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ABSTRACT. Sharp bounds are obtained for expressions involving Zeta and related functions
at a distance of one apart. Since Euler discovered in 1736 a closed form expression for the
Zeta function at the even integers, a comparable expression for the odd integers has not been
forthcoming. The current article derives sharp bounds for the Zeta, Lambda and Eta functions at
a distance of one apart. The methods developed allow an accurate approximation of the function
values at the odd integers in terms of the neighbouring known function at even integer values.
The Dirichlet Beta function which has explicit representation at the odd integer values is also
investigated in the current work.

Čebyšev functional bounds are utilised to obtain tight upper bounds for the Zeta function at
the odd integers.
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1. I NTRODUCTION

The present paper represents in part a review of the recent work of the author in obtaining
sharp bounds for expressions involving functions at a distance of one apart. The main motivation
for the work stems from the fact that Zeta and related functions are explicitly known at either
even function values (Zeta, Lambda and Eta) or at odd function values as for the Dirichlet Beta
function.

The approach of the current paper is to investigate integral identities for the secant slope
for η (x) andβ (x) from which sharp bounds are procured. The results forη (x) of Section 3
are extended to theζ (x) andλ (x) functions because of the relationship between them. The
sharp bounds procured in theη (x) for ζ (x) are obtained, it is argued, in a more straightforward
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2 P. CERONE

fashion than in the earlier work of Alzer [2]. Some numerical illustration of the results relating
to the approximation of the Zeta function at odd integer values is undertaken in Section 4.

The technique for obtaining theη (x) bounds is also adapted to developing the bounds for
β (x) in Section 5.

The final Section 6 of the paper investigates the use of bounds for theČebyšev function in
extracting upper bounds for the odd Zeta functional values that are tighter than those obtained in
the earlier sections. However, this approach does not seem to be able to provide lower bounds.

2. THE EULER ZETA AND RELATED FUNCTIONS

The Zeta function

(2.1) ζ(x) :=
∞∑

n=1

1

nx
, x > 1

was originally introduced in 1737 by the Swiss mathematician Leonhard Euler (1707-1783) for
realx who proved the identity

(2.2) ζ(x) :=
∏

p

(
1− 1

px

)−1

, x > 1,

wherep runs through all primes. It was Riemann who allowedx to be a complex variablez
and showed that even though both sides of (2.1) and (2.2) diverge forRe(z) ≤ 1, the function
has a continuation to the whole complex plane with a simple pole atz = 1 with residue 1. The
function plays a very significant role in the theory of the distribution of primes (see [2], [4], [5],
[15] and [16]). One of the most striking properties of the zeta function, discovered by Riemann
himself, is the functional equation

(2.3) ζ(z) = 2zπz−1 sin
(πz

2

)
Γ(1− z)ζ(1− z)

that can be written in symmetric form to give

(2.4) π−
z
2 Γ
(z

2

)
ζ(z) = π−( 1−z

2 )Γ

(
1− z

2

)
ζ(1− z).

In addition to the relation (2.3) between the zeta and the gamma function, these functions are
also connected via the integrals [13]

(2.5) ζ(x) =
1

Γ(x)

∫ ∞

0

tx−1dt

et − 1
, x > 1,

and

(2.6) ζ(x) =
1

C(x)

∫ ∞

0

tx−1dt

et + 1
, x > 0,

where

(2.7) C(x) := Γ(x)
(
1− 21−x

)
and Γ (x) =

∫ ∞

0

e−ttx−1dt.

In the series expansion

(2.8)
text

et − 1
=

∞∑
m=0

Bm (x)
tm

m!
,
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BOUNDS FORZETA AND RELATED FUNCTIONS 3

where Bm (x) are the Bernoulli polynomials (after Jacob Bernoulli),Bm (0) = Bm are the
Bernoulli numbers. They occurred for the first time in the formula [1, p. 804]

(2.9)
m∑

k=1

kn =
Bn+1(m + 1)−Bn+1

n + 1
, n, m = 1, 2, 3, . . . .

One of Euler’s most celebrated theorems discovered in 1736 (Institutiones Calculi Differen-
tialis, Opera (1), Vol. 10) is

(2.10) ζ(2n) = (−1)n−1 22n−1π2n

(2n)!
B2n; n = 1, 2, 3, . . . .

The result may also be obtained in a straight forward fashion from (2.6) and a change of variable
on using the fact that

(2.11) B2n = (−1)n−1 · 4n
∫ ∞

0

t2n−1

e2πt − 1
dt

from Whittaker and Watson [25, p. 126].
We note here that

ζ(2n) = Anπ
2n,

where

An = (−1)n−1 · n

(2n + 1)!
+

n−1∑
j=1

(−1)j−1

(2j + 1)!
An−j

andA1 = 1
3!
.

Further, the Zeta function for even integers satisfy the relation (Borwein et al. [4], Srivastava
[21])

ζ(2n) =

(
n +

1

2

)−1 n−1∑
j=1

ζ(2j)ζ(2n− 2j), n ∈ N\ {1} .

Despite several efforts to find a formula forζ(2n + 1), (for example [22, 23]), there seems to
be no elegant closed form representation for the zeta function at the odd integer values. Several
series representations for the valueζ(2n + 1) have been proved by Srivastava and co-workers
in particular.

From a long list of these representations, [22, 23], we quote only a few

(2.12) ζ(2n + 1) = (−1)n−1π2n

[
H2n+1 − log π

(2n + 1)!

