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ABSTRACT. New families of sharp inequalities between elementary symmetric polynomials
are proven. We estimateσn−k above and below by the elementary symmetric polynomials
σn−k+1, . . . , σn in the case, whenx1, . . . , xn are non-negative real numbers with sum equal
to one.

Key words and phrases:Elementary symmetric polynomials.

2000Mathematics Subject Classification.26D05.

1. I NTRODUCTION

Let n ≥ 2 be an integer. As usual, we denote byσ0, σ1, . . . , σn the elementary symmetric
polynomials of the variablesx1, . . . , xn.

In other words,σ0 = σ0(x1, . . . , xn) = 1 and for1 ≤ k ≤ n

σk = σk(x1, . . . , xn) =
∑

1≤i1≤···≤ik≤n

xi1 . . . xik .

The differentσ0, σ1, . . . , σn, are not comparable between them, but they are connected by
nonlinear inequalities. To state them, it is more convenient to consider their averagesEk =
σk

/(
n
k

)
, k = 0, 1, . . . , n.

There are three basic types of inequalities between the symmetric functions with respect to
the range of the variablesx1, . . . , xn.

For arbitrary realx1, . . . , xn the following inequalities are known:

(1.1) E2
k ≥ Ek−1Ek+1, 1 ≤ k ≤ n− 1, (Newton-Maclaurin),

4(Ek+1Ek+3 − E2
k+2)(EkEk+2 − E2

k+1) ≥ (Ek+1Ek+2 − EkEk+3)
2,

k = 0, . . . , n− 3, (Rosset [4]),
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as well as the inequalities of Niculescu [2]. A complete description about their historical and
contemporary stage of development can be found, for example, in [1] and [2].

Suppose now that allxj, j = 1, . . . , n, are positive. Then the following general result (see
[1, Theorem 77, p. 64]) is known:

Theorem 1.1( Hardy, Littlewood, Pólya). For any positivex1, . . . , xn and positiveα1, . . . , αn,
β1, . . . , βn the inequality

Eα1
1 · · ·Eαn

n ≤ Eβ1

1 · · ·Eβn
n

holds if and only if

αm + 2αm+1 + · · ·+ (n−m + 1)αn ≥ βm + 2βm+1 + · · ·+ (n−m + 1)βn

for each1 ≤ m ≤ n.

For other results in this direction see [1].
The aim of this paper is to obtain new inequalities betweenσ1, . . . , σn in the case when

x1, . . . , xn are non-negative, (Theorem 2.6 and Theorem 2.10 below). More precisely, we
obtain the best possible estimates ofσk

1σn−k from below and above by linear functions of
σk−1

1 σn−k+1, . . . , σ
0
1σn. Since all these functions are homogeneous with respect to(x1, . . . , xn)

of the same order, we can setσ1 = x1 + · · · + xn = 1, then our inequalities give the best
possible estimates ofσn−k by linear functions ofσn−k+1, . . . , σn for k = 1, . . . , n − 1 in this
case (Theorem 3.1 and Theorem 3.2 below). Inequalities of this type fork = n − 2 have been
recently obtained by Sato [4], which can be obtained as a consequence of Theorem 2.10 below.

2. NEW I NEQUALITIES (THEOREM 2.6 AND THEOREM 2.10)

For the sake of completeness we give a straightforward proof of the following proposi-
tion, which is a consequence of Theorem 1.1, cited in the introduction. Here we suppose that
x1, . . . , xn are non-negative.

Proposition 2.1. Letx1, . . . , xn be non-negative real numbers,n ≥ 2. Then for1 ≤ p ≤ n− 1
we have

(2.1) σ1σp ≥
n(p + 1)

n− p
σp+1.

Proof. Denoteσl,n =
∑

1≤i1<···<il≤n xi1xi2 · · ·xil , 1 ≤ l ≤ n. Note, that (2.1) is equivalent to

(2.2) σ1,nσp,n ≥
n(p + 1)

n− p
σp+1,n.

First we shall check (2.2) forp = 1 and forp = n− 1.

