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ABSTRACT. Sharp bounds are obtained for expressions involving Zeta and related functions
at a distance of one apart. Since Euler discovered in 1736 a closed form expression for the
Zeta function at the even integers, a comparable expression for the odd integers has not been
forthcoming. The current article derives sharp bounds for the Zeta, Lambda and Eta functions at
a distance of one apart. The methods developed allow an accurate approximation of the function
values at the odd integers in terms of the neighbouring known function at even integer values.
The Dirichlet Beta function which has explicit representation at the odd integer values is also
investigated in the current work.

Cebysev functional bounds are utilised to obtain tight upper bounds for the Zeta function at
the odd integers.
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1. INTRODUCTION

The present paper represents in part a review of the recent work of the author in obtaining
sharp bounds for expressions involving functions at a distance of one apart. The main motivation
for the work stems from the fact that Zeta and related functions are explicitly known at either
even function values (Zeta, Lambda and Eta) or at odd function values as for the Dirichlet Beta
function.

The approach of the current paper is to investigate integral identities for the secant slope
for n (x) and 3 (z) from which sharp bounds are procured. The results,far) of Sectior]
are extended to the(z) and A (z) functions because of the relationship between them. The
sharp bounds procured in théx) for ¢ (x) are obtained, it is argued, in a more straightforward
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2 P. GERONE

fashion than in the earlier work of Alzer![2]. Some numerical illustration of the results relating
to the approximation of the Zeta function at odd integer values is undertaken in $éction 4.

The technique for obtaining the(z) bounds is also adapted to developing the bounds for
3 (z) in Sectior] b.

The final Sectiodﬂ6 of the paper investigates the use of bounds f&ehgsev function in
extracting upper bounds for the odd Zeta functional values that are tighter than those obtained in
the earlier sections. However, this approach does not seem to be able to provide lower bounds.

2. THE EULER ZETA AND RELATED FUNCTIONS

The Zeta function

o0

1
(2.2) ((x) := 2 = x>1

was originally introduced in 1737 by the Swiss mathematician Leonhard Euler (1707-1783) for
realz who proved the identity

(2.2) ) =]] (1 - i) B . x>,

wherep runs through all primes. It was Riemann who allowetb be a complex variable

and showed that even though both sideg of| (2.1) andl (2.2) diverdeefo) < 1, the function

has a continuation to the whole complex plane with a simple pole-atl with residue 1. The
function plays a very significant role in the theory of the distribution of primes (see [2]. [4], [5],
[15] and [16]). One of the most striking properties of the zeta function, discovered by Riemann
himself, is the functional equation

(2.3) ((z) = 2°7" 'sin (%) (1 —2)¢C(1—-2)
that can be written in symmetric form to give
(2.4) 73T (g) ((2) = () (1;Z> C(1—2).

In addition to the relatiori (2|3) between the zeta and the gamma function, these functions are
also connected via the integrals [13]

1 [ tdt
@5) =t [ =T e,
and

1 [ td
2.6 =g | o a0
where
@) Cw) =T (1-2) and 7= [ e ar

0
In the series expansion
text o0 pm

(2.8) o ZBm (z) -
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BOUNDS FORZETA AND RELATED FUNCTIONS 3

where B,, (x) are the Bernoulli polynomials (after Jacob Bernoul®),, (0) = B,, are the
Bernoulli numbers. They occurred for the first time in the formula [1, p. 804]

1)—B
(2.9) Zk”— ”*””11 L m=1,2,3,... .
n

One of Euler's most celebrated theorems discovered in 1736 (Institutiones Calculi Differen-
tialis, Opera (1), Vol. 10) is
1 22n 17T2n

The result may also be obtained in a stralght forward fashion (2.6) and a change of variable
on using the fact that

00 t2n71
n—1

Bon: n=123,....

from Whittaker and Watson [25, p. 126].
We note here that
((2n) = A, 7",
where

n—

1
An — _1 ’n*l n
(=1) 2n + 1)! + =t 2] +

] 1

andA; = 5
Further, the Zeta function for even integers satisfy the relation (Borwein &t al. [4], Srivastava
[21])

g(m):( >_ Zgzj (2n —2j), neN\{1}.

Despite several efforts to find a formula toR2n + 1), (for examplel[22, 23]), there seems to
be no elegant closed form representation for the zeta function at the odd integer values. Several
series representations for the vali@n + 1) have been proved by Srivastava and co-workers
in particular.