+
n−1∑
k=1

(−1)k

(2n− 2k + 1)!

ζ(2k + 1)

π2k
+ 2

∞∑
k=1

(2k − 1)!

(2n + 2k + 1)!

ζ(2k)

22k

]
,

(2.13) ζ(2n + 1) = (−1)n (2π)2n

n(22n+1 − 1)

[
n−1∑
k=1

(−1)k−1k

(2n− 2k)!

ζ(2k)

π2k
+

∞∑
k=0

(2k)!

(2n + 2k)!

ζ(2k)

22k

]
,

and

(2.14) ζ(2n + 1) = (−1)n (2π)2n

(2n− 1)22n + 1

[
n−1∑
k=1

(−1)k−1k

(2n− 2k + 1)!

ζ(2k + 1)

π2k

+
∞∑

k=0

(2k)!

(2n + 2k + 1)!

ζ(2k)

22k

]
, n = 1, 2, 3, . . . .
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4 P. CERONE

There is also an integral representation forζ (n + 1) namely,

(2.15) ζ(2n + 1) = (−1)n+1 · (2π)2n+1

2δ (n + 1)!

∫ δ

0

B2n+1 (t) cot (πt) dt,

whereδ = 1 or 1
2

([1, p. 807]). Recently, Cvijovíc and Klinkowski [12] have given the integral
representations

(2.16) ζ(2n + 1) = (−1)n+1 · (2π)2n+1

2δ (1− 2−2n) (2n + 1)!

∫ δ

0

B2n+1 (t) tan (πt) dt,

and

(2.17) ζ(2n + 1) = (−1)n · π2n+1

4δ (1− 2−(2n+1)) (2n)!

∫ δ

0

E2n (t) csc (πt) dt.

Both the series representations (2.12) – (2.14) and the integral representations (2.15) – (2.16)
are however both somewhat difficult in terms of computational aspects and time considerations.

We note that there are functions that are closely related toζ (x) . Namely, the Dirichletη (·)
andλ (·) functions given by

(2.18) η (x) =
∞∑

n=1

(−1)n−1

nx
=

1

Γ (x)

∫ ∞

0

tx−1

et + 1
dt, x > 0

and

(2.19) λ (x) =
∞∑

n=0

1

(2n + 1)x =
1

Γ (x)

∫ ∞

0

tx−1

et − e−t
dt, x > 0.

These are related toζ (x) by

(2.20) η (x) =
(
1− 21−x

)
ζ (x) and λ (x) =

(
1− 2−x

)
ζ (x)

satisfying the identity

(2.21) ζ (x) + η (x) = 2λ (x) .

It should be further noted that explicit expressions for both ofη (2n) andλ (2n) exist as a
consequence of the relation toζ (2n) via (2.20).

The Dirichlet beta function or DirichletL−function is given by [14]

(2.22) β (x) =
∞∑

n=0

(−1)n

(2n + 1)x , x > 0

whereβ (2) = G, Catalan’s constant.
It is readily observed from (2.19) thatβ (x) is the alternating version ofλ (x) , however, it

cannot be directly related toζ (x) . It is also related toη (x) in that only the odd terms are
summed.

The beta function may be evaluated explicitly at positive odd integer values ofx, namely,

(2.23) β (2n + 1) = (−1)n E2n

2 (2n)!

(π

2

)2n+1

,

whereEn are the Euler numbers generated by

sech (x) =
2ex

e2x + 1
=

∞∑
n=0

En
xn

n!
.
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BOUNDS FORZETA AND RELATED FUNCTIONS 5

The Dirichlet beta function may be analytically continued over the whole complex plane by
the functional equation

β (1− z) =

(
2

π

)z

sin
(πz

2

)
Γ (z) β (z) .

The functionβ (z) is defined everywhere in the complex plane and has no singularities, unlike
the Riemann zeta function,ζ (s) =

∑∞
n=1

1
ns , which has a simple pole ats = 1.

The Dirichlet beta function and the zeta function have important applications in a number of
branches of mathematics, and in particular in Analytic number theory. See for example [3], [13]
– [17].

Further,β (x) has an alternative integral representation [14, p. 56]. Namely,

β (x) =
1

2Γ (x)

∫ ∞

0

tx−1

cosh (t)
dt, x > 0.

That is,

(2.24) β (x) =
1

Γ (x)

∫ ∞

0

tx−1

et + e−t
dt, x > 0.

The functionβ (x) is also connected to prime number theory [14] which may perhaps be best
summarised by

β (x) =
∏

p prime
p≡1 mod 4

(
1− p−x

)−1 ·
∏

p prime
p≡3 mod 4

(
1 + p−x

)−1
=
∏
p odd
prime

(
1− (−1)

p−1
2 p−x

)−1

,

where the rearrangement of factors is permitted because of absolute convergence.
Cerone et al. [8] developed the identity given in the following lemma and the bounds in

Theorem 2.2 which are used to obtain approximations to the odd zeta function values in terms
of the even function values.

Lemma 2.1. The following identity involving the Zeta function holds. Namely,

(2.25)
∫ ∞

0

tx

(et + 1)2dt = C (x + 1) ζ (x + 1)− xC (x) ζ (x) , x > 0,

whereC (x) is as given by (2.7).

Theorem 2.2.The Zeta function satisfies the bounds

(2.26) (1− b (x)) ζ (x) +
b (x)

8
≤ ζ (x + 1) ≤ (1− b (x)) ζ (x) +

b (x)

2
, x > 0,

where

(2.27) b (x) :=
1

2x − 1
.

