APPROXIMATION OF THE DILOGARITHM FUNCTION

MEHDI HASSANI

Institute for Advanced Studies in Basic Sciences
P.O. Box 45195-1159, Zanjan, Iran.

EMail: mmhassany@srttu.edu

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

15 April, 2006
03 January, 2007
A. Lupaş

33E20.
Special function, Dilogarithm function, Digamma function, Polygamma function, Polylogarithm function, Lerch zeta function.

Dilogarithm Function
Mehdi Hassani
vol. 8 , iss. $\mathbf{1 ,}$ art. $\mathbf{2 5 ,} 2007$

Title Page
Contents

Page 1 of 7
Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

Abstract:
In this short note, we approximate Dilogarithm function, defined by $\operatorname{dilog}(x)=\int_{1}^{x} \frac{\log t}{1-t} d t$. Letting

$$
\mathcal{D}(x, N)=-\frac{1}{2} \log ^{2} x-\frac{\pi^{2}}{6}+\sum_{n=1}^{N} \frac{\frac{1}{n^{2}}+\frac{1}{n} \log x}{x^{n}}
$$

we show that for every $x>1$, the inequalities

$$
\mathcal{D}(x, N)<\operatorname{dilog}(x)<\mathcal{D}(x, N)+\frac{1}{x^{N}}
$$

hold true for all $N \in \mathbb{N}$.

Dedication:
Dedicated to Professor Yousef Sobouti on the occasion of his 75th birthday.

Dilogarithm Function
Mehdi Hassani
vol. 8, iss. 1, art. 25, 2007

Title Page
Contents

journal of inequalities in pure and applied mathematics

issn: 1443-575b

Definition. The Dilogarithm function $\operatorname{dilog}(x)$ is defined for every $x>0$ as follows [5]:

$$
\operatorname{dilog}(x)=\int_{1}^{x} \frac{\log t}{1-t} d t
$$

Expansion. The following expansion holds true when x tends to infinity:

$$
\operatorname{dilog}(x)=\mathcal{D}(x, N)+O\left(\frac{1}{x^{N+1}}\right)
$$

where

$$
\mathcal{D}(x, N)=-\frac{1}{2} \log ^{2} x-\frac{\pi^{2}}{6}+\sum_{n=1}^{N} \frac{\frac{1}{n^{2}}+\frac{1}{n} \log x}{x^{n}}
$$

Aim of Present Work. The aim of this note is to prove that:

$$
0<\operatorname{dilog}(x)-\mathcal{D}(x, N)<\frac{1}{x^{N}} \quad(x>1, N \in \mathbb{N})
$$

Lower Bound. For every $x>0$ and $N \in \mathbb{N}$, let:

$$
\mathcal{L}(x, N)=\operatorname{dilog}(x)-\mathcal{D}(x, N)
$$

A simple computation, yields that:

$$
\frac{d}{d x} \mathcal{L}(x, N)=\log x\left(\frac{x}{1-x}+\sum_{n=0}^{N+1} \frac{1}{x^{n}}\right)<\log x\left(\frac{x}{1-x}+\sum_{n=0}^{\infty} \frac{1}{x^{n}}\right)=0
$$

So, $\mathcal{L}(x, N)$ is a strictly decreasing function of the variable x, for every $N \in \mathbb{N}$. Considering $\mathcal{L}(x, N)=O\left(\frac{1}{x^{N+1}}\right)$, we obtain a desired lower bound for the Dilogarithm function, as follows:

$$
\mathcal{L}(x, N)>\lim _{x \rightarrow+\infty} \mathcal{L}(x, N)=0
$$

Dilogarithm Function
Mehdi Hassani
vol. 8, iss. 1, art. 25, 2007

Title Page
Contents

Page 3 of 7
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 2443-575b

Upper Bound. For every $x>0$ and $N \in \mathbb{N}$, let:

$$
\mathcal{U}(x, N)=\operatorname{dilog}(x)-\mathcal{D}(x, N)-\frac{1}{x^{N}}
$$

First, we observe that

$$
\mathcal{U}(1, N)=\frac{\pi^{2}}{6}-\sum_{n=1}^{N} \frac{1}{n^{2}}-1=\Psi(1, N+1)-1 \leq \frac{\pi^{2}}{6}-2<0
$$

in which $\Psi(m, x)$ is the m-th polygamma function, the m-th derivative of the digamma function, $\Psi(x)=\frac{d}{d x} \log \Gamma(x)$, with $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t$ (see [1, 2]). A simple computation, yields that:

$$
\frac{d}{d x} \mathcal{U}(x, N)=\log x\left(\frac{x}{1-x}+\sum_{n=0}^{N+1} \frac{1}{x^{n}}\right)+\frac{N}{x^{N+1}}
$$