From a long list of these representations) [22, 23], we quote only a few

Hypq — logm
2.12 2 1) = (—1 n—1_2n | 12041 — 1067
(2.12) ¢2n+1) = (-1)""'x { (2n+1)!
n—1 . )
C(2k+1) (2k —1)! ((2k)
—i—Z n—2k:—|—1) w2k Z2n+2k—|—1 ST

k=1 k=1

(2.13) ¢(2n+1) = (_1),1(2#—)"1) [Z_: (( Dk ¢(2k) n Z 2n+2'k C(2k) |
P

n(22n+1 — on — 2k)! w2k 22k
1 k:O i
and
2o [& )k ¢(2k + 1)
2.14 2 1) =(-1)"
( )C(n+ ) ( )(2n_122n+1 — 2n—2k3+1 2k
- k)! ((2k)
=1,2.3.....
:;0 2n+2k—i— !22’“]’ T
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4 P. GERONE

There is also an integral representationdén + 1) namely,

1 . (27T)2n+1

6
20 (n + 1)! /0 Bant1 (t) cot (7Tt) dt,

whered = 1 or £ ([1} p. 807]). Recently, Cvijowi and Klinkowski [12] have given the integral
representations

(2.15) C(2n+1) = (=1)

(2.16) C(2n+1) = (=1)"*. (2m™™ / "B (t) tan (rt) dt
' - 20 (1—2720) (2n + 1)1 Jy 2" ’
and
7T2n+1 6
(2.17) ((2n+1) = (-1)"- 15 (1— 2 @) (2n)! /0 En () csc (mt) dt.

Both the series representatiops (2.17) — (2.14) and the integral represenfations (2.13) — (2.16)

are however both somewhat difficult in terms of computational aspects and time considerations.
We note that there are functions that are closely relatéd 19 . Namely, the Dirichlet; (-)
and) (-) functions given by

(2.18) n(x) = g (_711): : = r(lg;) /OOO %dt, x>0
and

(2.19) A(z) = ; (%i 7T (1:6) /0 ett_ —dt, x>0,
These are related to(x) by

(2.20) n(z)=(1-2"")¢(z) and A(z)=(1-27")¢(x)
satisfying the identity

(2.21) C(z)+n(z) =2X (2).

It should be further noted that explicit expressions for botly @fn) and A (2n) exist as a
consequence of the relationdd2n) via (2.20).
The Dirichlet beta function or Dirichlet —function is given by[[14]
(="
2.22 = —~ 7
(2.22) 8 (z) Gt 1) x>0

n

wheref (2) = G, Catalan’s constant.

It is readily observed fronf (2.19) that(z) is the alternating version of () , however, it
cannot be directly related tQ(x) . It is also related ta) (x) in that only the odd terms are
summed.

The beta function may be evaluated explicitly at positive odd integer valugsnaimely,

EQ’VL T 2n+1
2 (2n)! (E) ’
whereF,, are the Euler numbers generated by

2¢? -
sech (z) = ° = ZEn_

(2.23) B(2n+1)=(-1)"
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The Dirichlet beta function may be analytically continued over the whole complex plane by
the functional equation

2\° . /72
B(l—z)= (%> sin (7) I'(2)6(z).
The functiong (z) is defined everywhere in the complex plane and has no singularities, unlike
the Riemann zeta functiog,(s) = > 7, #, which has a simple pole at= 1.

The Dirichlet beta function and the zeta function have important applications in a number of
branches of mathematics, and in particular in Analytic number theory. See for examplel[3], [13]
- [17].

Further,5 (x) has an alternative integral representation [14, p. 56]. Namely,

1 o] txfl
Blw) = 2T (z) /0 cosh (t)d]57 v>0.

That is,

0o r—1
(2.24) B () = FE@ /0 ef+ —dt, 1> 0.

The functiong (z) is also connected to prime number thedry [14] which may perhaps be best
summarised by

gay= I -2 ]I (1+p“”’”)_1=H( —(—1)I§1p‘$>_1,

p prime p prime p odd
p=1mod 4 p=3mod 4 prime

where the rearrangement of factors is permitted because of absolute convergence.

Cerone et al. [[8] developed the identity given in the following lemma and the bounds in
Theorenj 2.2 which are used to obtain approximations to the odd zeta function values in terms
of the even function values.