(i) For p = 1 the inequality (2.2) reads(
n∑

i=1

xi

)2

≥ 2n

n− 1

∑
1≤i<j≤n

xixj,

which is equivalent to

(n− 1)

(
n∑

i=1

xi

)2

≥ 2n

n− 1

∑
1≤i<j≤n

xixj,

hence to
∑

1≤i<j≤n(xi − xj)
2 ≥ 0.
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(ii) For p = n − 1 (2.2) is equivalent toσ1,nσn−1,n ≥ n2σn,n. If σn,n = 0, then (2.2) is

obvious. Letσn,n 6= 0, then (2.2) is equivalent ton2 ≤ (
∑n

i=1 xi)
(∑n

i=1
1
xi

)
, which

follow from AM-GM inequality.

We are going to prove (2.2) by recurrence with respect ton ≥ 2.

(iii) We already proved that (2.2) is true forn = 2.
(iv) Let (2.2) be true forn ≥ 2 and for eachp, 1 ≤ p ≤ n− 1. Fix p, 2 ≤ p ≤ n− 1. We

will prove, that

(2.3) σ1,n+1σp,n+1 ≥
(n + 1)(p + 1)

n + 1− p
σp+1,n+1.

Since (2.3) is homogeneous, excluding the casex1 = · · · = xn = xn+1 = 0, we may
assume, thatσ1,n+1 = 1.

Let x1 ≤ x2 ≤ · · · ≤ xn+1. The following cases are possible:

1) Letxn+1 = 1. Thenx1 = · · · = xn = 0 and (2.3) becomes an equality.
2) Letxn+1 = 1

n+1
. Thenx1 = · · · = xn = xn+1 = 1

n+1
and we obtain

σp,n+1 −
(n + 1)(p + 1)

n + 1− p
σp+1,n+1

=

(
n + 1

p

)
1

(n + 1)p
− p + 1

n + 1− p

(
n + 1
p + 1

)
1

(n + 1)p
= 0,

hence (2.3) becomes again an equality.
3) Letxn+1 ∈

(
1

n+1
; 1
)
. Substitutex1+· · ·+xn = 1−xn+1 = σ1,n = s, with s ∈

(
0; n

n+1

)
.

Thenσp,n+1 = σp,n + (1 − s)σp−1,n andσp+1,n+1 = σp+1,n + (1 − s)σp,n. Hence (2.3)
is equivalent to

σp,n + (1− s)σp−1,n ≥
(n + 1)(p + 1)

n + 1− p
[σp+1,n + (1− s)σp,n] ,

which is equivalent to

(2.4)

[
n + 1− p

(n + 1)(p + 1)
− (1− s)

]
σp,n +

(1− s)(n + 1− p)

(n + 1)(p + 1)
σp−1,n ≥ σp+1,n.

From (iv) we obtainσp+1,n ≤ n−p
n(p+1)

sσp,n. Then (2.4) follows from the next inequality
(if true):

(2.5)
n− p

n(p + 1)
sσp,n ≤

[
n + 1− p

(n + 1)(p + 1)
− (1− s)

]
σp,n +

(1− s)(n + 1− p)

(n + 1)(p + 1)
σp−1,n,

which is equivalent to

(2.6) σp−1,n ≥
p[n(n + 2)− (n + 1)2s]

n(n + 1− p)(1− s)
σp,n.

It follows from (iv) thatσp−1,n ≥ np
(n+1−p)s

σp,n.
Hence (2.6), and consequently (2.5) and (2.4), follow from

np

(n + 1− p)s
σp,n −

p[n(n + 2)− (n + 1)2s]

n(n + 1− p)(1− s)
σp,n =

p[(n + 1)s− n]2

ns(n + 1− p)(1− s)
σp,n ≥ 0.

Since (2.2) is true forp = 1 andp = n according to (i) and (ii), then (2.2) is fulfilled forn,
n ≥ 2. Hence the proposition is proved. �

Remark 2.2. It follows from the proof, that equality is achieved in the following two cases:
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1) x1 = x2 = · · · = xn = a ≥ 0.
2) n − p + 1 of x1, . . . , xn are equal to0 and the rest of them are arbitrary non-negative

real numbers.