Theorem 2.3.The Zeta function satisfies the bounds

(2.28) (1− b (x)) ζ (x) +
b (x)

8
≤ ζ (x + 1) ≤ (1− b (x)) ζ (x) +

b (x)

2θ (λ∗, x)
:= U∗ (x)

whereb (x) is as given by (2.27),

θ (λ, x) = λx−1

(
λ

1− λ

)2(1−λ)

and

λ∗ =
1

z
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6 P. CERONE

with z the solution of

z = 1 + e−
x+1
2
·z.

The 1
2

on the right hand side is the best constant. The best constant for the lower bound was
shown to beln 2− 1

2
by Alzer[2], on making use of Lemma 2.1 and Theorem 2.2, rather than1

8
.

3. AN I DENTITY AND BOUNDS I NVOLVING THE ETA AND RELATED FUNCTIONS

The following lemma was developed in Cerone [5] to obtain sharp bounds for the eta function,
η (x) as given in Theorem 2.3.

Lemma 3.1. The following identity for the eta function holds. Namely,

(3.1) Q (x) :=
1

Γ (x + 1)

∫ ∞

0

tx

(et + 1)2dt = η (x + 1)− η (x) , x > 0.

Proof. From (2.18),

xΓ (x) η (x) =

∫ ∞

0

xtx−1

et + 1
dt, x > 0

= lim
T→∞

T x

eT + 1
+

∫ ∞

0

txet

(et + 1)2dt

and so we have

(3.2) Γ (x + 1) η (x) =

∫ ∞

0

ettx

(et + 1)2dt.

Thus, from (2.18) and (3.2),

Γ (x + 1) [η (x + 1)− η (x)] =

∫ ∞

0

tx

et + 1

[
1− et

et + 1

]
dt =

∫ ∞

0

tx

(et + 1)2dt,

giving (3.1). �

The following theorem presents sharp bounds for the secant slopeη (x) for a distance of one
apart.

Theorem 3.2.For real numbersx > 0, we have

(3.3)
c

2x+1
< η (x + 1)− η (x) <

d

2x+1

with the best possible constants

(3.4) c = 2 ln 2− 1 = 0.3862943 . . . and d = 1.

Proof. Let x > 0. We first establish the first inequality in (3.3). From the identity (3.1) proved
in Lemma 3.1, it is readily evident that0 < Q (x) . We further consider

(3.5) J =

∫ ∞

0

dt

(et + 1)2 =

∫ ∞

0

e−2t

(e−t + 1)2dt.

Thus, after some obvious simplifications

(3.6) J =

∫ 1

0

u

(u + 1)2du =

∫ 2

1

u− 1

u2
du = ln 2− 1

2
.

Now, let us examine
2x+1Q (x)− (2 ln 2− 1) .
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BOUNDS FORZETA AND RELATED FUNCTIONS 7

That is, from (3.1), (3.5) and (3.6),

Γ (x + 1)
[
2x+1Q (x)− 2J

]
= 2x+1

∫ ∞

0

tx

(et + 1)2dt− 2 · Γ (x + 1)

∫ ∞

0

dt

(et + 1)2(3.7)

= 2

∫ ∞

0

e−2t [(2t)x − Γ (x + 1)]

(1 + e−t)2 dt

=

∫ ∞

0

e−u [ux − Γ (x + 1)](
1 + e−

u
2

)2 du

=

∫ ∞

0

u (t, x) v (t) dt,

where

(3.8) u (t, x) = e−t [tx − Γ (x + 1)] , v (t) =
(
1 + e−

t
2

)−2

.

The functionv (t) is strictly increasing fort ∈ (0,∞) .

Now, let t0 = (Γ (x + 1))
1
x , then for0 < t < t0, u (t, x) < 0 andv (t) < v (t0) . Also, for

t > t0, u (t, x) > 0 andv (t) > v (t0) . Hence we have thatu (t, x) v (t) > u (t, x) v (t0) for
t > 0 andt 6= t0. This implies that∫ ∞

0

u (t, x) v (t) dt > v (t0)

∫ ∞

0

e−t [tx − Γ (x + 1)] dt = 0.

Hence from (3.7) and (3.6)

(3.9) Q (x) >
2 ln 2− 1

2x+1
, x > 0.

Now for the right inequality.
We have from (3.4) that

Γ (x + 1)
[
1− 2x+1Q (x)

]
= Γ (x + 1)− 2

∫ ∞

0

(2t)x e−2t

(1 + e−t)2dt

=

∫ ∞

0

e−ttx [1− v (t)] dt,

wherev (t) is as given by (3.8). We make the observation thate−ttx is positive and1− v (t) is
strictly decreasing and positive fort ∈ (0,∞) , which naturally leads to the conclusion that

(3.10) Q (x) <
1

2x+1
, x > 0.

In summary we note that (3.9) and (3.11) provide lower and upper bounds respectively for
Q (x) . That the constants in (3.3) are best possible remains to be shown.

Since (3.3) holds for all positivex, we have

(3.11) c < 2x+1Q (x) < d.