Lemma 2.1. The following identity involving the Zeta function holds. Namely,
(2.25) / t—th:C’(aﬁ—l—l)C(aj—i-l)—xC(x)C(a:% x>0,
o (et+1)

whereC (z) is as given by[(2]7).
Theorem 2.2. The Zeta function satisfies the bounds

b () b ()

(2.26) (1—5(35))((37)+TSC(l’Jrl)S(l—b(ﬂ?))C(l’)JrT, x>0,
where
1
(2.27) b(z) = e 1
Theorem 2.3. The Zeta function satisfies the bounds
@28) (1-b(a)¢a) 4“7 <ot ) A=b@) )+ gypris = U (@)

whereb (z) is as given by[(2.27),

D a) — Aot L 2(1-X)
’ 1—-A

A=

and

| —

z
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6 P. GERONE

with z the solution of
s=14e 3=
The% on the right hand side is the best constant. The best constant for the lower bound was

shown to bén 2 — } by Alzer[2], on making use of Lemrha P.1 and Thegdrerh 2.2, rather ¢han

3. AN IDENTITY AND BOUNDSINVOLVING THE ETA AND RELATED FUNCTIONS

The following lemma was developed in Ceronke [5] to obtain sharp bounds for the eta function,
n (z) as given in Theorein 2.3.

Lemma 3.1. The following identity for the eta function holds. Namely,

(3.1) Q(z) = - (a:l—i— 3 /0 % f 1)2dt =n(zr+1)—n(x), x>0
Proof. From (2.18),
* gyl
:cF(x)n(:c):/O et——l—ldt’ x>0

) Ta: o0 tazet
= lim = + —2dt
T—oo el +1 0 (et + 1)
and so we have

elt®

(3.2) F'(x+1)n(z) = /000 (et—dt.

+1)°
Thus, from[(2.1B) and (3.2),
F(x—i—l)[n(a:—i—l)—n(x)]:/ooo il {1— ° }dt:/ooo(idt,

et +1 et +1 et +1)
giving (3.1). O
The following theorem presents sharp bounds for the secant glapdor a distance of one
apart.

Theorem 3.2. For real numberse > 0, we have

d
2x+1

(3.3) St <nx+1)—n(z) <

with the best possible constants
(3.4) c=2In2—-1=0.382943... and d=1.

Proof. Let z > 0. We first establish the first inequality in (8.3). From the idenfity|(3.1) proved
in Lemmg 3.1, itis readily evident that< Q (z) . We further consider

o] dt [ee) —2t
(3.5 J:/ — :/ e—zdt.
o (et+1) o (e7t+1)
Thus, after some obvious simplifications
1 2 -1 1
(3.6) J:/ al 2du:/ 4 —du=1In2— .
0 (U + 1) 1 [ 2

Now, let us examine
2°71Q (x) — (2In2 — 1)
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BOUNDS FORZETA AND RELATED FUNCTIONS 7

That is, from|[(3.1),[(3]5) and (3.6),

(3.7) T(z+1)[2°7'Q(z) — 2J] :2m+1/ommdt—2-r(x+1)/om

[P [Tt 1)
_s /0 o
B /oo e v [u® —F(x—l—l)]du

- (1+e%)°

dt
(e' +1)?

= /Ooou(t,x)v(t)dt,
where
(3.8) w(t,zr) = e [ —T(@+1)], v(t)= (1+eé)_2.

The functionw (t) is strictly increasing fot € (0, c0) .

Now, letty = (I' (x + 1))% , then for0 < ¢ < to, u(t,z) < 0 andv (t) < v (to) . Also, for
t > to, u(t,z) > 0 andv (t) > v (ty). Hence we have that (t,z) v (t) > u(t,x)v (to) for
t > 0 andt # ty. This implies that

/Ooou(t,a:)v(t)dt>v(to)/oooet[tI—F(x—i-l)]dt:O.

Hence from|[(3.]7) and (3.6)
2In2 -1
Now for the right inequality.
We have from[(3}4) that

(2t)" 2
(1+ e—t)2
= /OO e "1 —wv(t)]dt,

wherew (t) is as given by[(3]8). We make the observation that” is positive and. — v (¢) is
strictly decreasing and positive for (0, co) , which naturally leads to the conclusion that

(z4+1)[1-2""'Q (z)] :F(:v+1)—2/oo

(3.10) Q(z) < % 2> 0.