Remark 2.3. (2.1) can be proven using Lemma 2.4 below, but in this way it will be difficult to
see when (2.1) turns into an equality.

From now onn will be a fixed positive integer. It will be assumed that at least one of the
non-negative numbersx1, . . . , xn differs from zero.

Lemma 2.4.Let us assume thatx1, . . . , xn are non-negative real numbers (n ≥ 2) andx1+· · ·+
xn = σ1 = 1. Then the functionf(x1, . . . , xn) = a1+a2σ2+· · ·+anσn (a1, . . . , an are real num-
bers), achieves its maximum and minimum at least in some of the pointsPk,n

(
1
k
, . . . , 1

k
, 0, . . . , 0

)
,

1 ≤ k ≤ n (the firstk coordinates ofPk,n are equal to1
k
, and the rest of them are equal to zero).

Proof. The setAn = {(x1, . . . , xn)/xi ≥ 0, x1 + · · ·+xn = 1} is compact andf is continuous
in it, hencef achieves its minimum and maximum values. We rewritef as follows:

f(x1, . . . , xn) = x1x2g(x3, . . . xn)+x1h1(x3, . . . , xn)+x2h2(x3, . . . , xn)+ t(x3, . . . , xn)+a1.

As f is symmetric, thenh1 ≡ h2 and therefore:

(2.7) f(x1, . . . , xn) = x1x2g(x3, . . . xn) + (x1 + x2)h1(x3, . . . , xn) + t(x3, . . . , xn) + a1.

Let P (x0
1, . . . , x

0
n) be a point in whichf achieves its minimum value. We consider the function

F (x) = f(x, s− x, x0
3, . . . , x

0
n), s = x0

1 + x0
2, for x ∈ [0; s] (we assume, thats > 0). Obviously

the minimum values ofF andf are equal andF achieves its minimum value forx = x0
1. From

(2.7) we obtain thatF (x) = αx(s − x) + sβ + γ = αx(s − x) + δ, whereα, δ depend on
x0

1, x
0
2, x

0
3, . . . , x

0
n, a1, . . . , an.

The following three cases are possible:

(i) α = 0. ThenF (x) = const and we may assume thatmin F = F (0) or min F = F
(

s
2

)
.

(ii) α > 0. Thenmin F = F (0).
(iii) α < 0. Thenmin F = F

(
s
2

)
.

Hence, asx0
1 andx0

2 were arbitrarily chosen then, for∀i 6= j we may assume thatx0
i = x0

j or,
at least one of them is equal to zero.

Let us choose a pointP (x0
1, . . . , x

0
n), for which the number of coordinatesp which equal to

zero is the highest possible andx0
1 ≥ x0

2 ≥ · · · ≥ x0
n. If p = n− 1, then Lemma 2.4 is proven.

Let 0 ≤ p ≤ n− 2, i.e. P (x0
1, ..x

0
n−p, 0, . . . , 0), x0

1 · · ·x0
n−p 6= 0. Then for the pairs(x0

i , x
0
j),

1 ≤ i < j ≤ n− p only case (iii) is valid, from which Lemma 2.4 follows. Lemma 2.4 is true
also for the maximum value off , sincemax f = min(−f). �

Remark 2.5. A result similar to Lemma 2.4 is proved by Sato in [4].

Theorem 2.6. Let n, k be integer numbers,1 ≤ k ≤ n − 1. Then for arbitrary non-negative
x1, . . . , xn, the following inequality is true:

(2.8) σk
1σn−k ≥

k∑
i=1

(−1)i+1

(
n− k − 1 + i

i

)
(n− k + i)2(n− k)i−2σk−i

1 σn−k+i.

Proof. Since (2.8) is homogenous we may assume thatx1+ · · ·+xn = σ1 = 1. Then, according
to Lemma 2.4 it suffices to prove, thatf(Pm,n) ≥ 0 for 1 ≤ m ≤ n, where

f(x1, . . . , xn) = σn−k +
k∑

i=1

(
n− k − 1 + i

i

)
(n− k + i)2(k − n)i−2σn−k+i.
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At thePm,n point we haveσn−k+i =
(

m
n−k+i

)
1

mn−k+i , hence

(2.9) σn−k+i 6= 0 if and only if i ≤ m− n + k.