Now, from (3.1), we have

(3.12) 2x+1Q (x) =
2x+1

Γ (x + 1)

∫ ∞

0

e−2ttx

(1 + e−t)2dt

and so

(3.13) lim
x→0

2x+1Q (x) = 2

∫ ∞

0

e−2t

(1 + e−t)
dt = 2 · J = 2 ln 2− 1,
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8 P. CERONE

where the permissable interchange of the limit and integration has been undertaken and we have
used (3.5) – (3.6).

Now, since for0 < w < 1 the elementary inequality1 − 2w < (1 + w)−2 < 1 holds, then
we have

1− 2e−t <
1

(1 + e−t)2 < 1.

Thus, from (3.12),

(3.14) 1− 2 ·
(

2

3

)x+1

< 2x+1Q (x) < 1,

where we have utilised the fact that,

(3.15)
∫ ∞

0

e−sttxdt =
Γ (x + 1)

sx+1
.

Finally, from (3.14) we conclude that

(3.16) lim
x→∞

2x+1Q (x) = 1.

From (3.11), (3.13) and (3.16) we havec ≤ 2 ln 2 − 1 andd ≥ 1 which implies that the best
possible constants in (3.3) are given byc = 2 ln 2− 1 andd = 1. �

Corollary 3.3. The bound

(3.17)

∣∣∣∣η (x + 1)− η (x)− d + c

2x+2

∣∣∣∣ < d− c

2x+2
, x > 0

holds, wherec = 2 ln 2− 1 andd = 1.

Proof. From (3.3), let

L (x) = η (x) +
c

2x+1
and U (x) = η (x) +

d

2x+1

then
L (x) < η (x + 1) < U (x)

and so

−U (x)− L (x)

2
< η (x + 1)− U (x) + L (x)

2
<

U (x)− L (x)

2
.

�

Remark 3.4. The form of (3.17) is very useful since we may write

η (x + 1) = η (x) +
d + c

2x+2
+ E (x) ,

where|E (x)| < ε for

(3.18) x > x∗ :=
ln
(

d−c
4ε

)
ln 2

.

Corollary 3.5. The eta function satisfies the bounds

(3.19) L2 (x) < η (x + 1) < U2 (x) , x > 0,

where

(3.20) L2 (x) = η (x + 2)− d

2x+2
and U2 (x) = η (x + 2)− c

2x+2
.
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BOUNDS FORZETA AND RELATED FUNCTIONS 9

Proof. From (3.6)

− d

2x+1
< η (x)− η (x + 1) < − c

2x+1
.

Replacex by x + 1 and rearrange to give (3.19) – (3.20). �

Remark 3.6. We note thatL (·) andU (·) will be used to denote the lower and upper bounds
respectively. If the bounds involve a previous value at a distance of one away from the function
that is bounded, then no subscript is used. If it involves a subsequent value then a subscript of
2 is used. This is shown in Corollaries 3.3 and 3.5 above for the eta function. No distinction in
the notation is used when referring to other functions.

Given the sharp inequalities forη (x + 1)− η (x) in (3.3) – (3.4), then we may readily obtain
sharp bounds for expressions involving the zeta function and the lambda function at a distance
of one apart.

Corollary 3.7. For real numbersx > 0 we have

(3.21)

(
ln 2− 1

2

)
b (x) < ζ (x + 1)− (1− b (x)) ζ (x) <

b (x)

2
,

where

(3.22) b (x) =
1

2x − 1
.

Proof. From Theorem 3.2 and (2.20) giving a relationship betweenη (x) andζ (x) we have

η (x + 1)− η (x) =
(
1− 2−x

)
ζ (x + 1)−

(
1− 21−x

)
ζ (x)

and so from (3.3) and (3.4)
c

2
· b (x) < ζ (x + 1)− (1− b (x)) ζ (x) <

d

2
· b (x) .

�

Remark 3.8. Cerone et al. [8] obtained the upper bound in (3.21) and a coarser lower bound of
b(x)
8

as presented in (2.26). Alzer [3] demonstrated that the constantsln 2− 1
2

and1
2

in (3.21) are
sharp. The sharpness of the constant1

2
was obtained by Alzer on utilising a different approach,

other than the sharpness of the constantd = 1 in (3.4) via the eta function and hence1
2

in (3.21).

Corollary 3.9. For real x > 0 we have(
ln 2− 1

2

)
b (x)

(
1− 2−(x+1)

)
< λ (x + 1)−

(
1− b (x)

1− b (x + 1)

)
λ (x)(3.23)

<
b (x)

2
·
(
1− 2−(x+1)

)
,

whereb (x) is as given by (3.22).

Proof. Again utilising Theorem 3.2 and from (2.20) and (2.21) we have, after some algebra,

(3.24) η (x) = (1− b (x)) λ (x)

and so from (3.3) and (3.4)
2 ln 2− 1

2x+1
< η (x + 1)− η (x)

= (1− b (x + 1)) λ (x + 1)− (1− b (x)) λ (x) <
1

2x+1
.

Division by1− b (x + 1) and some simplification readily produces (3.23). �
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The advantage of having sharp inequalities such as (3.3), (3.21) and (3.23) involving function
values at a distance of one apart is that if we placex = 2n, then sinceζ (2n) is known explicitly,
we may approximateζ (2n + 1) and provide explicit bounds. This is so forη (·) andλ (·) as
well because of their relationship toζ (·) via (2.20) – (2.21).

4. SOME ZETA RELATED NUMERICS

In what follows, we investigate some numerical results associated with bounding the un-
knownζ (2n + 1) by expressions involving the explicitly knownζ (2n) . The following corol-
laries hold.

