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ABSTRACT. General companion inequalities related to Jensen’s inequality for the classes of
m-convex and(a, m)-convex functions are presented. We show how Jensen’s inequality for
these two classes, as well as Slater’s inequality, can be obtained from these general companion
inequalities as special cases. We also present several variants of the converse Jensen’s inequality,
weighted Hermit-Hadamard'’s inequalities and inequalities of Giaccardi and Retoouhese

two classes of functions.
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1. INTRODUCTION

Let [0,0], b > 0, be an interval of the real linR, and letX (b) be the class of all functions
: [0,b] — R which are continuous and nonnegative [6nb] and such thay (0) = 0. We
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2 M. KLARICIC BAKULA, J. FECARIC, AND M. RIBICIC

define the mean functiof' of the functionf € K (b) as
% fox f (t) dt7 YIS (07 b]
F(z) = .
0, =0
We say that the functioyfi is convexon [0, b] if

flz+(1—t)y) <tf(x)+ 1 —1)f(y)

holds for allz, y € [0,b] andt € [0, 1]. Let K (b) denote the class of all functiorfse K (b)
convex on0, b] , and letK (b) be the class of all functions € K (b) convex in meaon [0, ],
i.e., the class of all functiong € K (b) for which F' € K (b) . Let K (b) denote the class of
all functionsf € K (b) which arestarshapedvith respect to the origin oft, 4|, i.e., the class
of all functionsf with the property that

f(tx) < tf (x)
holds for allz € [0,6] andt € [0, 1]. In the paper[[1], Bruckner and Ostrow, among others,
proved that
Kc (b) C Kr (b) C Ky (b) .
In the paper[10] G. Toader defined theconvexity another intermediate between the usual
convexity and starshaped convexity.

Definition 1.1. The functionf : [0,b] — R, b > 0, is said to ben-convex, wheren € [0, 1],
if we have

flz+m(l—t)y) <tf(z)+m(1—1)f(y)
forall z,y € [0,b] andt € [0, 1] . We say thatf is m-concave if— f is m-convex.
Denote byK,, (b) the class of alln-convex functions o0, b] for which f (0) < 0.

Obviously, form = 1 Definition[1.] recaptures the concept of standard convex functions on
[0,0], and form = 0 the concept of starshaped functions.
The following lemmas hold (sek [11]).

Lemma A. If fisin the classk,, (b), then it is starshaped.
Lemma B. If f is in the classk,, (b) and0 < n < m < 1, thenf is in the classk,, (b).
From LemmaA and LemmnialB it follows that
Ky (b) C Ko (b) C Ky (b).

wheneverm € (0,1). Note that in the clasg; (b) we have only the convex functions :
[0,b] — R for which f (0) <0, i.e., K (b) is a proper subclass of the class of convex functions
on|0,b].

It is interesting to point out that for any. € (0, 1) there are continuous and differentiable
functions which aren-convex, but which are not convex in the standard sense. Furthermore, in
the paper[12], the following theorem was proved.

Theorem A. For eachm € (0, 1) there is anm-convex polynomiaf such thatf is notn-convex
foranym < n < 1.

For instancef : [0,00) — R defined as
1
f(x) = D (z* — 52® + 92® — Bx)

e 16 H 16 -
is 12-convex, but it is notn-convex for anym € (12, 1] (seel[7]).
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ON JENSEN S INEQUALITY FOR m-CONVEX AND (a, m)-CONVEX FUNCTIONS 3

It is well known (see for examplé|[8, p. 5]) that the functipn (a,b) — R is convex iff
there is at least one line support fbat each point, € (a,b), i.e.,

f(@o) < f(2) + Ao — ),

forall x € (a,b) , where\ € R depends om, and is given by\ = f’ (x¢) whenf’ (z) exists,

and\ € [f~ (xo), f} (z0)] whenf” (zo) # f} (xo).
The following Lemmal[3] gives an analogous resultferconvex functions.

Lemma C. If f is differentiable, thery is m-convex iff

f@) <mf(y) + [ (z) (x — my)
forall z,y € [0,0] .

