lim _{t \rightarrow 0} f_{p}(t)=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} f_{p}(t)=\ln \left(\frac{2}{e} \sqrt[p]{\frac{3}{2}}\right)
$$

Page 8 of 14

## Go Back

Full Screen

## Close

journal of inequalities in pure and applied mathematics
issn: l443-575b
(ii) If $p>\frac{6}{5}$ then $f_{p}$ has the following table of variations:

| $t$ | 0 |  |  |  |
| :---: | :--- | :--- | :--- | ---: |
| $f_{p}(t)$ | 0 | $\searrow$ | $\smile$ | $\nearrow$ |

In particular, for $1<p<2$, we have proved the following statements.

$$
\begin{align*}
& \left(\forall t>0, f_{p}(t)>0\right) \Longleftrightarrow p \leq p_{0}  \tag{2.1}\\
& \left(\forall t>0, f_{p}(t)<0\right) \Longleftrightarrow \ln \left(\frac{2}{e} \sqrt[p]{\frac{3}{2}}\right) \leq 0 \Longleftrightarrow p \geq p_{1}
\end{align*}
$$

where $p_{0}$ and $p_{1}$ are defined in the statement of Theorem 1.1.

New Bounds for The Identric Mean

Omran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents


Page 9 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

## 3. Proof of Theorem 1.1

Proof. In what follows, we use the notation of the preceding corollary.

- First, consider some $p$ in $\mathcal{L}$, then for all $(x, y)$ in $D$ we have $K_{p}(x, y)<I(x, y)$.

This implies that

$$
\forall t>0 . \quad \ln \left(K_{p}\left(e^{t}, e^{-t}\right)\right)<\ln \left(I\left(e^{t}, e^{-t}\right)\right)
$$

but $I\left(e^{t}, e^{-t}\right)=\exp \left(\frac{t}{\tanh t}-1\right)$ and $A\left(e^{t}, e^{-t}\right)=\cosh t$, so we have

$$
\forall t>0, \quad \frac{t}{\tanh t}-1-\frac{1}{p} \ln \left(\frac{2 \cosh ^{p} t+1}{3}\right)>0,
$$

Now, if $p>1$, this proves that $f_{p}(t)>0$ for every positive $t$, so we deduce from (2.1) that $p \leq p_{0}$. Hence $\mathcal{L} \subset\left(0, p_{0}\right]$.

- Conversely, consider a pair $(x, y)$ from $D$, and define $t$ as $\ln \left(\frac{\max (x, y)}{\sqrt{x y}}\right)$. Now, using (2.1) we conclude that $f_{p_{0}}(t)>0$, and this is equivalent to $K_{p_{0}}(x, y)<$ $I(x, y)$. Therefore, $p_{0} \in \mathcal{L}$ and consequently $\left(0, p_{0}\right] \subset \mathcal{L}$. This achieves the proof of the first equality, that is $\mathcal{L}=\left(0, p_{0}\right]$.
- Second, consider some $p$ in $\mathcal{U}$, then for all $(x, y)$ in $D$ we have $I(x, y)<$ $K_{p}(x, y)$. This implies that

$$
\forall t>0, \quad \ln \left(K_{p}\left(e^{t}, e^{-t}\right)\right)>\ln \left(I\left(e^{t}, e^{-t}\right)\right),
$$

so we have

$$
\forall t>0, \quad \frac{t}{\tanh t}-1-\frac{1}{p} \ln \left(\frac{2 \cosh ^{p} t+1}{3}\right)<0,
$$

## New Bounds for The

 Identric MeanOmran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents


Page 10 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Now, if $p<2$, this proves that $f_{p}(t)<0$ for every positive $t$, so we deduce from (2.2) that $p \geq p_{1}$. Hence $\mathcal{U} \subset\left[p_{1}, \infty\right)$.

- Conversely, consider a pair $(x, y)$ from $D$, and as before define $t=\ln \left(\frac{\max (x, y)}{\sqrt{x y}}\right)$. Now, using (2.2) we obtain $f_{p_{1}}(t)<0$, and this is equivalent to $I(x, y)<$ $K_{p_{1}}(x, y)$. Therefore, $p_{1} \in \mathcal{U}$ and consequently $\left[p_{1}, \infty\right) \subset \mathcal{U}$. This achieves the proof of the second equality, that is $\mathcal{U}=\left[p_{1}, \infty\right)$.

