Journal of Inequalities in Pure and Applied Mathematics

NEW INEQUALITIES BETWEEN ELEMENTARY SYMMETRIC POLYNOMIALS

volume 4, issue 2, article 48, 2003.

TODOR P. MITEV
University of Rousse
Department of Mathematics
Rousse 7017, Bulgaria.
E-Mail: mitev@ami.ru.acad.bg
Received 7 November, 2002; accepted 21 February, 2003.
Communicated by: C.P. Niculescu
Abstract

Abstract

New families of sharp inequalities between elementary symmetric polynomials are proven. We estimate σ_{n-k} above and below by the elementary symmetric polynomials $\sigma_{n-k+1}, \ldots, \sigma_{n}$ in the case, when x_{1}, \ldots, x_{n} are non-negative real numbers with sum equal to one.

2000 Mathematics Subject Classification: 26D05. Key words: Elementary symmetric polynomials.

Contents

$$
1 \text { Introduction . } 3
$$

2 New Inequalities (Theorem 2.3 and Theorem 2.5) 5
3 The Sharpness of the Inequalities (2.8) and (2.14) 21

New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

[^0]
1. Introduction

Let $n \geq 2$ be an integer. As usual, we denote by $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}$ the elementary symmetric polynomials of the variables x_{1}, \ldots, x_{n}.

In other words, $\sigma_{0}=\sigma_{0}\left(x_{1}, \ldots, x_{n}\right)=1$ and for $1 \leq k \leq n$

$$
\sigma_{k}=\sigma_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1} \leq \cdots \leq i_{k} \leq n} x_{i_{1}} \ldots x_{i_{k}} .
$$

The different $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}$, are not comparable between them, but they are connected by nonlinear inequalities. To state them, it is more convenient to consider their averages $E_{k}=\sigma_{k} /\binom{n}{k}, k=0,1, \ldots, n$.

There are three basic types of inequalities between the symmetric functions with respect to the range of the variables x_{1}, \ldots, x_{n}.

For arbitrary real x_{1}, \ldots, x_{n} the following inequalities are known:
(1.1) $\quad E_{k}^{2} \geq E_{k-1} E_{k+1}, \quad 1 \leq k \leq n-1, \quad$ (Newton-Maclaurin),

$$
\begin{aligned}
4\left(E_{k+1} E_{k+3}-E_{k+2}^{2}\right)\left(E_{k} E_{k+2}-E_{k+1}^{2}\right) \geq & \left(E_{k+1} E_{k+2}-E_{k} E_{k+3}\right)^{2} \\
& k=0, \ldots, n-3,(\text { Rosset [4] }),
\end{aligned}
$$

as well as the inequalities of Niculescu [2]. A complete description about their historical and contemporary stage of development can be found, for example, in [1] and [2].

Suppose now that all $x_{j}, j=1, \ldots, n$, are positive. Then the following general result (see [1, Theorem 77, p. 64]) is known:

New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

Go Back
Close
Quit
Page 3 of 25

Todor P. Mit

Theorem 1.1 (Hardy, Littlewood, Pólya). For any positive x_{1}, \ldots, x_{n} and positive $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}$ the inequality

$$
E_{1}^{\alpha_{1}} \cdots E_{n}^{\alpha_{n}} \leq E_{1}^{\beta_{1}} \cdots E_{n}^{\beta_{n}}
$$

holds if and only if
$\alpha_{m}+2 \alpha_{m+1}+\cdots+(n-m+1) \alpha_{n} \geq \beta_{m}+2 \beta_{m+1}+\cdots+(n-m+1) \beta_{n}$
for each $1 \leq m \leq n$.
For other results in this direction see [1].
The aim of this paper is to obtain new inequalities between $\sigma_{1}, \ldots, \sigma_{n}$ in the case when x_{1}, \ldots, x_{n} are non-negative, (Theorem 2.3 and Theorem 2.5 below). More precisely, we obtain the best possible estimates of $\sigma_{1}^{k} \sigma_{n-k}$ from below and above by linear functions of $\sigma_{1}^{k-1} \sigma_{n-k+1}, \ldots, \sigma_{1}^{0} \sigma_{n}$. Since all these functions are homogeneous with respect to $\left(x_{1}, \ldots, x_{n}\right)$ of the same order, we can set $\sigma_{1}=x_{1}+\cdots+x_{n}=1$, then our inequalities give the best possible estimates of σ_{n-k} by linear functions of $\sigma_{n-k+1}, \ldots, \sigma_{n}$ for $k=1, \ldots, n-1$ in this case (Theorem 3.1 and Theorem 3.2 below). Inequalities of this type for $k=$ $n-2$ have been recently obtained by Sato [4], which can be obtained as a consequence of Theorem 2.5 below.

New Inequalities Between

 Elementary Symmetric PolynomialsTodor P. Mitev

Title Page
Contents

Go Back
Close
Quit
Page 4 of 25

2. New Inequalities (Theorem 2.3 and Theorem 2.5)

For the sake of completeness we give a straightforward proof of the following proposition, which is a consequence of Theorem 1.1, cited in the introduction. Here we suppose that x_{1}, \ldots, x_{n} are non-negative.

