Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 4, Issue 4, Article 73, 2003

A VARIANT OF JENSEN'S INEQUALITY
 A.McD. MERCER
 Department of Mathematics and Statistics,
 University of Guelph,
 Guelph, Ontario N1G 2W1,
 Canada.
 amercer@reach.net

Received 14 August, 2003; accepted 27 August, 2003
 Communicated by P.S. Bullen

AbSTRACT. If f is a convex function the following variant of the classical Jensen's Inequality is proved

$$
f\left(x_{1}+x_{n}-\sum w_{k} k_{k}\right) \leq f\left(x_{1}\right)+f\left(x_{n}\right)-\sum w_{k} f\left(x_{k}\right)
$$

Key words and phrases: Jensen's inequality, Convex functions.
2000 Mathematics Subject Classification. 26D15.

1. MAIN Theorem

Let $0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ and let $w_{k}(1 \leq k \leq n)$ be positive weights associated with these x_{k} and whose sum is unity. Then Jensen's inequality [2] reads :

Theorem 1.1. If f is a convex function on an interval containing the x_{k} then

$$
\begin{equation*}
f\left(\sum w_{k} x_{k}\right) \leq \sum w_{k} f\left(x_{k}\right) \tag{1.1}
\end{equation*}
$$

Note: Here and, in all that follows, \sum means \sum_{1}^{n}.
Our purpose in this note is to prove the following variant of (1.1).
Theorem 1.2. If f is a convex function on an interval containing the x_{k} then

$$
f\left(x_{1}+x_{n}-\sum w_{k} x_{k}\right) \leq f\left(x_{1}\right)+f\left(x_{n}\right)-\sum w_{k} f\left(x_{k}\right) .
$$

Towards proving this theorem we shall need the following lemma:
Lemma 1.3. For f convex we have:

$$
\begin{equation*}
f\left(x_{1}+x_{n}-x_{k}\right) \leq f\left(x_{1}\right)+f\left(x_{n}\right)-f\left(x_{k}\right), \quad(1 \leq k \leq n) \tag{1.2}
\end{equation*}
$$

[^0]
2. The Proofs

Proof of Lemma 1.3. Write $y_{k}=x_{1}+x_{n}-x_{k}$. Then $x_{1}+x_{n}=x_{k}+y_{k}$ so that the pairs x_{1}, x_{n} and x_{k}, y_{k} possess the same mid-point. Since that is the case there exists λ such that

$$
\begin{aligned}
& x_{k}=\lambda x_{1}+(1-\lambda) x_{n}, \\
& y_{k}=(1-\lambda) x_{1}+\lambda x_{n},
\end{aligned}
$$

where $0 \leq \lambda \leq 1$ and $1 \leq k \leq n$.
Hence, applying (1.1) twice we get

$$
\begin{aligned}
f\left(y_{k}\right) & \leq(1-\lambda) f\left(x_{1}\right)+\lambda f\left(x_{n}\right) \\
& =f\left(x_{1}\right)+f\left(x_{n}\right)-\left[\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{n}\right)\right] \\
& \leq f\left(x_{1}\right)+f\left(x_{n}\right)-f\left(\lambda x_{1}+(1-\lambda) x_{n}\right) \\
& =f\left(x_{1}\right)+f\left(x_{n}\right)-f\left(x_{k}\right)
\end{aligned}
$$

and since $y_{k}=x_{1}+x_{n}-x_{k}$ this concludes the proof of the lemma.
Proof of Theorem 1.2. We have

$$
\begin{aligned}
f\left(x_{1}+x_{n}-\sum w_{k} x_{k}\right) & =f\left(\sum w_{k}\left(x_{1}+x_{n}-x_{k}\right)\right) \\
& \leq \sum w_{k} f\left(x_{1}+x_{n}-x_{k}\right) \\
& \leq \sum w_{k}\left[f\left(x_{1}\right)+f\left(x_{n}\right)-f\left(x_{k}\right)\right] \quad \text { by (1.1) } \\
& =f\left(x_{1}\right)+f\left(x_{n}\right)-\sum w f\left(x_{k}\right)
\end{aligned}
$$

and this concludes the proof.

3. Two Examples

Let us write $\widetilde{A}=x_{1}+x_{n}-A$ and $\widetilde{G}=\frac{x_{1} x_{n}}{G}$, where A and G denote the usual arithmetic and geometric means of the x_{k}.
(a) Then taking $f(x)$ as the convex function $-\log x$, Theorem 1.2 gives:

$$
\widetilde{A} \geq \widetilde{G}
$$

(b) Taking $f(x)$ as the function $\log \frac{1-x}{x}$ which is convex if $0<x \leq \frac{1}{2}$, Theorem 1.2 gives

$$
\frac{\widetilde{A}(x)}{\widetilde{A}(1-x)} \geq \frac{\widetilde{G}(x)}{\widetilde{G}(1-x)}
$$

provided that $x_{k} \in\left(0, \frac{1}{2}\right]$ for all k.
The example (a) is a special case of a family of inequalities found by a different method in [1]. The example (b) is, of course, an analogue of Ky-Fan's Inequality [2].

References

[1] A.McD. MERCER, A monotonicity property of power means, J. Ineq. Pure and Appl. Math., 3(3) (2002), Article 40. [ONLINE: http://jipam.vu.edu.au/v3n3/014_02.html].
[2] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.

[^0]: ISSN (electronic): 1443-5756
 (c) 2003 Victoria University. All rights reserved.

 116-03