We consider the following three possible cases form:

(i) m ≤ n− k − 1, k ≤ n− 2. Then obviouslyσn−k = σn−k+1 = · · · = σn = 0, hence
f(Pm,n) = 0.

(ii) m = n − k, k ≤ n− 1. From (2.9) we obtainσn−k = 1
(n−k)n−k andσn−k+1 = · · · =

σn = 0, hencef(Pm,n) = 1
(n−k)n−k > 0.

(iii) m = n− k + p, 1 ≤ p ≤ k, k ≤ n− 1. From (2.9) andm = n− k + p we obtain

f(Pm,n) =

(
n− k + p

n− k

)
1

(n− k + p)n−k
+

k∑
i=1

(
n− k − 1 + i

i

)
× (n− k + i)2(k − n)i−2

(
n− k + p
n− k + i

)
1

(n− k + p)n−k+i

=

(
m
p

)
1

mm−p
+

p∑
i=1

(
m− p− 1 + i

i

)
× (m− p + i)2(p−m)i−2

(
m

m− p + i

)
1

mm−p+i
.

Now from equality(
m− p− 1 + i

i

)(
m

m− p + i

)
(m− p + i) =

(
m− 1

p

)(
p
i

)
m

we obtain

f(Pm,n) =

(
m
p

)
1

mm−p

+

p∑
i=1

(
m− 1

p

)(
p
i

)
(m− p + i)2(p−m)i−2 1

mm−p−1+i
.

This implies

mm−p+1(
m− 1

p

)f(Pm,n)

=
m2

m− p
+ p(m− p + 1)

m

p−m
+

p∑
i=2

(
p
i

)
(m− p + i)

(
p−m

m

)i−2

= m(1− p) +

p∑
i=2

(
p
i

)
(m− p)

(
p−m

m

)i−2

+

p∑
i=2

(
p
i

)
i

(
p−m

m

)i−2

= m(1− p) +
m2

m− p

[(
1 +

p−m

m

)p

− p(p−m)

m
− 1

]
+

mp

p−m

p∑
i=2

(
p− 1
i− 1

)(
p−m

m

)i−1

.
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Substitutingi = j + 1 we obtain:

mm−p+1(
m− 1

p

)f(Pm,n)

= m(1− p) +
m2

m− p

[( p

m

)p

+
p(m− p)

m
− 1

]
+

mp

p−m

p−1∑
j=1

(
p− 1

j

)(
p−m

m

)j

= m(1− p) +
m2

m− p

( p

m

)p

+ mp− m2

m− p
+

mp

p−m

[(
1 +

p−m

m

)p−1

− 1

]

= m +
m2

m− p

( p

m

)p

− m2

m− p
+

mp

p−m

( p

m

)p−1

− mp

p−m
= 0.

From (i) – (iii) it follows that Theorem 2.6 is true.
�

Remark 2.7. Theorem 2.6 fork = 1 is equivalent to Proposition 2.1 in the case whenp = n−1.

Remark 2.8. It is easy to verify, that (2.8) is equivalent to

Ek
1En−k ≥

1

n

k∑
i=1

(
k
i

)
(n− k + i)

(
k − n

n

)i−1

Ek−i
1 En−k+i.

We define the sequence of real numbers{αm,l}, m ∈ N, l ∈ N as follows:

α1,l =
1

ll
for ∀l ∈ N,(2.10)

αm,l = 0 for m ≥ l ≥ 2 or m > 1, l = 1,(2.11) (
l
m

)
lm = llα1,l−m +

m∑
j=1

(
l

m− j

)
lm−jα1+j,l−m+j for 1 ≤ m ≤ l − 1.(2.12)

More precisely, the numbersαm,l can be defined recurrently (excluding the cases when:m > 1,
l = 1 or m ≥ l ≥ 2) as follows:

1) We getα1,l for l ≥ 1 from (2.10).
2) Then we determineα2,l for l ≥ 3 from

(
l
1

)
l = llα1,l−1 + α2,l.

3) Then we determineα3,l for l ≥ 4 from
(

l
2

)
l2 = llα1,l−2 +

(
l
1

)
lα2,l−1 + α3,l.