Proposition 2.1. Let x_{1}, \ldots, x_{n} be non-negative real numbers, $n \geq 2$. Then for $1 \leq p \leq n-1$ we have

$$
\begin{equation*}
\sigma_{1} \sigma_{p} \geq \frac{n(p+1)}{n-p} \sigma_{p+1} \tag{2.1}
\end{equation*}
$$

Proof. Denote $\sigma_{l, n}=\sum_{1 \leq i_{1}<\cdots<i_{l} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{l}}, 1 \leq l \leq n$. Note, that (2.1) is equivalent to

$$
\begin{equation*}
\sigma_{1, n} \sigma_{p, n} \geq \frac{n(p+1)}{n-p} \sigma_{p+1, n} \tag{2.2}
\end{equation*}
$$

First we shall check (2.2) for $p=1$ and for $p=n-1$.
(i) For $p=1$ the inequality (2.2) reads

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{2} \geq \frac{2 n}{n-1} \sum_{1 \leq i<j \leq n} x_{i} x_{j}
$$

which is equivalent to

$$
(n-1)\left(\sum_{i=1}^{n} x_{i}\right)^{2} \geq \frac{2 n}{n-1} \sum_{1 \leq i<j \leq n} x_{i} x_{j}
$$

hence to $\sum_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{2} \geq 0$.
(ii) For $p=n-1$ (2.2) is equivalent to $\sigma_{1, n} \sigma_{n-1, n} \geq n^{2} \sigma_{n, n}$. If $\sigma_{n, n}=0$, then (2.2) is obvious. Let $\sigma_{n, n} \neq 0$, then (2.2) is equivalent to $n^{2} \leq$ $\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)$, which follow from AM-GM inequality.

We are going to prove (2.2) by recurrence with respect to $n \geq 2$.
(iii) We already proved that (2.2) is true for $n=2$.
(iv) Let (2.2) be true for $n \geq 2$ and for each $p, 1 \leq p \leq n-1$. Fix p, $2 \leq p \leq n-1$. We will prove, that

$$
\begin{equation*}
\sigma_{1, n+1} \sigma_{p, n+1} \geq \frac{(n+1)(p+1)}{n+1-p} \sigma_{p+1, n+1} \tag{2.3}
\end{equation*}
$$

Since (2.3) is homogeneous, excluding the case $x_{1}=\cdots=x_{n}=x_{n+1}=$

0 , we may assume, that $\sigma_{1, n+1}=1$.

Let $x_{1} \leq x_{2} \leq \cdots \leq x_{n+1}$. The following cases are possible:

1) Let $x_{n+1}=1$. Then $x_{1}=\cdots=x_{n}=0$ and (2.3) becomes an equality.
2) Let $x_{n+1}=\frac{1}{n+1}$. Then $x_{1}=\cdots=x_{n}=x_{n+1}=\frac{1}{n+1}$ and we obtain

$$
\begin{aligned}
\sigma_{p, n+1} & -\frac{(n+1)(p+1)}{n+1-p} \sigma_{p+1, n+1} \\
& =\binom{n+1}{p} \frac{1}{(n+1)^{p}}-\frac{p+1}{n+1-p}\binom{n+1}{p+1} \frac{1}{(n+1)^{p}}=0
\end{aligned}
$$

hence (2.3) becomes again an equality.

Title Page
Contents

Go Back
Close
Quit
Page 6 of 25
New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

Go Back
Close
Quit

J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003 http://jipam.vu.edu.au
3) Let $x_{n+1} \in\left(\frac{1}{n+1} ; 1\right)$. Substitute $x_{1}+\cdots+x_{n}=1-x_{n+1}=\sigma_{1, n}=s$, with $s \in\left(0 ; \frac{n}{n+1}\right)$. Then $\sigma_{p, n+1}=\sigma_{p, n}+(1-s) \sigma_{p-1, n}$ and $\sigma_{p+1, n+1}=$ $\sigma_{p+1, n}+(1-s) \sigma_{p, n}$. Hence (2.3) is equivalent to

$$
\sigma_{p, n}+(1-s) \sigma_{p-1, n} \geq \frac{(n+1)(p+1)}{n+1-p}\left[\sigma_{p+1, n}+(1-s) \sigma_{p, n}\right],
$$

which is equivalent to

$$
\begin{align*}
{\left[\frac{n+1-p}{(n+1)(p+1)}-(1-s)\right] \sigma_{p, n}+\frac{(1-s)(n+1-p)}{(n+1)(p+1)} } & \sigma_{p-1, n} \tag{2.4}\\
& \geq \sigma_{p+1, n}
\end{align*}
$$

From (iv) we obtain $\sigma_{p+1, n} \leq \frac{n-p}{n(p+1)} s \sigma_{p, n}$. Then (2.4) follows from the next inequality (if true):

$$
\text { (2.5) } \begin{aligned}
& \frac{n-p}{n(p+1)} s \sigma_{p, n} \\
& \leq\left[\frac{n+1-p}{(n+1)(p+1)}-(1-s)\right] \sigma_{p, n}+\frac{(1-s)(n+1-p)}{(n+1)(p+1)} \sigma_{p-1, n}
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
\sigma_{p-1, n} \geq \frac{p\left[n(n+2)-(n+1)^{2} s\right]}{n(n+1-p)(1-s)} \sigma_{p, n} \tag{2.6}
\end{equation*}
$$

New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

Title Page
Contents

Page 7 of 25

It follows from (iv) that $\sigma_{p-1, n} \geq \frac{n p}{(n+1-p) s} \sigma_{p, n}$.
J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003 http://jipam.vu.edu.au

Hence (2.6), and consequently (2.5) and (2.4), follow from

$$
\begin{aligned}
& \frac{n p}{(n+1-p) s} \sigma_{p, n}-\frac{p\left[n(n+2)-(n+1)^{2} s\right]}{n(n+1-p)}(1-s) \\
& \sigma_{p, n} \\
&=\frac{p[(n+1) s-n]^{2}}{n s(n+1-p)(1-s)} \sigma_{p, n} \geq 0
\end{aligned}
$$

Since (2.2) is true for $p=1$ and $p=n$ according to (i) and (ii), then (2.2) is fulfilled for $n, n \geq 2$. Hence the proposition is proved.