The notion ofm-convexity can be further generalized via introduction of another parameter
a € [0,1] in the definition ofm-convexity. The class of«, m)-convex functions was first
introduced in([6] and it is defined as follows.

Definition 1.2. The functionf : [0,b] — R, b > 0, is said to b&«, m)-convex, wheréa, m) €
[0,1]%, if we have

flz+m(l—1t)y) <t“f(x) +m(1—1t%) f(y)

forall z,y € [0,b] andt € [0,1].
Denote byK " (b) the class of all«, m)-convex functions o0, b] for which f (0) < 0.

It can be easily seen that fow, m) € {(0,0),(a,0),(1,0),(1,m),(1,1),(a, 1)} one ob-
tains the following classes of functions: increasingstarshaped, starshapeaconvex, con-
vex anda-convex functions. Note that in the clak3 (b) are only convex functiong : [0, b] —
R for which f (0) < 0, i.e., K} (b) is a proper subclass of the class of all convex functions on
[0,0] . The interested reader can find more about partial ordering of convexity in [8, p. 8, 280].
Lemmd € form-convex functions has its analogue for the clas&ofn)-convex functions,
as it is stated below (see [6]).

Lemma D. If f is differentiable, thery is («, m)-convex orj0, b] iff we have

[ (@) (@ =my) = a(f () —mf(y)),
forall z,y € [0,0].

The paper is organized as follows.

In Sectior{ 2 we first prove a general companion inequality related to Jensen'’s inequality for
m-convex functions in its integral and discrete form. We show that Jensen’s inequality for
convex functions, as well as Slater’s inequality, can be obtained from this general inequality
as two special cases. In this section we also present two converse Jensen’s inequalities for
m-convex functions.

In Sectior] B we use results from Sectjgn 2 to prove several more inequalities donvex
functions: weighted Hermite-Hadamard’s inequalities and inequalities of Giaccardi and Petro-
Vic.

In Sectior] # we give a selection of the results presented in Sefliong2 and 3, but for the class
of (o, m)-convex functions.
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2. COMPANION INEQUALITIES TO JENSEN'S|INEQUALITY FOR m-CONVEX
FUNCTIONS

Theorem 2.1. Let (2, A, 1) be a measure space with< () < oo and letf : [0,b] —
R, b > 0, be a differentiablen—convex function oft, b| withm € (0,1]. If u : Q — [0,b] is a
measurable function such thito w isin L' (1), then for anyg, n € [0, b] we have

ey T84y (ﬁ | - %)

1 1 /
< [ owdn<mf )+ —e [ fmmm) (70w

Proof. First observe that sinaeis measurable and bounded we have L* (1) and sincef is
differentiable we also know thato u € L' (1) (moreover, it is inL> (x)). On the other hand,
by the assumption we hayéo v € L' (11), so it also follows that - (f’ o u) € L' (u).

From Lemma C we know that the inequalities

(2.2) f @)+ f (@) (my —x) <mf(y),

(2.3) fy) <mf(z)+ f (y) (y —ma),
hold for allz, y € [0,0] . If in we letr = Candy = u (1), t € Q, we get
FE)+ (& (mut) =& <m(fou)(t), te.

Integrating ovef) we obtain

W@ £+ £ (m [ wn—en@) <m [ (roudn

from which the left hand side g.1)) immediately follows.
In order to obtain the right hand side we proceed in a similar way: if i2.3)) we let
x=nandy =u(t),t € ), we get
(fou)(t) <mf (n)+ (f ou)(t) (u(t) —mn), te,

so after integration oveR we obtain

| owdn<mu@ 7+ [ =m0 wdn
from which the right hand side @.1) easily follows. O

If m = 1, Theorenj 2]l gives an analogous result for convex functions which was proved in

).

The following theorem is a variant of Theor¢m|2.1 for the class of starshaped functions.

Theorem 2.2. Let (2, 4, 1) be a measure space with< u(2) < oo and letf : [0,b] —
R, b > 0, be a differentiable starshaped function.ulf: Q@ — [0, b] is @ measurable function
such thatf’ o wis in L' (1) , then we have

1

| ,
m/Q(fou)al/vbgm/gu(f ou)dpu.
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Proof. As a special case of Lemrd D for = 0 we obtain
f(z) <zf' ().