In summary we note thaft (3.9) ar{d (3.11) provide lower and upper bounds respectively for
Q () . That the constants if (3.3) are best possible remains to be shown.
Since [3.8) holds for all positive, we have

(3.11) c<2°Q (x) < d.
Now, from (3.1), we have
2x+1 o] 6—2ttz
3.12 gz +l = —/ ——dt
( ) Q<x> F<x+1) 0 (1+€_t)2
and so
0 —2t
i 97+ _ ¢ gp—9.g— _
(3.13) ilg(l)2 Q (z) —2/0 <1+67t)dt 2-J=2mn2-1,
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8 P. GERONE

where the permissable interchange of the limit and integration has been undertaken and we have

used[(35) -[(316).
Now, since for) < w < 1 the elementary inequality — 2w < (1 + w)_2 < 1 holds, then

we have .
1-2'< ——— <1
(I+e)

Thus, from [(3.1IPR),
2 z+1
(3.14) 1—2- <§> < 2"MQ(x) < 1,

where we have utilised the fact that,

o r 1
(3.15) / sty — LD
0 3x+1

Finally, from (3.14) we conclude that
(3.16) lim 2°Q (z) = 1.

Tr—00

From (3.11),[(3.13) and (3.1L6) we have< 2In2 — 1 andd > 1 which implies that the best
possible constants ifi (3.3) are givendy 2In2 — 1 andd = 1. O

Corollary 3.3. The bound

d+c d—rc

(3.17) n(x+1)—n(x)— iz < Tz x>0

holds, wheree = 21In2 — 1 andd = 1.
Proof. From (3.3), let

L(x):n(x)—l—2+1 and U ( ):n(x)—f—z;il
then
L(z)<n(z+1)<U(x)
and so . . .
U@ gy VEILE) UE@-LE

Remark 3.4. The form of [3.1F) is very useful since we may write

d+c
M+ 1) = (@) + S+ B (@),

where|E (z)| < ¢ for
In (4=5)

* 4e
(3.18) T > o=
Corollary 3.5. The eta function satisfies the bounds
(3.19) Ly(z) <n(z+1)<Uy(z), x>0,
where
C
(3.20) Ly(z) =n(z+2)— Set2 and Uy (x)=n(x+2)— etz
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Proof. From [3.6)

d c
TSI n(x)—nmx+1)< gt
Replacer by = + 1 and rearrange to givg (3/19)[— (3,20). O

Remark 3.6. We note that’ (-) andU (-) will be used to denote the lower and upper bounds
respectively. If the bounds involve a previous value at a distance of one away from the function
that is bounded, then no subscript is used. If it involves a subsequent value then a subscript of
2 is used. This is shown in Corollaries B.3 3.5 above for the eta function. No distinction in
the notation is used when referring to other functions.

Given the sharp inequalities fgr(z + 1) — 7 (z) in (3.3) — [3.4), then we may readily obtain
sharp bounds for expressions involving the zeta function and the lambda function at a distance
of one apatrt.

Corollary 3.7. For real numbers: > 0 we have

(3.21) (1112—%)6(:@<§(x+1)—(1—b(x))<(m)<&;),
where
(3.22) b(z) = 29&1_ -

Proof. From Theorer 3]2 anfl (2.20) giving a relationship betwger) and¢ (z) we have
nz+1)—n@)=1-2"")¢Cz+1) - (1-2"7")¢(x)
and so from[(3]3) and (3.4)
gb(x) <Cz+1)—(1=b(z))((x) <g-b(x).
O

Remark 3.8. Cerone et al.[[8] obtained the upper boundin (B.21) and a coarser lower bound of
@ as presented i6). Alzer [3] demonstrated that the conétﬁ‘ms% and% in ) are
sharp. The sharpness of the cons%imtas obtained by Alzer on utilising a different approach,
other than the sharpness of the constiant1 in (3.4) via the eta function and hengén (3.21).

Corollary 3.9. For real z > 0 we have

(3.23) (mz — %) b(z) (1—2"0) < Xz +1) - (%) A (z)
< @ (1 =27y

whereb (z) is as given by[(3.22).
Proof. Again utilising Theorem 3]2 and frorp (2]20) and (2.21) we have, after some algebra,
(3.24) n(z) = (1-0b(2))A(z)

and so from[(3]3) andl (3.4)
2ln2 -1

e <0+ 1) - )

=1—=b@+1)A(z+1)—(1—-b(x) X (x) < pTaug
Division by 1 — b (x + 1) and some simplification readily producgs (3.23). O
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The advantage of having sharp inequalities such ap (B.3)] (3.21) and (3.23) involving function
values at a distance of one apart is that if we plaee 2n, then since (2n) is known explicitly,
we may approximaté (2n + 1) and provide explicit bounds. This is so fgf-) and A (-) as

well because of their relationship ¢q-) via (2.20) —[(2.2]1).
4. SOME ZETA RELATED NUMERICS

In what follows, we investigate some numerical results associated with bounding the un-
known ¢ (2n + 1) by expressions involving the explicitly knowj(2n) . The following corol-
laries hold.