Remark 2.1. It follows from the proof, that equality is achieved in the following two cases:

1) $x_{1}=x_{2}=\cdots=x_{n}=a \geq 0$.
2) $n-p+1$ of x_{1}, \ldots, x_{n} are equal to 0 and the rest of them are arbitrary non-negative real numbers.

Remark 2.2. (2.1) can be proven using Lemma 2.2 below, but in this way it will be difficult to see when (2.1) turns into an equality.

From now on n will be a fixed positive integer. It will be assumed that at least one of the non-negative numbers x_{1}, \ldots, x_{n} differs from zero.

Lemma 2.2. Let us assume that x_{1}, \ldots, x_{n} are non-negative real numbers ($n \geq$ 2) and $x_{1}+\cdots+x_{n}=\sigma_{1}=1$. Then the function $f\left(x_{1}, \ldots, x_{n}\right)=a_{1}+a_{2} \sigma_{2}+$ $\cdots+a_{n} \sigma_{n}\left(a_{1}, \ldots, a_{n}\right.$ are real numbers), achieves its maximum and minimum at least in some of the points $P_{k, n}\left(\frac{1}{k}, \ldots, \frac{1}{k}, 0, \ldots, 0\right), 1 \leq k \leq n$ (the first k coordinates of $P_{k, n}$ are equal to $\frac{1}{k}$, and the rest of them are equal to zero).

New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

Title Page
Contents
\square
Page 8 of 25
J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003 http://jipam.vu.edu.au

Proof. The set $A_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) / x_{i} \geq 0, x_{1}+\cdots+x_{n}=1\right\}$ is compact and f is continuous in it, hence f achieves its minimum and maximum values. We rewrite f as follows:

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2} g\left(x_{3}, \ldots x_{n}\right) & +x_{1} h_{1}\left(x_{3}, \ldots, x_{n}\right) \\
& +x_{2} h_{2}\left(x_{3}, \ldots, x_{n}\right)+t\left(x_{3}, \ldots, x_{n}\right)+a_{1} .
\end{aligned}
$$

As f is symmetric, then $h_{1} \equiv h_{2}$ and therefore:
(2.7) $f\left(x_{1}, \ldots, x_{n}\right)$

$$
=x_{1} x_{2} g\left(x_{3}, \ldots x_{n}\right)+\left(x_{1}+x_{2}\right) h_{1}\left(x_{3}, \ldots, x_{n}\right)+t\left(x_{3}, \ldots, x_{n}\right)+a_{1}
$$

Let $P\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$ be a point in which f achieves its minimum value. We consider the function $F(x)=f\left(x, s-x, x_{3}^{0}, \ldots, x_{n}^{0}\right), s=x_{1}^{0}+x_{2}^{0}$, for $x \in[0 ; s]$ (we assume, that $s>0$). Obviously the minimum values of F and f are equal and F achieves its minimum value for $x=x_{1}^{0}$. From (2.7) we obtain that $F(x)=\alpha x(s-x)+s \beta+\gamma=\alpha x(s-x)+\delta$, where α, δ depend on $x_{1}^{0}, x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}, a_{1}, \ldots, a_{n}$.

The following three cases are possible:
(i) $\alpha=0$. Then $F(x)=$ const and we may assume that $\min F=F(0)$ or $\min F=F\left(\frac{s}{2}\right)$.
(ii) $\alpha>0$. Then min $F=F(0)$.
(iii) $\alpha<0$. Then $\min F=F\left(\frac{s}{2}\right)$.

New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

Title Page
Contents

44	-
4	,
Go Back	
Close	
Quit	

Page 9 of 25

Hence, as x_{1}^{0} and x_{2}^{0} were arbitrarily chosen then, for $\forall i \neq j$ we may assume that $x_{i}^{0}=x_{j}^{0}$ or, at least one of them is equal to zero.

Let us choose a point $P\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$, for which the number of coordinates p which equal to zero is the highest possible and $x_{1}^{0} \geq x_{2}^{0} \geq \cdots \geq x_{n}^{0}$. If $p=n-$ 1 , then Lemma 2.2 is proven. Let $0 \leq p \leq n-2$, i.e. $P\left(x_{1}^{0}, \ldots x_{n-p}^{0}, 0, \ldots, 0\right)$, $x_{1}^{0} \cdots x_{n-p}^{0} \neq 0$. Then for the pairs $\left(x_{i}^{0}, x_{j}^{0}\right), 1 \leq i<j \leq n-p$ only case (iii) is valid, from which Lemma 2.2 follows. Lemma 2.2 is true also for the maximum value of f, since $\max f=\min (-f)$.