After putting
x=ul(t), t e,

we follow the same idea as in the proof of the previous theorem. O
Our next corollary is the discrete version of Theofen 2.1.

Corollary 2.3. Let f : [0,b] — R, b > 0, be a differentiablen—convex function of0, b] with
m € (0,1]. Letpy, ..., p, be nonnegative real numbers such tigt = >""  p; # 0 and let
x; € [0, b] be given real numbers. Then for afiyy € [0, b] we have

EUS (Pi > b %)

Proof. This is a direct consequence of Theoljenj 2.1: we simply choose
Q=1{1,2,....,n},

M({Z}) = D, 1= 1,2, N,
U’(Z> = Ty, 1= 1,2, o, n.

O

Now we give an estimation of the difference between the first two inequalitigs1jn. The
obtained inequality incorporates the integral version of the Dragomir-Goh ressult [2] for convex
functions defined on an open intervalin

Corollary 2.4. Let all the assumptions of Theorém|2.1 be satisfied. We have

Ogﬁ/ﬂ(fowdu—%f(%/gudo

S50 g o) sy (o )0

Proof. If we let¢ andy in be defined as

§=W:m/§27ﬁdﬂ€[oab],

we obtain

o (
it Gt o) e [, (o= i [ o) 70
0

Our next result is the integral Jensen’s inequality:feconvex functions.
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Corollary 2.5. Let (12, A, 1) be a measure space with< p (€2) < oo and letf : [0,0] — R,
b > 0, be a differentiablen—convex function o, b| withm € (0,1]. If u : Q — [0 bl is a
measurable function, then we have

%f (%/ﬂu@) Sﬁ/ﬂ(fowdu'

The following theorem gives Slater’s inequality fa-convex functions.
Theorem 2.6. Let all the assumptions of Theorém|2.1 be satisfied. If
fQ f' ou du

(2.4) / frou)du #0, € [0,0],
then we have I
1 / (f'ou)du
—— | (fouwdu<mf ( ok > .
1 (€2) Q( )y Jo (f' ou)dp
Proof. If the conditions(2.4)) are satisfied, then in Theorém]2.1 we may choose
)= Jou(f ou)du
m [, (f ou)dy’

so from the right hand side of the inequali/1)) we obtain

RN )

since in this case

[ =mn (o wau= [ (u—fj%Q TEI) (rowda=o

O

If m = 1 Theorenj 2.6 recaptures Slater’s result from [9]f i convex and increasing and
if [, (f ou)du # 0we have

Jou(f ou)dp 1
?Q (Fou) dy V(Q)/Qudl/e[o,b],

where the positive measurds defined agly = (f' o u) du.
In the next two theorems we give converses of the integral Jensen’s inequalitydonvex
functions.

Theorem 2.7. Let (92, A, 1) be a measure space with< 1 (Q2) < ccandletf : [0,00) — R
be anm—convex function of0, co) withm € (0,1]. If u : Q — [a,b],0 < a < b < o0, IS @
measurable function such thgto v isin L! (x) , then we have

@8) g [ (Fowan

1 (£2)
<min{ g @ emymar () it () + o T 0},

where
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Proof. We may write

b—u(t) u(t)—ab
Gou® = (T asmtB=tl) e

Sincef is m-convex on0, co) we have

(fou)(t)gwf(a)+mmf (3) teq,

b—a b—a m
and after integration ove we get
b—1u uU—a b
. < — — 1.
26) [rondn<u@ [{=tr@+my—2r ()]

In the similar way we obtain

[ oz |m=2 (£)+ 5221 0).

m

so (2.5) immediately follows. O

Theorem 2.8. Let all the assumptions of Theor¢m|2.7 be satisfied and suppose also that the
functionu is symmetric abOlﬁ;—b. Then we have

a)+mf (L) mf (e
L/(fou)d,uSmin{f()Jr f(m> f(m>+f(b>}.
Q

w(S2) 2 ’ 2

Proof. Sinceu is symmetric aboutj—b we have

w@®)=atb—u@) ==, b-u®b

b—a b—a m
from which we get
u— b—1u b
2.7) KjfomdusMan[z_jfm>+mb_Zf(E)]