Corollary 4.1. The bound

(4.1)

∣∣∣∣ζ (x + 1)− (1− b (x)) ζ (x)− ln 2

2
b (x)

∣∣∣∣ ≤ 1− ln 2

2
b (x) , x > 0

holds, whereb (x) is as given by (3.2).

Proof. Let

L (x) = (1− b (x)) ζ (x) +

(
ln 2− 1

2

)
b (x) , and(4.2)

U (x) = (1− b (x)) ζ (x) +
b (x)

2

then from (3.21) we have
L (x) ≤ ζ (x + 1) ≤ U (x) .

Hence

−U (x)− L (x)

2
≤ ζ (x + 1)− U (x) + L (x)

2
≤ U (x)− L (x)

2
which may be expressed as the stated result (4.1) on noting the obvious correspondences and
simplification. �

Remark 4.2. The form (4.1) is a useful one since we may write

(4.3) ζ (x + 1) = (1− b (x)) ζ (x) +
ln 2

2
b (x) + E (x) ,

where
|E (x)| < ε

for

x > x∗ := ln

(
1 +

1− ln 2

2ε

)/
ln 2.

That is, we may approximateζ (x + 1) by (1− b (x)) ζ (x) + ln 2
2

b (x) within an accuracy ofε
for x > x∗.

We note that both the result of Corollary 3.7 and Corollary 4.1 as expressed in (3.21) and (4.1)
respectively rely on approximatingζ (x + 1) in terms ofζ (x) . The following result involves
approximatingζ (x + 1) in terms ofζ (x + 2) , the subsequent zeta values within a distance of
one rather than the former zeta values.

Theorem 4.3.The zeta function satisfies the bounds

(4.4) L2 (x) ≤ ζ (x + 1) ≤ U2 (x) ,

J. Inequal. Pure and Appl. Math., 6(5) Art. 134, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


BOUNDS FORZETA AND RELATED FUNCTIONS 11

where

(4.5) L2 (x) =
ζ (x + 2)− b(x+1)

2

1− b (x + 1)
and U2 (x) =

ζ (x + 2)−
(
ln 2− 1

2

)
b (x + 1)

1− b (x + 1)
.

Proof. From (3.21) we have

0 ≤
(

ln 2− 1

2

)
b (x) ≤ ζ (x + 1)− (1− b (x)) ζ (x) ≤ b (x)

2

and so

−b (x)

2
≤ (1− b (x)) ζ (x)− ζ (x + 1) ≤ −

(
ln 2− 1

2

)
b (x)

to produce

ζ (x + 1)− b (x)

2
≤ (1− b (x)) ζ (x) ≤ ζ (x + 1)−

(
ln 2− 1

2

)
b (x) .

A rearrangement and change ofx to x + 1 produces the stated result (4.4) – (4.5). �

Remark 4.4. Some experimentation using the Maple computer algebra package indicates that
the lower boundL2 (x) is better than the lower boundL (x) for x > x∗ = 1.30467865 . . .
and vice versa forx < x∗. In a similar manner the upper boundU2 (x) is better thanU (x) for
x < x∗ = 3.585904878 . . . and vice versa forx > x∗.

The following corollary is valid in whichζ (x + 1) may be approximated in terms ofζ (x + 2)
and an explicit bound is provided for the error.

Corollary 4.5. The bound

(4.6)

∣∣∣∣∣ζ (x + 1)−
ζ (x + 2)−

(
ln 2− 1

2

)
b (x + 1)

1− b (x + 1)

∣∣∣∣∣ ≤ 1− ln 2

2
· b (x + 1)

1− b (x + 1)

holds, whereb (x) is as defined by (3.22).

Proof. The proof is straight forward and follows that of Corollary 4.1 withL (x) andU (x)
replaced byL2 (x) andU2 (x) as defined by (4.5). �

Corollary 4.6. The zeta function satisfies the bounds

(4.7) max {L (x) , L2 (x)} ≤ ζ (x + 1) ≤ min {U (x) , U2 (x)} ,

whereL (x) , U (x) are given by (4.2) andL2 (x) , U2 (x) by (4.5).

Table 1 provides lower and upper bounds forζ (2n + 1) for n = 1, . . . , 5, utilising Corollaries
3.9 and 4.5 forx = 2n. We notice thatL2 (2n) is better thanL (2n) andU2 (2n) is better than
U (2n) only for n = 1 (see also Remark 4.4). Tables 2 and 3 give the use of Corollaries 4.1 and
4.5 for x = 2n. Thus, the table providesζ (2n + 1), its approximation and the bound on the
error.

n L (2n) L2 (2n) ζ (2n + 1) U (2n) U2 (2n)
1 1.161005104 1.179377107 1.202056903 1.263289378 1.230519243
2 1.023044831 1.034587831 1.036927755 1.043501685 1.044816259
3 1.004260588 1.008077971 1.008349277 1.009131268 1.010513311
4 1.000897239 1.001976919 1.002008393 1.002100583 1.002578591
5 1.000204892 1.000490588 1.000494189 1.000504847 1.000640564

Table 1. Table ofL (2n) , L2 (2n) , ζ (2n + 1), U (2n) andU2 (2n) as given by (4.2) and (4.5) for
n = 1, . . . , 5.
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12 P. CERONE

n ζ (2n + 1) U(2n)+L(2n)
2

U(2n)−L(2n)
2

1 1.202056903 1.212147241 0.0511421366
2 1.036927755 1.033273258 0.010228842731
3 1.008349277 1.006695928 0.002435339836
4 1.002008393 1.001498911 0.000601672195
5 1.000494189 1.000354870 0.0001499769401