Remark 2.3. A result similar to Lemma 2.2 is proved by Sato in [4].
Theorem 2.3. Let n, k be integer numbers, $1 \leq k \leq n-1$. Then for arbitrary non-negative x_{1}, \ldots, x_{n}, the following inequality is true:

$$
\begin{align*}
& \sigma_{1}^{k} \sigma_{n-k} \tag{2.8}\\
& \geq \sum_{i=1}^{k}(-1)^{i+1}\binom{n-k-1+i}{i}(n-k+i)^{2}(n-k)^{i-2} \sigma_{1}^{k-i} \sigma_{n-k+i}
\end{align*}
$$

Proof. Since (2.8) is homogenous we may assume that $x_{1}+\cdots+x_{n}=\sigma_{1}=1$. Then, according to Lemma 2.2 it suffices to prove, that $f\left(P_{m, n}\right) \geq 0$ for $1 \leq$ $m \leq n$, where
$f\left(x_{1}, \ldots, x_{n}\right)=\sigma_{n-k}+\sum_{i=1}^{k}\binom{n-k-1+i}{i}(n-k+i)^{2}(k-n)^{i-2} \sigma_{n-k+i}$.
At the $P_{m, n}$ point we have $\sigma_{n-k+i}=\binom{m}{n-k+i} \frac{1}{m^{n-k+i}}$, hence

$$
\begin{equation*}
\sigma_{n-k+i} \neq 0 \quad \text { if and only if } \quad i \leq m-n+k \tag{2.9}
\end{equation*}
$$

Todor P. Mitev

Title Page
Contents

4	\rightarrow
4	-
Go Back	
Close	
Quit	

Page 10 of 25

We consider the following three possible cases for m :
(i) $m \leq n-k-1, k \leq n-2$. Then obviously $\sigma_{n-k}=\sigma_{n-k+1}=\cdots=$ $\sigma_{n}=0$, hence $f\left(P_{m, n}\right)=0$.
(ii) $m=n-k, k \leq n-1$. From (2.9) we obtain $\sigma_{n-k}=\frac{1}{(n-k)^{n-k}}$ and $\sigma_{n-k+1}=\cdots=\sigma_{n}=0$, hence $f\left(P_{m, n}\right)=\frac{1}{(n-k)^{n-k}}>0$.
(iii) $m=n-k+p, 1 \leq p \leq k, k \leq n-1$. From (2.9) and $m=n-k+p$ we obtain

$$
\begin{aligned}
f\left(P_{m, n}\right)= & \binom{n-k+p}{n-k} \frac{1}{(n-k+p)^{n-k}}+\sum_{i=1}^{k}\binom{n-k-1+i}{i} \\
& \times(n-k+i)^{2}(k-n)^{i-2}\binom{n-k+p}{n-k+i} \frac{1}{(n-k+p)^{n-k+i}} \\
= & \binom{m}{p} \frac{1}{m^{m-p}}+\sum_{i=1}^{p}\binom{m-p-1+i}{i} \\
& \times(m-p+i)^{2}(p-m)^{i-2}\binom{m}{m-p+i} \frac{1}{m^{m-p+i}} .
\end{aligned}
$$

Now from equality

$$
\binom{m-p-1+i}{i}\binom{m}{m-p+i}(m-p+i)=\binom{m-1}{p}\binom{p}{i} m
$$

New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

Title Page

Contents

\square
Page 11 of 25
we obtain

$$
\begin{aligned}
f\left(P_{m, n}\right) & =\binom{m}{p} \frac{1}{m^{m-p}} \\
+ & \sum_{i=1}^{p}\binom{m-1}{p}\binom{p}{i}(m-p+i)^{2}(p-m)^{i-2} \frac{1}{m^{m-p-1+i}}
\end{aligned}
$$

This implies

$$
\begin{aligned}
& \frac{m^{m-p+1}}{\binom{m-1}{p}} f\left(P_{m, n}\right) \\
& =\frac{m^{2}}{m-p}+p(m-p+1) \frac{m}{p-m}+\sum_{i=2}^{p}\binom{p}{i}(m-p+i)\left(\frac{p-m}{m}\right)^{i-2} \\
& =m(1-p)+\sum_{i=2}^{p}\binom{p}{i}(m-p)\left(\frac{p-m}{m}\right)^{i-2} \\
& \quad+\sum_{i=2}^{p}\binom{p}{i} i\left(\frac{p-m}{m}\right)^{i-2} \\
& =m(1-p)+\frac{m^{2}}{m-p}\left[\left(1+\frac{p-m}{m}\right)^{p}-\frac{p(p-m)}{m}-1\right] \\
& \quad+\frac{m p}{p-m} \sum_{i=2}^{p}\binom{p-1}{i-1}\left(\frac{p-m}{m}\right)^{i-1}
\end{aligned}
$$

New Inequalities Between
Elementary Symmetric Polynomials

Todor P. Mitev

Title Page

Contents

Go Back
Close
Quit
Page 12 of 25
J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003 http://jipam.vu.edu.au

Substituting $i=j+1$ we obtain:

$$
\begin{aligned}
& \frac{m^{m-p+1}}{\binom{m-1}{p}} f\left(P_{m, n}\right) \\
& \quad=m(1-p)+\frac{m^{2}}{m-p}\left[\left(\frac{p}{m}\right)^{p}+\frac{p(m-p)}{m}-1\right] \\
& \quad+\frac{m p}{p-m} \sum_{j=1}^{p-1}\binom{p-1}{j}\left(\frac{p-m}{m}\right)^{j} \\
& =m(1-p)+\frac{m^{2}}{m-p}\left(\frac{p}{m}\right)^{p}+m p-\frac{m^{2}}{m-p} \\
& \quad+\frac{m p}{p-m}\left[\left(1+\frac{p-m}{m}\right)^{p-1}-1\right] \\
& =m+\frac{m^{2}}{m-p}\left(\frac{p}{m}\right)^{p}-\frac{m^{2}}{m-p}+\frac{m p}{p-m}\left(\frac{p}{m}\right)^{p-1}-\frac{m p}{p-m}=0
\end{aligned}
$$

From (i) - (iii) it follows that Theorem 2.3 is true.