This concludes the proof of the main Theorem 1.1.

New Bounds for The Identric Mean
Omran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents


Page 11 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

## 4. Remarks

Remark 1. The same approach, as in the proof of Theorem 1.1 can be used to prove that for $\lambda \leq 2 / 3$ and $p \leq \frac{3-\lambda-\sqrt{(1-\lambda)(3 \lambda+1)}}{(1-\lambda)^{2}+1}$ we have

$$
\sqrt[p]{\lambda A^{p}(x, y)+(1-\lambda) G^{p}(x, y)}<I(x, y)
$$

for all positive real numbers $x \neq y$. Similarly, we can also prove that for $\lambda \geq 2 / 3$ and $p \geq \frac{\ln \lambda}{\ln 2-1}$ we have

$$
I(x, y)<\sqrt[p]{\lambda A^{p}(x, y)+(1-\lambda) G^{p}(x, y)}
$$

for all positive real numbers $x \neq y$. We leave the details to the interested reader.
Remark 2. The inequality $I(x, y)<\sqrt{\frac{2}{3} A^{2}(x, y)+\frac{1}{3} G^{2}(x, y)}$ was proved in [3] using power series. Another proof can be found in [4] using the Gauss quadrature formula. It can also be seen as a consequence of our main theorem. Here, we will show that this inequality can be proved elementarily as a consequence of Jensen's inequality.

Let us recall that $\ln (I(x, y))$ can be expressed as follows

$$
\ln (I(x, y))=\int_{0}^{1} \ln (t x+(1-t) y) d t=\int_{0}^{1} \ln ((1-t) x+t y) d t
$$

Therefore,

$$
2 \ln (I(x, y))=\int_{0}^{1} \ln ((t x+(1-t) y)((1-t) x+t y)) d t
$$

but

$$
(t x+(1-t) y)((1-t) x+t y)=\left(1-(2 t-1)^{2}\right) A^{2}(x, y)+(2 t-1)^{2} G^{2}(x, y)
$$

## New Bounds for The

 Identric MeanOmran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents


Page 12 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
so that, by $u \leftarrow 2 t-1$, we obtain,

$$
\begin{aligned}
2 \ln (I(x, y)) & =\frac{1}{2} \int_{-1}^{1} \ln \left(\left(1-u^{2}\right) A^{2}(x, y)+u^{2} G^{2}(x, y)\right) d u \\
& =\int_{0}^{1} \ln \left(\left(1-u^{2}\right) A^{2}(x, y)+u^{2} G^{2}(x, y)\right) d u
\end{aligned}
$$

Hence,

$$
I^{2}(x, y)=\exp \left(\int_{0}^{1} \ln \left(\left(1-u^{2}\right) A^{2}(x, y)+u^{2} G^{2}(x, y)\right) d u\right)
$$

Now, the function $t \mapsto e^{t}$ is strictly convex, and the integrand is a continuous nonconstant function when $x \neq y$, so using Jensen's inequality we obtain
$I^{2}(x, y)<\int_{0}^{1} \exp \left(\ln \left(\left(1-u^{2}\right) A^{2}(x, y)+u^{2} G^{2}(x, y)\right)\right) d u=\frac{2}{3} A^{2}(x, y)+\frac{1}{3} G^{2}(x, y)$.

New Bounds for The Identric Mean

Omran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents

Page 13 of 14
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

## References

[1] H. ALZER and S.-L. QIU, Inequalities for means in two variables, Arch. Math. (Basel), 80 (2003), 201-215.
[2] J. SÁNDOR, A note on some inequalities for means, Arch. Math. (Basel), 56 (1991), 471-473.
[3] J. SÁNDOR, AND T. TRIF, Some new inequalities for means of two arguments, Int. J. Math. Math. Sci., 25 (2001), 525-535.
[4] T. TRIF, Note on certain inequalities for means in two variables, J. Inequal. Pure and Appl. Math., 6(2) (2005), Art. 43. [ONLINE: http: / / jipam.vu.edu. au/article.php?sid=512].

New Bounds for The
Identric Mean
Omran Kouba
vol. 9, iss. 3, art. 71, 2008

Title Page
Contents


Page 14 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