Table 2. Table ofζ (2n + 1), its approximationU(2n)+L(2n)
2 and its bound

U(2n)−L(2n)
2 for n = 1, . . . , 5 whereU (2n) andL (2n) are given by (4.2).

n ζ (2n + 1) U2(2n)+L2(2n)
2

U2(2n)−L2(2n)
2

1 1.202056903 1.202056903 0.02557106828
2 1.036927755 1.039702045 0.00511421366
3 1.008349277 1.009295641 0.001217669918
4 1.002008393 1.002277755 0.0003008360975
5 1.000494189 1.000565576 0.0000749884700

Table 3. Table ofζ (2n + 1), its approximationU2(2n)+L2(2n)
2 and its boundU2(2n)−L2(2n)

2 for
n = 1, . . . , 5 whereU2 (2n) andL2 (2n) are given by (4.5).

5. AN I DENTITY AND BOUNDS I NVOLVING THE BETA FUNCTION

The following lemma was developed in Cerone [5] to obtain sharp bounds for the Dirichlet
beta function,β (x) at a distance of one apart as presented in Theorem 5.2.

The techniques closely follow those presented in Section 3 for the eta function.

Lemma 5.1. The following identity for the Dirichlet beta function holds. Namely,

(5.1) P (x) :=
2

Γ (x + 1)

∫ ∞

0

e−t

(et + e−t)2 · t
xdt = β (x + 1)− β (x) .

The following theorem produces sharp bounds for the secant slope ofβ (x) .

Theorem 5.2.For real numbersx > 0, we have

(5.2)
c∗

3x+1
< β (x + 1)− β (x) <

d∗

3x+1
,

with the best possible constants

(5.3) c∗ = 3

(
π

4
− 1

2

)
= 0.85619449 . . . and d∗ = 2.

The following corollaries were also given in Cerone [5] which prove useful in approximating
β (2n) in terms of knownβ (2n + 1) . This is so since (5.2) may be written as

(5.4) L (x) < β (x + 1) < U (x) ,

where

(5.5) L (x) = β (x) +
c∗

3x+1
and U (x) = β (x) +

d∗

3x+1
.

Corollary 5.3. The bound

(5.6)

∣∣∣∣β (x + 1)− β (x)− d∗ + c∗

2 · 3x+1

∣∣∣∣ < d∗ − c∗

2 · 3x+1

holds wherec∗ = 3
(

π
4
− 1

2

)
andd∗ = 2.
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Remark 5.4. The form (5.6) is useful since we may write

β (x + 1) = β (x) +
d∗ + c∗

2 · 3x+1
+ E (x) ,

where|E (x)| < ε for

x > x∗ :=
ln
(

d∗−c∗

2·ε

)
ln (3)

− 1.

Corollary 5.5. The Dirichlet beta function satisfies the bounds

(5.7) L2 (x) < β (x + 1) < U2 (x) ,

where

(5.8) L2 (x) = β (x + 2)− d∗

3x+2
and U2 (x) = β (x + 2)− c∗

3x+2
.

Remark 5.6. Some experimentation with the Maple computer algebra package indicates that
the lower boundL2 (x) is better thanL (x) for x > x∗ ≈ 0.65827 and vice versa forx < x∗.
Similarly, U (x) is better thanU2 (x) for x > x∗ ≈ 3.45142 and vice versa forx < x∗.

Corollary 5.7. The Dirichlet beta function satisfies the bounds

max {L (x) , L2 (x)} < β (x + 1) < min {U (x) , U2 (x)} ,

whereL (x) , U (x) are given by (5.5) andL2 (x) , U2 (x) by (5.8).

Remark 5.8. Table 4 provides lower and upper bounds forβ (2n) for n = 1, . . . , 5 utilising
Theorem 5.2 and Corollary 5.5 withx = 2n− 1. That is, the bounds are in terms ofβ (2n− 1)
andβ (2n + 1) where these may be obtained explicitly using the result (2.23).

n L (2n− 1) L2 (2n− 1) β (2n) U (2n− 1) U2 (2n− 1)
1 .8805308843 .8948720722 .9159655942 1.007620386 .9372352393
2 .9795164487 .9879273754 .9889445517 .9936375043 .9926343940
3 .9973323061 .9986400132 .9986852222 .9989013123 .9991630153
4 .9996850054 .9998480737 .9998499902 .9998593395 .9999061850
5 .9999641840 .9999830849 .9999831640 .9999835544 .9999895417

Table 4: Table ofL (2n− 1) , L2 (2n− 1) , β (2n) , U (2n− 1) andU2 (2n− 1) as given by
(5.5) and (5.8) forn = 1, . . . , 5.

6. ZETA BOUNDS VIA ČEBYŠEV

It is instructive to introduce some techniques for approximating and bounding integrals of the
product of functions.

The weighteďCebyšev functional defined by

(6.1) T (f, g; p) := M (fg; p)−M (f ; p)M (g; p) ,

where

(6.2) P · M (f ; p) :=

∫ b

a

p (x) h (x) dx, P =

∫ b

a

p (x) dx

the weighted integral mean, has been extensively investigated in the literature with the view of
determining its bounds.
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14 P. CERONE

There has been much activity in procuring bounds forT (f, g; p) and the interested reader is
referred to [9]. The functionalT (f, g; p) is known to satisfy a number of identities. Included
amongst these, are identities of Sonin type, namely

(6.3) P · T (f, g; p) =

∫ b

a

p (t) [f (t)− γ] [g (t)−M (g; p)] dt, for γ a constant.