Remark 2.4. Theorem 2.3 for $k=1$ is equivalent to Proposition 2.1 in the case when $p=n-1$.

Remark 2.5. It is easy to verify, that (2.8) is equivalent to

$$
E_{1}^{k} E_{n-k} \geq \frac{1}{n} \sum_{i=1}^{k}\binom{k}{i}(n-k+i)\left(\frac{k-n}{n}\right)^{i-1} E_{1}^{k-i} E_{n-k+i}
$$

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	

Page 13 of 25
J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003 http://jipam.vu.edu.au

We define the sequence of real numbers $\left\{\alpha_{m, l}\right\}, m \in \mathbb{N}, l \in \mathbb{N}$ as follows:

$$
\begin{align*}
\alpha_{1, l} & =\frac{1}{l^{l}} \quad \text { for } \quad \forall l \in \mathbb{N}, \tag{2.10}\\
\alpha_{m, l} & =0 \quad \text { for } \quad m \geq l \geq 2 \text { or } \quad m>1, l=1, \tag{2.11}\\
\binom{l}{m} l^{m} & =l^{l} \alpha_{1, l-m}+\sum_{j=1}^{m}\binom{l}{m-j} l^{m-j} \alpha_{1+j, l-m+j} \tag{2.12}\\
& \text { for } 1 \leq m \leq l-1 .
\end{align*}
$$

More precisely, the numbers $\alpha_{m, l}$ can be defined recurrently (excluding the cases when: $m>1, l=1$ or $m \geq l \geq 2$) as follows:

1) We get $\alpha_{1, l}$ for $l \geq 1$ from (2.10).
2) Then we determine $\alpha_{2, l}$ for $l \geq 3$ from $\binom{l}{1} l=l^{l} \alpha_{1, l-1}+\alpha_{2, l}$.
3) Then we determine $\alpha_{3, l}$ for $l \geq 4$ from $\binom{l}{2} l^{2}=l^{l} \alpha_{1, l-2}+\binom{l}{1} l \alpha_{2, l-1}+\alpha_{3, l}$.
4) Then we determine $\alpha_{4, l}$ for $l \geq 5$ from $\binom{l}{3} l^{3}=l^{l} \alpha_{1, l-3}+\binom{l}{2} l^{2} \alpha_{2, l-2}+$ $\binom{l}{1} l \alpha_{3, l-1}+\alpha_{4, l}$ and so on.

For example, the values of $\alpha_{m, l}$ for $m \leq 5, l \leq 6$ are given in Table 1.
The sequence $\left\{\alpha_{m, l}\right\}$ has interesting properties. For example one can prove, that in the case when $\alpha_{m, l} \neq 0: \operatorname{sgn} \alpha_{m, l}=1$ for m even and $\operatorname{sgn} \alpha_{m, l}=-1$ for m odd, $m \geq 3$.

We are going to prove the following property of the sequence $\left\{\alpha_{m, l}\right\}$:

New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

Title Page
Contents

Go Back
Close
Quit
Page 14 of 25

Proposition 2.4. For each integer number n, $n \geq 2$ we have:

$$
\begin{equation*}
\alpha_{n, n+1}=(-1)^{n}\left(\frac{n+1}{2}\right)^{2} . \tag{2.13}
\end{equation*}
$$

Proof. We will prove (2.12) by induction.
(i) We show, that $\alpha_{2,3}=(-1)^{2}\left(\frac{2+1}{2}\right)^{2}$, (see Table 1).
(ii) Let (2.13) hold true for $\alpha_{2,3}, \ldots, \alpha_{n-1, n}$.
(iii) Using (2.12) for $l=n+1$ and $m=n-1$, (2.10) for $l=2$ and (ii) we obtain

$$
\begin{aligned}
& \binom{n+1}{2}(n+1)^{n-1} \\
= & \frac{(n+1)^{n+1}}{4}+\sum_{j=1}^{n-2}\binom{n+1}{j+2}(-1)^{j+1}\left(\frac{j+2}{2}\right)^{2}(n+1)^{n-1-j}+\alpha_{n, n+1}
\end{aligned}
$$

Substituting $j=i-1$, this implies

$$
\begin{aligned}
\alpha_{n, n+1}= & \binom{n+1}{2}(n+1)^{n-1} \\
& -\frac{(n+1)^{n+1}}{4}-\frac{1}{4} \sum_{i=2}^{n-1}\binom{n+1}{i+1}(-1)^{i}(i+1)^{2}(n+1)^{n-i} .
\end{aligned}
$$

New Inequalities Between
Elementary Symmetric Polynomials

Todor P. Mitev

Title Page
Contents

Go Back
Close
Quit
Page 15 of 25

Now from the equalities $\binom{n+1}{i+1}(i+1)=\binom{n}{i}(n+1)$ and $\binom{n}{i} i=\binom{n-1}{i-1} n$ we obtain:

$$
\begin{aligned}
& \alpha_{n, n+1}=\binom{n+1}{2}(n+1)^{n-1}-\frac{(n+1)^{n-1}}{4} \\
&-\frac{n+1}{4} \sum_{i=2}^{n-1}\binom{n}{i}(-1)^{i}(i+1)(n+1)^{n-i} \\
&=\frac{(n+1)^{n+1}}{4} {\left[\frac{2 n}{n+1}-1-\sum_{i=2}^{n-1}\binom{n}{i}(i+1)\left(\frac{-1}{n+1}\right)^{i}\right] } \\
&=\frac{(n+1)^{n+1}}{4} {\left[\frac{n-1}{n+1}-\sum_{i=2}^{n-1}\binom{n}{i}\left(\frac{-1}{n+1}\right)^{i}\right.} \\
&\left.-n \sum_{i=2}^{n-1}\binom{n-1}{i-1}\left(\frac{-1}{n+1}\right)^{i}\right]
\end{aligned}
$$