4) Then we determineα4,l for l ≥ 5 from
(

l
3

)
l3 = llα1,l−3+

(
l
2

)
l2α2,l−2+

(
l
1

)
lα3,l−1+α4,l

and so on.
For example, the values ofαm,l for m ≤ 5, l ≤ 6 are given in Table 3.1.
The sequence{αm,l} has interesting properties. For example one can prove, that in the case

whenαm,l 6= 0: sgn αm,l = 1 for m even andsgn αm,l = −1 for m odd,m ≥ 3.
We are going to prove the following property of the sequence{αm,l}:

Proposition 2.9. For each integer numbern, n ≥ 2 we have:

(2.13) αn,n+1 = (−1)n

(
n + 1

2

)2

.

Proof. We will prove (2.12) by induction.
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(i) We show, thatα2,3 = (−1)2
(

2+1
2

)2
, (see Table 3.1).

(ii) Let (2.13) hold true forα2,3, . . . , αn−1,n.
(iii) Using (2.12) forl = n + 1 andm = n− 1, (2.10) forl = 2 and (ii) we obtain(

n + 1
2

)
(n + 1)n−1

=
(n + 1)n+1

4
+

n−2∑
j=1

(
n + 1
j + 2

)
(−1)j+1

(
j + 2

2

)2

(n + 1)n−1−j + αn,n+1.

Substitutingj = i− 1, this implies

αn,n+1 =

(
n + 1

2

)
(n + 1)n−1

− (n + 1)n+1

4
− 1

4

n−1∑
i=2

(
n + 1
i + 1

)
(−1)i(i + 1)2(n + 1)n−i.

Now from the equalities
(

n+1
i+1

)
(i + 1) =

(
n
i

)
(n + 1) and

(
n
i

)
i =

(
n−1
i−1

)
n we obtain:

αn,n+1 =

(
n + 1

2

)
(n + 1)n−1 − (n + 1)n−1

4

− n + 1

4

n−1∑
i=2

(
n
i

)
(−1)i(i + 1)(n + 1)n−i

=
(n + 1)n+1

4

[
2n

n + 1
− 1−

n−1∑
i=2

(
n
i

)
(i + 1)

(
−1

n + 1

)i
]

=
(n + 1)n+1

4

[
n− 1

n + 1
−

n−1∑
i=2

(
n
i

)(
−1

n + 1

)i

− n
n−1∑
i=2

(
n− 1
i− 1

)(
−1

n + 1

)i
]

.

Substitutingi = k + 1 we obtain

αn,n+1 =
(n + 1)n+1

4

[
n− 1

n + 1
−
(

1 +
−1

n + 1

)n

+ 1 + n

(
−1

n + 1

)
+

(
−1

n + 1

)n

− n

n−2∑
k=1

(
n− 1

k

)(
−1

n + 1

)k+1
]

=
(n + 1)n+1

4

{
n

n + 1
−
(

n

n + 1

)n

+

(
−1

n + 1

)n

+
n

n + 1

[(
1 +

−1

n + 1

)n−1

− 1−
(

−1

n + 1

)n−1
]}

=
(n + 1)n+1

4

[
n

n + 1
−
(

n

n + 1

)n

+

(
−1

n + 1

)n

+
n

n + 1

(
n

n + 1

)n−1

− n

n + 1
− n

n + 1

(
−1

n + 1

)n−1
]

=
(n + 1)n+1

4
(−1)n

[
1

(n + 1)n
+

n

(n + 1)n

]
= (−1)n

(
n + 1

2

)2

.
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From (i), (ii) and (iii) it follows that (2.13) is true for eachn ≥ 2.

�

Theorem 2.10.Let n and k be fixed integer numbers for which1 ≤ k ≤ n − 2. Then for
arbitrary non-negativex1, . . . , xn, the following inequality is fulfilled:

(2.14) σk
1σn−k ≤ α1,n−kσ

n
1 +

k∑
i=1

α1+i,n−k+iσ
k−i
1 σn−k+i,

where{αm,l} are defined from (2.10)-(2.12).