The constantγ ∈ R but in the literature some of the more popular values have been taken as

0,
∆ + δ

2
, f

(
a + b

2

)
andM (f ; p) ,

where−∞ < δ ≤ f (t) ≤ ∆ < ∞ for t ∈ [a, b] .
An identity attributed to Korkine viz

(6.4) P 2 · T (f, g; p) =
1

2

∫ b

a

∫ b

a

p (x) p (y) (f (x)− f (y)) (g (x)− g (y)) dxdy

may also easily be shown to hold.
Here we shall mainly utilize the following results bounding theČebyšev functional to deter-

mine bounds on the Zeta function. (See [6] for more general applications to special functions).
From (6.1) and (6.3) we note that

(6.5) P · |T (f, g; p)| =
∣∣∣∣∫ b

a

p (x) (f (x)− γ) (g (x)−M (g; p)) dx

∣∣∣∣
to give

(6.6) P · |T (f, g; p)| ≤



inf
γ∈R

‖f (·)− γ‖
∫ b

a
p (x) |g (x)−M (g; p)| dx,

(∫ b

a
p (x) (f (x)−M (f ; p))2 dx

) 1
2

×
(∫ b

a
p (x) (g (x)−M (g; p))2 dx

) 1
2
,

where

(6.7)
∫ b

a

p (x) (h (x)−M (h; p))2 dx =

∫ b

a

p (x) h2 (x) dx− P · M2 (h; p)

and it may be easily shown by direct calculation that,

(6.8) P · inf
γ∈R

[∫ b

a

p (x) (f (x)− γ)2 dx

]
=

∫ b

a

p (x) (f (x)−M (f ; p))2 dx.

The following result was obtained by the author [7] by utilising the aboveČebyšev functional
bounds.

Theorem 6.1.For α > 1 the Zeta function satisfies the inequality

(6.9)

∣∣∣∣ζ (α)− 2α−1 · π2

6

∣∣∣∣ ≤ κ · 2α−1

[
2Γ (2α− 1)

Γ2 (α)
− 1

] 1
2

,

where

(6.10) κ =

[
π2

(
1− π2

72

)
− 7ζ (3)

] 1
2

= 0.319846901 . . .
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Theorem 6.2.For α > 1 andm = bαc the zeta function satisfies the inequality

(6.11)
∣∣Γ (α + 1) ζ (α + 1)− 2α−mΓ (m + 1) ζ (m + 1) ζ (α−m + 1)

∣∣
≤ 2(α−m+ 1

2) · E ·
[
Γ (2α− 2m + 1)− Γ2 (α−m + 1)

] 1
2 ,

where

(6.12) E2 = 22mΓ (2m + 1) [λ (2m)− λ (2m + 1)]− 1

2
Γ2 (m + 1) ζ2 (m + 1) ,

with λ (·) given by (2.19).

Proof. Let

τ (α) = Γ (α + 1) ζ (α + 1) =

∫ ∞

0

xα

ex − 1
dx(6.13)

=

∫ ∞

0

e−
x
2

xm

e
x
2 − e−

x
2

· xα−mdx, α > 1

wherem = bαc .
Make the associations

(6.14) p (x) = e−
x
2 , f (x) =

xm

e
x
2 − e−

x
2

, g (x) = xα−m

then we have from (6.6)

(6.15)



P =

∫ ∞

0

e−
x
2 dx = 2,

M (f ; p) = 1
2

∫ ∞

0

e−
x
2 xm

e
x
2 − e−

x
2

dx =
1

2
Γ (m + 1) ζ (m + 1) ,

M (g; p) = 1
2

∫ ∞

0

e−
x
2 xα−mdx = 2α−mΓ (α−m + 1) .

Thus, from (6.1) – (6.3), we have

P · T (f, g; p) = Γ (α + 1) ζ (α + 1)− 2α−mΓ (m + 1) ζ (m + 1) ζ (α−m + 1)

=

∫ ∞

0

e−
x
2

(
xα−m − γ

)( xm

e
x
2 − e−

x
2

− Γ (m + 1) ζ (m + 1)

2

)
dx.

Now, from (6.6) and (6.7), the best value forγ when utilising the Euclidean norm is the integral
mean and so we have from (6.6),∣∣Γ (α + 1) ζ (α + 1)− 2α−mΓ (m + 1) ζ (m + 1) ζ (α−m + 1)

∣∣
≤
(∫ ∞

0

e−
x
2

(
xα−m − 2α−mΓ (α−m + 1)

)2
dx

) 1
2

×

(∫ ∞

0

e−
x
2

(
xm

e
x
2 − e−

x
2

− Γ (m + 1) ζ (m + 1)

2

)2

dx

) 1
2

.
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That is, on using (6.7), we have

(6.16)
∣∣Γ (α + 1) ζ (α + 1)− 2α−mΓ (m + 1) ζ (m + 1) ζ (α−m + 1)

∣∣
≤ E2

m

[∫ ∞

0

e−
x
2 x2(α−m)dx− 22(α−m)+1Γ2 (α−m + 1)

] 1
2

,

where

(6.17) E2
m =

∫ ∞

0

e−
x
2

x2m(
e

x
2 − e−

x
2

)2dx− 2

(
Γ (m + 1) ζ (m + 1)

2

)2

.