To determine the sign of $\frac{d}{d x} \mathcal{U}(x, N)$, we distinguish two cases:

1. Suppose $x>1$. Since, $\frac{\log x}{x-1}$ is strictly decreasing, we have

$$
N \geq 1=\lim _{x \rightarrow 1} \frac{\log x}{x-1}>\frac{\log x}{x-1}
$$

which is $\frac{N}{\log x}>\frac{1}{x-1}$ or equivalently $\frac{N}{x^{N+1} \log x}>\sum_{n=N+2}^{\infty} \frac{1}{x^{n}}$, and this yields that $\frac{d}{d x} \mathcal{U}(x, N)>0$. So, $\mathcal{U}(x, N)$ is strictly increasing for every $N \in \mathbb{N}$. Thus, $\mathcal{U}(x, N)<\lim _{x \rightarrow+\infty} \mathcal{U}(x, N)=0$; as desired in this case. Also, note that in this case we obtain

$$
\mathcal{U}(x, N)>\mathcal{U}(1, N)=\Psi(1, N+1)-1 .
$$

Dilogarithm Function

Mehdi Hassani
vol. 8, iss. 1, art. 25, 2007

Title Page
Contents

Page 4 of 7
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756
2. Suppose $0<x<1$ and $N-\frac{\log x}{x-1} \geq 0$. We observe that $1<\frac{\log x}{x-1}<+\infty$ and $\sum_{n=0}^{N+1} \frac{1}{x^{n}}=\frac{1-x^{N+2}}{x^{N+1}(1-x)}$. Considering these facts, we see that $\frac{d}{d x} \mathcal{U}(x, N)$ and $N-\frac{\log x}{x-1}$ have same sign; i.e.

$$
\operatorname{sgn}\left(\frac{d}{d x} \mathcal{U}(x, N)\right)=\operatorname{sgn}\left(N-\frac{\log x}{x-1}\right) .
$$

Thus, $\mathcal{U}(x, N)$ is increasing and so,

$$
\mathcal{U}(x, N) \leq \lim _{x \rightarrow 1^{-}} \mathcal{U}(x, N)=\Psi(1, N+1)-1 \leq \frac{\pi^{2}}{6}-2<0
$$

Connection with Other Functions. Using Maple, we have:

$$
\begin{aligned}
& \mathcal{D}(x, N)=-\frac{1}{2} \log ^{2} x-\frac{\pi^{2}}{6}+\frac{1}{N^{2} x^{N}}+\frac{\log x}{N x^{N}}-\log \left(\frac{x-1}{x}\right) \log x \\
&+\operatorname{polylog}\left(2, \frac{1}{x}\right)-\frac{\log x}{x^{N}} \Phi\left(\frac{1}{x}, 1, N\right)-\frac{1}{x^{N}} \Phi\left(\frac{1}{x}, 2, N\right)
\end{aligned}
$$

in which

$$
\operatorname{poly} \log (a, z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{a}}
$$

is the polylogarithm function of index a at the point z and defined by the above series if $|z|<1$, and by analytic continuation otherwise [4]. Also,

$$
\Phi(z, a, v)=\sum_{n=1}^{\infty} \frac{z^{n}}{(v+n)^{a}}
$$

Dilogarithm Function
Mehdi Hassani
vol. 8, iss. 1, art. 25, 2007

Title Page
Contents

Page 5 of 7
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756
is the Lerch zeta (or Lerch- Φ) function defined by the above series for $|z|<1$, with $v \neq 0,-1,-2, \ldots$, and by analytic continuation, it is extended to the whole complex z-plane for each value of a and v (see [3, 6]).

Dilogarithm Function
Mehdi Hassani
vol. 8, iss. 1, art. 25, 2007

Title Page
Contents

Page 6 of 7
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5?5b

References

[1] M. ABRAMOWITZ and I.A. STEGUN, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1972.
[2] N.N. LEBEDEV, Special Functions and their Applications, Translated and edited by Richard A. Silverman, Dover Publications, New York, 1972.
[3] L. LEWIN, Dilogarithms and associated functions, MacDonald, London, 1958.
[4] L. LEWIN, Polylogarithms and associated functions, North-Holland Publishing Co., New York-Amsterdam, 1981.
[5] E.W. WEISSTEIN, "Dilogarithm." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/Dilogarithm.html
[6] E.W. WEISSTEIN, "Lerch Transcendent." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/ LerchTranscendent.html

Dilogarithm Function

Mehdi Hassani
vol. 8 , iss. 1 , art. $\mathbf{2 5 , 2 0 0 7}$

Title Page
Contents

Page 7 of 7
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