Substituting $i=k+1$ we obtain

$$
\begin{aligned}
\alpha_{n, n+1}= & \frac{(n+1)^{n+1}}{4}\left[\frac{n-1}{n+1}-\left(1+\frac{-1}{n+1}\right)^{n}+1+n\left(\frac{-1}{n+1}\right)\right. \\
& \left.+\left(\frac{-1}{n+1}\right)^{n}-n \sum_{k=1}^{n-2}\binom{n-1}{k}\left(\frac{-1}{n+1}\right)^{k+1}\right] \\
= & \frac{(n+1)^{n+1}}{4}\left\{\frac{n}{n+1}-\left(\frac{n}{n+1}\right)^{n}+\left(\frac{-1}{n+1}\right)^{n}\right.
\end{aligned}
$$

New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

Title Page

Contents

Go Back

Close
Quit
Page 16 of 25

$$
\begin{gathered}
\left.+\frac{n}{n+1}\left[\left(1+\frac{-1}{n+1}\right)^{n-1}-1-\left(\frac{-1}{n+1}\right)^{n-1}\right]\right\} \\
=\frac{(n+1)^{n+1}}{4}\left[\frac{n}{n+1}-\left(\frac{n}{n+1}\right)^{n}+\left(\frac{-1}{n+1}\right)^{n}\right. \\
\left.\quad+\frac{n}{n+1}\left(\frac{n}{n+1}\right)^{n-1}-\frac{n}{n+1}-\frac{n}{n+1}\left(\frac{-1}{n+1}\right)^{n-1}\right] \\
=\frac{(n+1)^{n+1}}{4}(-1)^{n}\left[\frac{1}{(n+1)^{n}}+\frac{n}{(n+1)^{n}}\right]=(-1)^{n}\left(\frac{n+1}{2}\right)^{2} .
\end{gathered}
$$

From (i), (ii) and (iii) it follows that (2.13) is true for each $n \geq 2$.

Theorem 2.5. Let n and k be fixed integer numbers for which $1 \leq k \leq n-2$. Then for arbitrary non-negative x_{1}, \ldots, x_{n}, the following inequality is fulfilled:

$$
\begin{equation*}
\sigma_{1}^{k} \sigma_{n-k} \leq \alpha_{1, n-k} \sigma_{1}^{n}+\sum_{i=1}^{k} \alpha_{1+i, n-k+i} \sigma_{1}^{k-i} \sigma_{n-k+i} \tag{2.14}
\end{equation*}
$$

where $\left\{\alpha_{m, l}\right\}$ are defined from (2.10)-(2.12).
Proof. (2.14) is homogenous, therefore we may assume, that $x_{1}+\cdots+x_{n}=$ $\sigma_{1}=1$. Then according to Lemma 2.2 it is sufficient to prove, that

$$
\begin{equation*}
f\left(P_{m, n}\right) \geq 0, \quad \text { for each } m, 1 \leq m \leq n \tag{2.15}
\end{equation*}
$$

where

$$
f\left(x_{1}, \ldots, x_{n}\right)=\alpha_{1, n-k}+\sum_{i=1}^{k} \alpha_{1+i, n-k+i} \sigma_{n-k+i}-\sigma_{n-k}
$$

Obviously at the point $P_{m, n}$ we have $\sigma_{q}=\binom{m}{q} \frac{1}{m^{q}}$ for $1 \leq q \leq n$, hence

$$
\begin{equation*}
\sigma_{q} \neq 0 \quad \text { if and only if } \quad q \leq m \tag{2.16}
\end{equation*}
$$

We consider the following three possible cases for m :
(i) $m \leq n-k-1$. Then from (2.16) and (2.10) we obtain $f\left(P_{m, n}\right)=$ $\alpha_{1, n-k}=\frac{1}{(n-k)^{n-k}}>0$.
(ii) $m=n-k$. Then from (2.16) and (2.10) we obtain $f\left(P_{n-k, n}\right)=\alpha_{1, n-k}-$ $\frac{1}{(n-k)^{n-k}}=0$.
(iii) $m=n-k+p$, where $1 \leq p \leq k$. From (2.16) it follows

$$
\begin{aligned}
f\left(P_{m, n}\right)= & \alpha_{1, n-k}+\sum_{i=1}^{k} \alpha_{1+i, n-k+i}\binom{n-k+p}{n-k+i} \frac{1}{(n-k+p)^{n-k+i}} \\
& -\binom{n-k+p}{n-k} \frac{1}{(n-k+p)^{n-k}} \\
= & \frac{1}{(n-k+p)^{n-k+p}}\left[(n-k+p)^{n-k+p} \alpha_{1, n-k}\right. \\
& +\sum_{i=1}^{k}\binom{n-k+p}{n-k+i}(n-k+p)^{p-i} \alpha_{1+i, n-k+i}
\end{aligned}
$$