Now ∫ ∞

0

e−
x
2

(
xm

e
x
2 − e−

x
2

)2

dx =

∫ ∞

0

e−
3
2
xx2m

(
1 + 2e−x + 3e−2x + · · ·

)
dx(6.18)

=
∞∑

n=1

n

∫ ∞

0

e(
2n+1

2 )xx2mdx

=
∞∑

n=1

n
22m+1Γ (2m + 1)

(2n + 1)2m+1

= 22mΓ (2m + 1)
∞∑

n=1

2n

(2n + 1)2m+1

= 22mΓ (2m + 1) [λ (2m)− λ (2m + 1)] ,

whereλ (·) is as given by (2.19), where we have used (3.15) and have undertaken the permiss-
able interchange of summation and integration.

Substitution of (6.18) into (6.17) and using (6.16) gives the stated results (6.11) and (6.12)
after some simplification. �

The following corollary provides upper bounds for the zeta function at odd integers.

Corollary 6.3. The inequality

(6.19) Γ (2m + 1)
[
2 ·
(
22m − 1

)
ζ (2m)−

(
22m+1 − 1

)
ζ (2m + 1)

]
− Γ2 (m + 1) ζ2 (m + 1) > 0

holds form = 1, 2, . . . .

Proof. From equation (6.12) of Theorem 6.2, we haveE2 > 0. Utilising the relationship be-
tweenλ (·) andζ (·) given by (2.20) readily gives the inequality (6.19). �

Remark 6.4. In (6.19), if m is odd, then2m andm + 1 are even so that an expression in the
form

(6.20) α (m) ζ (2m)− β (m) ζ (2m + 1)− γ (m) ζ2 (m + 1) > 0,

results, where

α (m) = 2
(
22m − 1

)
Γ (2m + 1) ,

β (m) =
(
22m+1 − 1

)
Γ (2m + 1) and(6.21)

γ (m) = Γ2 (m + 1) .
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Thus form odd we have

(6.22) ζ (2m + 1) <
α (m) ζ (2m)− γ (m) ζ2 (m + 1)

β (m)
.

That is, form = 2k − 1, we have from (6.22)

(6.23) ζ (4k − 1) <
α (2k − 1) ζ (4k − 2)− γ (2k − 1) ζ2 (2k)

β (2k − 1)

giving for k = 1, 2, 3, for example,

ζ (3) <
π2

7

(
1− π2

72

)
= 1.21667148,

ζ (7) <
2π6

1905

(
1− π2

2160

)
= 1.00887130,

ζ (11) <
62π10

5803245

(
1− π2

492150

)
= 1.00050356,

Guo [15] obtainedζ (3) < π4

72
and the above bound forζ (3) was obtained previously by the

author in [7] from (6.10). (See also [18] and [19]).
If m is eventhen form = 2k we have from (6.22)

(6.24) ζ (4k + 1) <
α (2k) ζ (4k)− γ (2k) ζ2 (2k + 1)

β (2k)
, k = 1, 2, . . . .

We notice that in (6.24), or equivalently (6.20) withm = 2k there are two zeta functions with
odd arguments. There are a number of possibilities for resolving this, but firstly it should be
noticed thatζ (x) is monotonically decreasing forx > 1 so thatζ (x1) > ζ (x2) for 1 < x1 < x2.

Firstly, we may use a lower bound obtained in Section 4 as given by (4.2) or (4.5). But from
Table 1, it seems thatL2 (x) > L (x) for positive integerx and so we have from (6.24)

(6.25) ζL (4k + 1) <
α (2k) ζ (2k)− γ (2k) L2

2 (2k)

β (2k)
,

where we have used the fact thatL2 (x) < ζ (x + 1) .
Secondly, since the even argumentζ (2k + 2) < ζ (2k + 1) , then from (6.24) we have

(6.26) ζE (4k + 1) <
α (2k) ζ (4k)− γ (2k) ζ2 (2k + 2)

β (2k)
.

Finally, we have thatζ (m + 1) > ζ (2m + 1) so that from (6.20) we have, withm = 2k on
solving the resulting quadratic equation that

(6.27) ζQ (4k + 1) <
−β (2k) +

√
β2 (2k) + 4γ (2k) α (2k) ζ (4k)

2γ (2k)
.

Fork = 1 we have from (6.25) – (6.27) that

ζL (5) <
π4

93
− 1

186

(
7π4

540
− 1

12

)2

= 1.039931461,

ζE (5) <
π4

93

(
1− π4

16200

)
= 1.041111605,

ζQ (5) < −93 +
√

8649 + 2π4 = 1.04157688;
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and fork = 2

ζL (9) <
17

160965
π8 − 1

35770

(
31

28350
π6 − 1

60

)2

= 1.002082506,

ζE (9) <
17

160965
π8

(
1− π4

337650

)
= 1.0020834954,

ζQ (9) < −17885 +
1

3

√
2878859025 + 34π8 = 1.00208436.

It should be noted that the above results give tighter upper bounds for the odd zeta function eval-
uations than were possible using the methodology developed earlier in the paper, the numerics
of which are presented in Table 1.

Numerical experimentation using Maple seems to indicate that the upper bounds for

ζL (4k + 1) , ζE (4k + 1) and ζQ (4k + 1)

are in increasing order.
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