If we add (2.6]) to (2.7) and then divide the sum B (©2) we obtain
1 1{b—71u u—a b
< |l -

[ (roud [b_wﬂw+ﬂ%_af( )

) =2 m
u—a b—1u b
+b—af(@) +mb—af (E)]
_ fla)+mf ()
= 5 )
Analogously we obtain
1 mf (%)%—f(b)‘

m/ﬁ(fou)dﬂﬁ 5
0

Corollary 2.9. Let f : [0,00) — R be anm—convex function o0, co) with m € (0,1].
Let py, ..., p, be nonnegative real numbers such tliat = >  p; # 0 and letz; € [a,b],
0 < a < b< oo, be given real numbers. Than we have

1 n . b—=x T —a b b—7% a T a
Fn;pif($i) Smm{mf(a)jtmb_af(a) sme—f (—) + b_af(b)},

m
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where

Proof. The proof is analogous to the proof of Corollary]2.3. O

3. SOME FURTHER RESULTS

In this section we first show that the Fejér inequalities [4] (i.e., weighted Hermite-Hadamard’s
inequalities) form-convex functions presented in [13, Th7, Th8] can be obtained as special
cases of Theorem 2.1 and Theorlen 2.7.

Corollary 3.1. Let f : [0,b] — R be anm—convex function o0, b] with m € (0, 1] and let
g : [a,b] — [0,00) be integrable and symmetric abo?, where0 < a < b < oc. If fis
differentiable andf’ is in L' ([a, b]), then

[f(mb)_b—a

m 2

F o) / g (@) da
/ F (@) g (@) de < / (& — ma) f' (z) + mf (@) g (z) d.

Proof. This is a simple consequence of Theorenj 2.1. We just chpdsebe the Lebesgue
measure defined a = g (z) dz, Q = [a,b], u(z) = z forall x € [a,b], £ = mbandn = a.
Note that in this case we have

1 7fab:L‘g(x)dmia—l—b
m/QUd'u_ f;g(x)dx 2

O

Corollary 3.2. Let f : [0,00) — R be anm—convex function of0, co) with m € (0, 1] and
letg : [a,b] — [0, 00) be integrable and symmetric abod#®, where0 < a < b < oc. If fisin
L' ([a, b]), then

(3.1) /f(x)g(x)dxgmin{f<a)+mf( w) () + f(b)}/g(x)da:

2 2

If fis also differentiable, then

(3.2) %f( “b)/ dx</ f

Proof. If we choosey to be the Lebesgue measure definedias= ¢ (z)dz, Q = [a,b],
u(z) = x for all z € [a,b], then (3.1)) is obtain directly from Theoreth 2.7. Similarly, the
inequality (3.2)) is obtained from Corollary 2]5. O

In two following theorems we prove inequalities of Giaccardi and Petrémi m-convex
functions.

Theorem 3.3.Let f : [0,00) — R be anm—convex function o), oo) with m € (0, 1] . Let
xg, x; andp; (i = 1,...,n) be nonnegative real numbers. If

(3.3) (x; —xo) (T —2;)) >0 (i=1,2,...,n), T F# x,
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wherez = ", prxy, then
k=1

<win {mAf (£ )+ (R = 1) B (o) A7 @)+ m (P, - 0 85 (2) ],

where
A = Zk‘:l/{)k (-Tk; _ $0)7 B = = t .
r — T r — T

Proof. From the conditior(3.3)) we may deduce that

l‘oél’igf, (izl,...,n),
or
r<z;<my, (1=1,...n).