Corollary 4.1. The bound

(4.1) Clr+1)—(1—b(@)C(x)— thQb(a:) <! _21n2b(a:), 2> 0
holds, wheré (z) is as given by[(3]2).
Proof. Let
4.2) L(z)=(1-b(z))C(x)+ (1n2 - %) b(z), and
b(x
U@)= (- b)) +
then from [3.2]L) we have
L(z)<((x+1) <U(z).
Hence
U@L oy Y@HLE UE) LG
which may be expressed as the stated regul} (4.1) on noting the obvious correspondences and
simplification. O

Remark 4.2. The form [4.1) is a useful one since we may write

@3) Cla+1)= (1= b)) C (a) + 20 () + B (),
where

B()| <
for

1—1In2
x>x*::ln(1+ n)/an.
2e

That is, we may approximate(z + 1) by (1 — b(z)) ¢ (z) + 22b(z) within an accuracy of
forx > z*.

We note that both the result of Corollary 3.7 and Corollary 4.1 as expressed in (3.2[L) and (4.1)
respectively rely on approximating(z + 1) in terms of( (x) . The following result involves
approximating (z + 1) in terms of¢ (x + 2) , the subsequent zeta values within a distance of
one rather than the former zeta values.

Theorem 4.3. The zeta function satisfies the bounds
(4.4) Ly(z) <((x+1) < Uz (),

J. Inequal. Pure and Appl. Math6(5) Art. 134, 2005 http://jipam.vu.edu.au/
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where

¢ (z+2)— 2t (@42 - (2 1) b(z+1)
1—b(z+1) and Uz (x) = 1—b(z+1) ‘

Proof. From [3.21) we have

(4.5) Ly (z) =

b(z)

0< (2= )b <ce+ ) -G -b) o) < 2

and so
) <@ b e@) ¢+ 1 < - (m2-

N —
N—

b ()

to produce
b(x) 1

Clz+1) = —=<(1-0b(2)¢(2) <¢lz+1)~ (In2—7 |b(z).
A rearrangement and changesofo = + 1 produces the stated result (4.4] —[4.5). O
Remark 4.4. Some experimentation using the Maple computer algebra package indicates that
the lower boundL, (x) is better than the lower bountl(x) for x > z. = 1.30467865. ..
and vice versa fox < x.. In a similar manner the upper boubd (z) is better tharU (x) for
x < x* = 3.585904878 ... and vice versa for > z*.

The following corollary is valid in whiclg (x + 1) may be approximated in terms@fz + 2)
and an explicit bound is provided for the error.

Corollary 4.5. The bound

((x+2)— (In2—3)b(z+1) <1—ln2 b(x+1)
1—=b(z+1) -2 1-b(x+1)

holds, wheré () is as defined by (3.22).

Proof. The proof is straight forward and follows that of Corollgry]4.1 witl{z) andU ()
replaced byL, () andU; (z) as defined by[ (4]5). O

Corollary 4.6. The zeta function satisfies the bounds
4.7) max {L (x), Lz (2)} < ¢ (¢ +1) < min {U (z), U (2)},
whereL (z), U (z) are given by[(42) and., (z), U, (z) by (4.5).

Table 1 provides lower and upper bounds¢@2n + 1) forn = 1,. .., 5, utilising Corollaries
and 4.5 for: = 2n. We notice that., (2n) is better thar (2n) andUs (2n) is better than
U (2n) only forn = 1 (see also Remafk 4.4). Tables 2 and 3 give the use of Corollaries 4.1 and
forx = 2n. Thus, the table provide§(2n + 1), its approximation and the bound on the
error.

(4.6) Clx+1)—

L (2n) L, (2n) C((2n+1) | U(2n) U, (2n)
1.161005104 1.179377107 1.202056903 1.263289378 1.230519243
1.023044831 1.034587831 1.036927755 1.043501685 1.044816259
1.004260588 1.008077971 1.008349277 1.009131268 1.010513311
1.000897239 1.001976919 1.002008393 1.002100583 1.002578591
1.000204892 1.000490588 1.000494189 1.000504847 1.000640564

Table 1. Table of. (2n) , Ly (2n), ¢ (2n + 1), U (2n) andUs (2n) as given by[(4]2) and (4.5) for
n=1,...,5.