New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

Title Page
Contents

Page 18 of 25
J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003 http://jipam.vu.edu.au

$$
\left.-\binom{n-k+p}{n-k}(n-k+p)^{p}\right] .
$$

However, $\binom{n-k+p}{n-k+i} \neq 0$ for $i \leq p$, and $\frac{1}{(n-k+p)^{n-k+p}}=\alpha_{1, n-k+p}$ according to (2.10), and we get
(2.17) $f\left(P_{m, n}\right)=\alpha_{1, n-k+p}\left[(n-k+p)^{n-k+p} \alpha_{1, n-k}\right.$

$$
\begin{aligned}
+\sum_{i=1}^{p}\binom{n-k+p}{p-i} & (n-k+p)^{p-i} \alpha_{1+i, n-k+i} \\
& \left.-\binom{n-k+p}{p}(n-k+p)^{p}\right]
\end{aligned}
$$ the right hand side of (2.17) is equal to zero according (2.12) for $l=n-k+p$ and $m=p$.

Therefore $f\left(P_{m, n}\right)=0$ in this case.
It follows from (i), (ii) and (iii) that (2.15) is true, and hence (2.14) is also true.

Remark 2.6. Theorem 2.5 is true as well for $k=n-1$, since both sides of (2.14) are equal in this case, which follows from (2.11).

Remark 2.7. An analogue of Theorem 2.5 for $k=0$ is the inequality between the arithmetic and geometric means.

New Inequalities Between Elementary Symmetric

Todor P. Mitev

Title Page
Contents

Todor P. Mit
Title Page
$\frac{\langle\downarrow}{\text { Go Back }}$ Close

Page 19 of 25

Corollary 2.6. Let A_{n}, G_{n}, H_{n} be the classical averages of the positive real numbers $x_{1}, \ldots, x_{n}(n \geq 2)$. Then the following inequality is true:

$$
\begin{equation*}
\left[\frac{n A_{n}}{(n-1) G_{n}}\right]^{n-1} \frac{1}{G_{n}}+\left[n-\left(1+\frac{1}{n-1}\right)^{n-1}\right] \frac{1}{A_{n}} \geq \frac{n}{H_{n}} \tag{2.18}
\end{equation*}
$$

Proof. (2.18) follows from:

$$
\begin{gathered}
\sigma_{1}=n A_{n}, \sigma_{n-1}=\frac{n G_{n}^{n}}{H_{n}}, \sigma_{n}=G_{n}^{n} \\
\alpha_{1, n-1}=\frac{1}{(n-1)^{n-1}}, \alpha_{2, n}=n^{2}-\frac{n^{n}}{(n-1)^{n-1}}
\end{gathered}
$$

and from Theorem 2.5 for $k=1$.
Corollary 2.7 (Explicit expression of Theorem 2.5 for $k=n-2$). For each integer number $n(n \geq 3)$ we have:

$$
\sigma_{1}^{n-2} \sigma_{2} \leq \frac{1}{4} \sigma_{1}^{n}+\sum_{i=1}^{n-2}(-1)^{i+1}\left(\frac{i+2}{2}\right)^{2} \sigma_{1}^{n-2-i} \sigma_{2+i}
$$

Proof. It follows from Proposition 2.4 and from Theorem 2.5 for $k=n-2$.
Remark 2.8. Corollary 2.7 is the principle result in [4].
Remark 2.9. Corollary 2.7 shows that Theorem 2.5 for $k=n-2$ is equivalent
New Inequalities Between
Elementary Symmetric Polynomials

Todor P. Mitev

Title Page
Contents

Go Back
Close
Quit
Page 20 of 25 to Theorem 2.3 in the case when $k=n-1$.

3. The Sharpness of the Inequalities (2.8) and (2.14)

The following two theorems prove that the estimates in Theorem 2.3 and Theorem 2.5 are, in a certain sense, the best possible.

Theorem 3.1. Let n and $k, 1 \leq k \leq n-1$ be integers. Let the real numbers $\beta_{1}, \ldots, \beta_{k}$ have the property (3.1). We say that the real numbers $\beta_{1}, \ldots, \beta_{k}$ have the property (3.1) if for any non-negative real numbers x_{1}, \ldots, x_{n} with a sum equal to one the following inequality is fulfilled:

$$
\begin{equation*}
\sigma_{n-k} \geq \sum_{i=1}^{k} \beta_{i} \sigma_{n-k+i} \tag{3.1}
\end{equation*}
$$

Then for arbitrary non-negative real numbers x_{1}, \ldots, x_{n} with sum equal to one the following inequality is fulfilled:
(3.2) $\sum_{i=1}^{k} \beta_{i} \sigma_{n-k+i}$

$$
\leq \sum_{i=1}^{k}(-1)^{i+1}\binom{n-k-1+i}{i}(n-k+i)^{2}(n-k)^{i-2} \sigma_{n-k+i}
$$

Proof. Set $f_{1}=f_{1}\left(x_{1}, \ldots, x_{n}\right)=\sigma_{n-k}-\sum_{i=1}^{k} \beta_{i} \sigma_{n-k+i}$ and
$f_{2}=f_{2}\left(x_{1}, \ldots, x_{n}\right)=\sigma_{n-k}+\sum_{i=1}^{k}\binom{n-k+i}{i}(n-k+i)^{2}(k-n)^{i-2} \sigma_{n-k+i}$.