Proof. (2.14) is homogenous, therefore we may assume, thatx1 + · · · + xn = σ1 = 1. Then
according to Lemma 2.4 it is sufficient to prove, that

(2.15) f(Pm,n) ≥ 0, for eachm, 1 ≤ m ≤ n,

where

f(x1, . . . , xn) = α1,n−k +
k∑

i=1

α1+i,n−k+iσn−k+i − σn−k.

Obviously at the pointPm,n we haveσq =
(

m
q

)
1

mq for 1 ≤ q ≤ n, hence

(2.16) σq 6= 0 if and only if q ≤ m.

We consider the following three possible cases form:

(i) m ≤ n− k − 1. Then from (2.16) and (2.10) we obtainf(Pm,n) = α1,n−k = 1
(n−k)n−k >

0.
(ii) m = n−k. Then from (2.16) and (2.10) we obtainf(Pn−k,n) = α1,n−k− 1

(n−k)n−k = 0.
(iii) m = n− k + p, where1 ≤ p ≤ k. From (2.16) it follows

f(Pm,n) = α1,n−k +
k∑

i=1

α1+i,n−k+i

(
n− k + p
n− k + i

)
1

(n− k + p)n−k+i

−
(

n− k + p
n− k

)
1

(n− k + p)n−k

=
1

(n− k + p)n−k+p

[
(n− k + p)n−k+pα1,n−k

+
k∑

i=1

(
n− k + p
n− k + i

)
(n− k + p)p−iα1+i,n−k+i −

(
n− k + p

n− k

)
(n− k + p)p

]
.

However,
(

n−k+p
n−k+i

)
6= 0 for i ≤ p, and 1

(n−k+p)n−k+p = α1,n−k+p according to (2.10), and
we get

(2.17) f(Pm,n) = α1,n−k+p

[
(n− k + p)n−k+pα1,n−k

+

p∑
i=1

(
n− k + p

p− i

)
(n− k + p)p−iα1+i,n−k+i

−
(

n− k + p
p

)
(n− k + p)p

]
.
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Obviouslyα1,n−k = α1,(n−k+p)−p andα1+i,n−k+i = α1+i,(n−k+p)−p+i. Then the right hand
side of (2.17) is equal to zero according (2.12) forl = n− k + p andm = p.

Thereforef(Pm,n) = 0 in this case.
It follows from (i), (ii) and (iii) that (2.15) is true, and hence (2.14) is also true. �

Remark 2.11. Theorem 2.10 is true as well fork = n− 1, since both sides of (2.14) are equal
in this case, which follows from (2.11).

Remark 2.12. An analogue of Theorem 2.10 fork = 0 is the inequality between the arithmetic
and geometric means.

Corollary 2.13. LetAn, Gn, Hn be the classical averages of the positive real numbersx1, . . . , xn

(n ≥ 2). Then the following inequality is true:

(2.18)

[
nAn

(n− 1)Gn

]n−1
1

Gn

+

[
n−

(
1 +

1

n− 1

)n−1
]

1

An

≥ n

Hn

.

Proof. (2.18) follows from:

σ1 = nAn, σn−1 =
nGn

n

Hn

, σn = Gn
n, α1,n−1 =

1

(n− 1)n−1
, α2,n = n2 − nn

(n− 1)n−1

and from Theorem 2.10 fork = 1. �

Corollary 2.14 (Explicit expression of Theorem 2.10 fork = n− 2). For each integer number
n (n ≥ 3) we have:

σn−2
1 σ2 ≤

1

4
σn

1 +
n−2∑
i=1

(−1)i+1

(
i + 2

2

)2

σn−2−i
1 σ2+i.

Proof. It follows from Proposition 2.9 and from Theorem 2.10 fork = n− 2. �

Remark 2.15. Corollary 2.14 is the principle result in [4].

Remark 2.16. Corollary 2.14 shows that Theorem 2.10 fork = n− 2 is equivalent to Theorem
2.6 in the case whenk = n− 1.

3. THE SHARPNESS OF THE I NEQUALITIES (2.8) AND (2.14)

The following two theorems prove that the estimates in Theorem 2.6 and Theorem 2.10 are,
in a certain sense, the best possible.