OB WN B
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C(2n—+1) [YCUEICY [ UCH-LCn

1.202056903 1.21%147241 0.0522l1421366

1.036927755 1.033273258 0.010228842731
1.008349277 1.006695928 0.002435339836
1.002008393 1.001498911 0.000601672195
1.000494189 1.000354870 0.0001499769401

Table 2. Table of (2n + 1), its approximationw and its bound

UEn) L@ for = 1,..., 5 wherelU (2n) and L (2n) are given by|(4]2).

OB WN B

C(2n+1) | BCuHLEy [ TEn-L(n)

1.202056903 1.2022056903 0.025257106828
1.036927755 1.039702045 0.00511421366
1.008349277 1.009295641 0.001217669918
1.002008393 1.002277755 0.000300836097H
1.000494189 1.000565576 0.0000749884700

Table 3. Table of (2n + 1), its approximatior?22F L2 and jts bound22n)-L2C2n) for
n=1,...,5wherelU, (2n) andL, (2n) are given by[(4}5).

U WNRFRE

5. AN IDENTITY AND BOUNDSINVOLVING THE BETA FUNCTION

The following lemma was developed in Ceroheé [5] to obtain sharp bounds for the Dirichlet
beta function3 (z) at a distance of one apart as presented in Theprem 5.2.

The techniques closely follow those presented in Se€lion 3 for the eta function.
Lemma 5.1. The following identity for the Dirichlet beta function holds. Namely,

2 © et

51 P(z) = —— — %t = ZE+1— xI).
5.) @)= 5T, e =) 8)

The following theorem produces sharp bounds for the secant slgpérot

Theorem 5.2. For real numberse > 0, we have

c* d*
(52) 3er1 <ﬁ($+1)—ﬁ(l’)<ﬁ,
with the best possible constants
1
(5.3) ¢ =3 G - 5) — 0.85619449 ... and d* = 2.

The following corollaries were also given in Cerohe [5] which prove useful in approximating
3 (2n) in terms of known3 (2n + 1) . This is so since (5]2) may be written as

(5.4) L(z)<p(z+1)<U(x),
where
(5.5) L(z)=f@)+ = and U(x)=B(z) + —

3:13+1 3:{:+1 :
Corollary 5.3. The bound
(5.6) ﬁ(x+1)_5(37)_2,3x+1 <2,3x+1

holds where* = 3 (% — 1) andd* = 2.
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Remark 5.4. The form [5.6) is useful since we may write
d* +c*

2,3x+1+E(x)’

Bla+1)=5()+

where|E (z)| < ¢ for

()
In (3) '

Corollary 5.5. The Dirichlet beta function satisfies the bounds

T >z =

where
(5.8) Lo(z) = B(z+2) -~ and Uy (2) = Bz +2) — -

3z+2

Remark 5.6. Some experimentation with the Maple computer algebra package indicates that
the lower bound., (x) is better tharl (z) for z > z, ~ 0.65827 and vice versa for < z,.
Similarly, U (x) is better tharl, (z) for z > z* = 3.45142 and vice versa fot < z*.

3z+2 '

Corollary 5.7. The Dirichlet beta function satisfies the bounds
max {L (), Ly ()} < B(z+1) <min{U (z),Us (2)},
whereL (z), U (z) are given by[(5}5) and., (), U> (z) by (5.8).

Remark 5.8. Table 4 provides lower and upper bounds fof2n) for n = 1,...,5 utilising
Theorenj 5. and Corollafy 5.5 with= 2n — 1. That is, the bounds are in terms@f2n — 1)
andf (2n + 1) where these may be obtained explicitly using the repult[2.23).

L(2n—1) | Ly(2n—1) B (2n) U@2n—-1) | Uy(2n—1)
.8805308843 .8948720722 .9159655942 1.007620386 .9372352393
9795164487 .9879273754 .9889445517 .9936375043 .992634394(
9973323061 .9986400132 .9986852222 .9989013123 .9991630153
9996850054 .9998480737 .9998499902 .9998593395 .999906185(
9999641840 .9999830849 .9999831640 .9999835544 .999989541(

Table 4: TableofL (2n — 1), Ly (2n— 1), 5(2n), U (2n — 1) andU, (2n — 1) as given by

(5.8) and[(5.B) fon =1, ...,5.