Title Page
Contents

44	-
4	-
Go Back	
Close	
Quit	

Page 21 of 25

Then (3.2) is equivalent to $f_{1}-f_{2} \geq 0$. On the other hand, according to Lemma 2.2 , it is sufficient to verify this inequality at the points $P_{m, n}$. We have at these points:
(i) For $1 \leq m \leq n-k-1, k \leq n-2$ apparently $f_{1}=f_{2}=0$, hence $f_{1}-f_{2}=0$.
(ii) For $m=n-k, k \leq n-1$ we obtain $f_{1}=f_{2}=\frac{1}{(n-k)^{n-k}}$, hence $f_{1}-f_{2}=$ 0.
(iii) For $1 \leq n-k<m \leq n$ from the proof of Theorem 2.3 it follows, that $f_{2}=0$. As $f_{1} \geq 0$ according to (3.1), hence $f_{1}-f_{2} \geq 0$.

From (i), (ii) and (iii) it follows that $f_{1}-f_{2} \geq 0$ in each point $P_{m, n}$ and we complete the proof of the theorem.

Theorem 3.2. Let n and k be integers, $1 \leq k \leq n-2$. Let the real numbers $\gamma_{1}, \ldots, \gamma_{k+1}$ have the property (3.3). We say that the real numbers $\gamma_{1}, \ldots, \gamma_{k+1}$ have the property (3.3) if for any non-negative real numbers x_{1}, \ldots, x_{n} with sum equal to one, the following inequality is fulfilled:

$$
\begin{equation*}
\sigma_{n-k} \leq \gamma_{1}+\sum_{i=1}^{k} \gamma_{i+1} \sigma_{n-k+i} \tag{3.3}
\end{equation*}
$$

Then for any non-negative real numbers x_{1}, \ldots, x_{n} with sum equal to one the following inequality is fulfilled:

$$
\begin{equation*}
\alpha_{1, n-k}+\sum_{i=1}^{k} \alpha_{1+i, n-k+i} \sigma_{n-k+i} \leq \gamma_{1}+\sum_{i=1}^{k} \gamma_{1+i} \sigma_{n-k+i} . \tag{3.4}
\end{equation*}
$$

New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |

Page 22 of 25

$$
f_{1}=f_{1}\left(x_{1}, \ldots, x_{n}\right)=\gamma_{1}+\sum_{i=1}^{k} \gamma_{1+i} \sigma_{n-k+i}-\sigma_{n-k}
$$

and

$$
f_{2}=f_{2}\left(x_{1}, \ldots, x_{n}\right)=\alpha_{1, n-k}+\sum_{i=1}^{k} \alpha_{1+i, n-k+i} \sigma_{n-k+i}-\sigma_{n-k} .
$$

Then (3.4) is equivalent to $f_{1}-f_{2} \geq 0$. We are going to check this inequality at the points $P_{m, n}$. From (3.3) at $P_{n-k, n}$ it follows, that

$$
\begin{equation*}
\gamma_{1} \geq \frac{1}{(n-k)^{n-k}}=\alpha_{1, n-k} . \tag{3.5}
\end{equation*}
$$

We consider the possible cases for m :
(i) $1 \leq m \leq n-k-1$. Then $f_{1}-f_{2}=\gamma_{1}-\alpha_{1, n-k} \geq 0$ at $P_{m, n}$ according to (3.5).
(ii) $n-k \leq m \leq n$. Then $f_{1} \geq 0$ at $P_{m, n}$ according to (3.3) and from the proof of Theorem 2.5 it follows that $f_{2}=0$, therefore $f_{1}-f_{2} \geq 0$.

From (i) and (ii) we obtain, that $f_{1}-f_{2} \geq 0$ in each point $P_{m, n}(1 \leq m \leq n)$. Applying Lemma 2.2 we complete the proof of Theorem 3.2.

New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

Title Page
Contents

Go Back
Close
Quit
Page 23 of 25

Page 23 of 25

Table 1:

l	$\alpha_{1, l}$	$\alpha_{2, l}$	$\alpha_{3, l}$	$\alpha_{4, l}$	$\alpha_{5, l}$
1	1	0	0	0	0
2	$1 / 4$	0	0	0	0
3	$1 / 27$	$9 / 4$	0	0	0
4	$1 / 256$	$176 / 27$	-4	0	0
5	$1 / 3125$	$3275 / 256$	$-775 / 27$	$25 / 4$	0
6	$1 / 46656$	$65844 / 3125$	$-6579 / 64$	$316 / 3$	-9

New Inequalities Between
Elementary Symmetric
Polynomials

Todor P. Mitev

Title Page
Contents

Go Back
Close
Quit
Page 24 of 25
J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003 http://jipam.vu.edu.au

References

[1] G. HARDY, J.E. LITTLEWOOD AND G.PÓLYA,Inequalities, Cambridge Mathematical Library 2nd ed., 1952.
[2] C.P. NICULESCU, A new look at Newton's inequalities, J. Inequal. Pure and Appl. Math., 1(2) (2000), Article 17. [ONLINE: http://jipam. vu.edu.au/v1n2/014_99.html]
[3] S. ROSSET, Normalized symmetric functions, Newton inequalities and a new set of stronger inequalities. Amer. Math. Soc., 96 (1989), 815-820.
[4] N. SATO, Symmetric polynomial inequalities, Crux Mathematicorum with Mathematical Mayhem, 27 (2001), 529-533.

New Inequalities Between Elementary Symmetric Polynomials

Todor P. Mitev

Title Page
Contents

Page 25 of 25
J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003
http://jipam.vu.edu.au

[^0]: J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003 http://jipam.vu.edu.au