Theorem 3.1.Letn andk, 1 ≤ k ≤ n−1 be integers. Let the real numbersβ1, . . . , βk have the
property (3.1). We say that the real numbersβ1, . . . , βk have the property (3.1) if for any non-
negative real numbersx1, . . . , xn with a sum equal to one the following inequality is fulfilled:

(3.1) σn−k ≥
k∑

i=1

βiσn−k+i.

Then for arbitrary non-negative real numbersx1, . . . , xn with sum equal to one the following
inequality is fulfilled:

(3.2)
k∑

i=1

βiσn−k+i ≤
k∑

i=1

(−1)i+1

(
n− k − 1 + i

i

)
(n− k + i)2(n− k)i−2σn−k+i
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Proof. Setf1 = f1(x1, . . . , xn) = σn−k −
∑k

i=1 βiσn−k+i and

f2 = f2(x1, . . . , xn) = σn−k +
k∑

i=1

(
n− k + i

i

)
(n− k + i)2(k − n)i−2σn−k+i.

Then (3.2) is equivalent tof1 − f2 ≥ 0. On the other hand, according to Lemma 2.4, it is
sufficient to verify this inequality at the pointsPm,n. We have at these points:

(i) For 1 ≤ m ≤ n− k − 1, k ≤ n− 2 apparentlyf1 = f2 = 0, hencef1 − f2 = 0.
(ii) For m = n− k, k ≤ n− 1 we obtainf1 = f2 = 1

(n−k)n−k , hencef1 − f2 = 0.
(iii) For 1 ≤ n− k < m ≤ n from the proof of Theorem 2.6 it follows, thatf2 = 0. As

f1 ≥ 0 according to (3.1), hencef1 − f2 ≥ 0.

From (i), (ii) and (iii) it follows thatf1 − f2 ≥ 0 in each pointPm,n and we complete the
proof of the theorem. �

Theorem 3.2. Let n and k be integers,1 ≤ k ≤ n − 2. Let the real numbersγ1, . . . , γk+1

have the property (3.3). We say that the real numbersγ1, . . . , γk+1 have the property (3.3) if
for any non-negative real numbersx1, . . . , xn with sum equal to one, the following inequality is
fulfilled:

(3.3) σn−k ≤ γ1 +
k∑

i=1

γi+1σn−k+i.

Then for any non-negative real numbersx1, . . . , xn with sum equal to one the following in-
equality is fulfilled:

(3.4) α1,n−k +
k∑

i=1

α1+i,n−k+iσn−k+i ≤ γ1 +
k∑

i=1

γ1+iσn−k+i.

Proof. Set

f1 = f1(x1, . . . , xn) = γ1 +
k∑

i=1

γ1+iσn−k+i − σn−k

and

f2 = f2(x1, . . . , xn) = α1,n−k +
k∑

i=1

α1+i,n−k+iσn−k+i − σn−k.

Then (3.4) is equivalent tof1−f2 ≥ 0. We are going to check this inequality at the pointsPm,n.
From (3.3) atPn−k,n it follows, that

(3.5) γ1 ≥
1

(n− k)n−k
= α1,n−k.

We consider the possible cases form:

(i) 1 ≤ m ≤ n− k − 1. Thenf1 − f2 = γ1 − α1,n−k ≥ 0 atPm,n according to (3.5).
(ii) n−k ≤ m ≤ n. Thenf1 ≥ 0 atPm,n according to (3.3) and from the proof of Theorem

2.10 it follows thatf2 = 0, thereforef1 − f2 ≥ 0.

From (i) and (ii) we obtain, thatf1 − f2 ≥ 0 in each pointPm,n (1 ≤ m ≤ n). Applying
Lemma 2.4 we complete the proof of Theorem 3.2. �
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Table 3.1:

l α1,l α2,l α3,l α4,l α5,l

1 1 0 0 0 0
2 1/4 0 0 0 0
3 1/27 9/4 0 0 0
4 1/256 176/27 -4 0 0
5 1/3125 3275/256 -775/27 25/4 0
6 1/46656 65844/3125 -6579/64 316/3 - 9
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