OB WNERS

6. ZETA BOUNDS VIA éEBYéEV

It is instructive to introduce some techniques for approximating and bounding integrals of the
product of functions.
The weightedCebysSev functional defined by

(6.1) T(f,9;p) == M(fg;p) — M (f;p) M (g;p),
where
(6.2) P-M(fip) = [ p@h@ds, P [ p@)ds

the weighted integral mean, has been extensively investigated in the literature with the view of
determining its bounds.
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There has been much activity in procuring boundsZdyf, g; p) and the interested reader is
referred to[[9]. The functiondl” (f, g; p) is known to satisfy a number of identities. Included
amongst these, are identities of Sonin type, namely

(6.3) P-T(f g:p) =/ p(@)[f(t) =g (t) — M(g;p)]dt, for~aconstant.

The constant € R but in the literature some of the more popular values have been taken as

A
0, +67 f (a+b) andM (f;p),
2 2
where—oco < § < f(t) < A <oofort € [a,b].
An identity attributed to Korkine viz
64)  P'-T(f.g:p) / / £ @)~ £ @) (9(2) — g (9)) dody

may also easily be shown to hold. 5
Here we shall mainly utilize the following results bounding @ebysev functional to deter-
mine bounds on the Zeta function. (See [6] for more general applications to special functions).
From [6.1) and[(6]3) we note that

b
(6.5) PoIT(f.9:p)] = / p(2) (f (2) = 7) (g () — M (g: ) da

to give

(

inf 1fC) =l [ p(x — M (g;p)| dz,

(66) P|T(fagap)’§ <fabp($)(f($)—./\/l(f,p))zdx);
< (J7p @) (g () = M(gsp)dr)”

where

6.7) / p () (h(x) — M (h; p))? dx = / p () 12 (x) dz — P - M? (hs p)

and it may be easily shown by direct calculation that,

b b
68 ot | [ b0 @ -] = [0 (0 - M) i
The following result was obtained by the autHar [7] by utilising the atfb@/byéev functional

bounds.

Theorem 6.1. For o > 1 the Zeta function satisfies the inequality

2

} L [2r(2a—1 3
(6.9) ‘g(a)—zal-% <rK-2 1{%—1} ,
where
(6.10) K= {72 (1 - ;T—;) —7¢ (3)} * L 0.310846901 .
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Theorem 6.2.For o > 1 andm = |« the zeta function satisfies the inequality

(6.11) [T(a+1)¢(a+1)=2°"T(m+1)¢(m+1)¢(a—m+1)
<200 3) LB [T (20 —2m+1) = T? (a —m +1)] 7,

N

where
1
(6.12) E?=2""T (2m + 1) [A(2m) — A (2m +1)] — §F2 (m+1)¢*(m+1),
with A (-) given by|(2.19).
Proof. Let
(6.13) T(a)zr(aﬂ)g(aﬂ):/ ’ —da
0 GCE _
:/ e 2 — a — 2% "dr, a>1
0 e2 —e 2

wherem = |a] .

Make the associations

-z ™ a—m
(6.14) plz)=ez, f(x):m7 9(x) ==
then we have froni (6]6)
( .
P = / e 2dr =2,
0
Y e s M 1
(6.15) M(f;p) =3 Wdl":ér(ﬂﬂ'l)ﬂm‘ﬂ),
0 2 — 2
M (g;p) = %/ e 22 dr = 2T (a —m 4 1).
\ 0

Thus, from [(6.11) {(613), we have

P-T(f,g;p)=T(a+1)¢(a+1)=2"T(m+1)(m+1){(a—m+1)
> _ " C(m+1)¢(m+1)
:/ e (xam—v)( )dx.

e a 2
Now, from {6.6) and[(6]7), the best value fowhen utilising the Euclidean norm is the integral
mean and so we have from (p.6),

(NG

— €

(NI
[NIE]

T (a+1)¢(a+1) =2 (m+ 1) (m~+1)¢ (0 —m+1)]

< (/OOO €5 (227 = 227" (v —m + 1)) dx)
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That is, on using (6]7), we have

(6.16) [T (a+1)¢(a+1)=2"T(m+1)¢(m+1)¢(a—m+1)

=

< B2 [/ e 2g2emm gy — 92ammIHIP2 (o 4 1)} :
0

where
[e’e] 2m 2
(6.17) E;:/ i L de—g(r(m“)“m“)) .
0 (65 — 6’5) 2
Now

o m 2 0
©18) [ o (m—) do= [T et (2 kBT ) e
0 € 0

. 22H (2m 4+ 1)
= Z n I+l
(2n+1)

(e e}

2n
= 22" (2m + 1 -

= 22" (2m 4 1) [A (2m) — X (2m + 1)],

where) (-) is as given by[(2.19), where we have used (3.15) and have undertaken the permiss-
able interchange of summation and integration.

Substitution of [(6.18) intd (6.17) and usirig (6.16) gives the stated refults (6.11) and (6.12)
after some simplification. O

The following corollary provides upper bounds for the zeta function at odd integers.
Corollary 6.3. The inequality
(6.19) L@2m+1)[2- (22 = 1) ¢ (2m) — (2" = 1) ((2m +1)]
—I*(m+1)¢G(m+1)>0
holds form =1,2,. ...

Proof. From equation[(6.12) of Theorem 6.2, we havé > 0. Utilising the relationship be-
tween) (-) and( (-) given by [2.2D) readily gives the inequalify (6/19). O

Remark 6.4. In (6.19), ifm is odd, ther2m andm + 1 are even so that an expression in the
form

(6.20) a(m)¢(2m) — B (m)¢ (2m+1) =7 (m)¢* (m+1) >0,
results, where
(m) =2(2*" -1 T (2m+1),
(6.21) (m)=(2*"*'=1)I'(2m+1) and
y(m) =T (m+1).
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Thus form odd we have
a(m)¢(2m) —v(m)¢* (m+1)
B (m)

(6.22) C(2m 1 1) <

That is, form = 2k — 1, we have from[(6.22)
a2k —1)¢ (4k —2) — v (2k — 1) ¢* (2k)
02k = 1)

(6.23) C(4k—1) <

giving for k = 1, 2, 3, for example,

2 2
c3) < (1 - ”-) = 1.21667148,

7 72
276 72
7) < 1— = 1.00887130
C( ) 1905 ( 2160) ’

62710 w2
1)< ———(1— = 1.00050356
< ) 5803245 < 492150) ’

Guo [15] obtained (3) < ’;—; and the above bound far(3) was obtained previously by the

author in [7] from [(6.1D). (See also [18] and [19]).
If m is eventhen form = 2k we have from[(6.22)
a (2k) ¢ (4k) — v (2k) % (2k + 1)
7 (2k) ’
We notice that in[(6.24), or equivalently (6]20) with = 2k there are two zeta functions with
odd arguments. There are a number of possibilities for resolving this, but firstly it should be
noticed that (x) is monotonically decreasing far> 1 sothat| (x;) > ( (z2) forl < z; < xs.
Firstly, we may use a lower bound obtained in Sedtion 4 as givep by (4.2) br (4.5). But from
Table 1, it seems thdt, (z) > L (z) for positive integer: and so we have from (6.p4)
a (2k) € (2k) — v (2k) L3 (2Kk)
B (2k) ’
where we have used the fact that(z) < ( (x + 1) .
Secondly, since the even argumerik + 2) < ¢ (2k + 1), then from (6.244) we have
o (2k) ¢ (4k) — v (2k) C* (2k + 2)
7 (2k) '

Finally, we have that (m + 1) > ¢ (2m + 1) so that from|(6.20) we have, withh = 2k on
solving the resulting quadratic equation that

—0(2k) + /5% (2k) + 4y (2k) a (2k)  (4k)
27 (2k) ‘

(6.24) C(4k+1) <

k=1,2,....

(6.25) (L (4/{3 + 1) <

(6.26) Cp(dk+1) <

(6.27) Co(4k+1) <

Fork = 1 we have from[(6.25) - (6.27) that

4 1 Tt 1\’
5) < — — — | — — — | =1.039931461
) <55~ 186 (540 12) ’

4

m 7T4
(5 (5) < 3 (1 - 16200) = 1.041111605,

(o (5) < —93 + v/8649 + 274 = 1.04157688;
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and fork =2

17 1 31 1)?
9) < 8 — 6 - —) =1.002082506
¢ O) < T50065" ~ 35770 (283507T 60) ’

17
160965

(e (9) <

4
LN (5 pp— — 1.0020834954
4 ( 337650 7

1
Co (9) < —17885 + 5 V2878859025 + 34m° = 1.00208436.

It should be noted that the above results give tighter upper bounds for the odd zeta function eval-
uations than were possible using the methodology developed earlier in the paper, the numerics
of which are presented in Table 1.

Numerical experimentation using Maple seems to indicate that the upper bounds for

Co(4k+1),¢Cp(4k+1) and (o (4k +1)

are in increasing order.
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