Suppose that the first conclusion holds true. We may apply Cor¢llary 2.9 to obtain

1 n
P, Zpkf (k)
k=1
<in { T2 o)+ 20 (2] I (1) 4 T2 )
r — 2o r — Xy m r — 29 m r — Xy
Since
P I e =2y ()
r — X9 — X9 m
— (a1 5 f o)+ mER =) p (2
r — Tg r — Tg m
and
T—T o T — o ~
_ _ T @ Zzzl Pk (xk - 1'0) ~
the inequality(3.4) is proved.
The other case is similar. O

Corollary 3.4. Let f : [0,00) — R be anm—convex function o0, co) with m € (0,1]. Let
x; andp; (i = 1,...,n) be nonnegative real numbers. If

k=1
then

;pkf (2) < min {mf (%) + (P, —1)f(0),f(@)+m(P,—1)f (0)} .

Proof. This is a special case of Theorém|3.3 fgr= 0. O
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4. INEQUALITIES FOR (&,m)-CONVEX FUNCTIONS

In this section we first give a general companion inequality to Jensen’s inequaljty, far) —convex
functions.

Theorem 4.1. Let (2, A, 1) be a measure space with< 1 (Q2) < co and letf : [0,0] — R,
b > 0, be a differentiablg «, m) —convex function offd, b] with (o, m) € (0,1]*. f u : Q —
[0, b] is @ measurable function such thAto u isin L (i) , then for anyg, € [0, b] we have

0 1080 ([

1 1 .
< g [ omdn<ms )+ — [ () (o) du.
Proof. From Lemma D we know that the inequalities
(4.2) af () + f'(x) (my —x) < amf (y),
(4.3) af (y) <amf (z) + [ (y) (y — mz),

hold for allz,y € [0,5] . If in (4.2) we letz = { andy = u () , t € Q, we get
af (&) + [ (&) (mu(t) = &) <am(fou)(t), tel.

Integrating ovef) we obtain

w(@af (©+ £ (m [ un—en@) <am [ (roudn

from which the left hand side dfff.1)) immediately follows.
In order to obtain the right hand side we proceed in a similar way: if i4.3) we let
x=nandy =u(t),t e, we get
a(fou)(t) <amf(n)+ (fou))(u(t)—mn), teQ,

so after integration ovelR we obtain

o [ (Fouydu<amu(@) )+ [ (wmn) (10w
Q Q
from which the right hand side dff.1)) easily follows. O

The following theorem is a variant of Theor¢m|4.1 for the clasa-starshaped functions
(i.e. (o, 0)-convex functions).

Theorem 4.2. Let (2, A, 1) be a measure space with< 1 (Q) < oo and letf : [0,b] —
R, b > 0, be a differentiablex-starshaped function. i : @ — [0, 0] is a measurable function
such thatf’ o wis in L' (1) , then we have

1 / 1

— foud,ug—/uf’oud,u.

(@) Jo o= Gy Jy e

Proof. Similarly to the proof of Theorem 2.2. O

Our next corollary gives the integral version of the Dragomir-Goh result [2] for the class of
(cr, m)-functions.

J. Inequal. Pure and Appl. Math?(5) Art. 194, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ON JENSEN S INEQUALITY FOR m-CONVEX AND (c, m)-CONVEX FUNCTIONS 11

Corollary 4.3. Let all the assumptions of Theorém|4.1 be satisfied. We have

Oéﬁ/g(fou)du—%f<%/gudu)

<2 o) (v )

Proof. If we let¢ andn in (4.1)) be defined as

fZﬁ:m/QUdﬂE[oab],

we obtain
if (%/ﬂudu) Sﬁ/(fowdu
< (5 )

o Lo o) 7o
0

It may be interesting to note here that the variants of Jensen’s inequality and Slater’s in-
equality for the class of«, m)-convex functions are the same as the variants for the class of
m-convex functionga # 0), i.e., they do not depend an

In the next theorem we give a converse of the integral Jensen’s inequality, far-convex
functions.

Theorem 4.4. Let (2, A, 1) be a measure space with< 1 (Q2) < ccandletf : [0,00) — R
be an(«, m)-convex function oif0, co) , with & € (0,1) andm € (0,1]. If u : Q — [a, ],
0 < a < b < oo, is a measurable function such thab « is in L' (u) , then we have

1
m/ﬁ(fou)dﬂ

mr (5 + ey PO -mr GOV [ (M25°) )
If additionally we havef (a) — mf (L) > 0, then

L/Q(fou)duémf

1 () (m)

<mf <£) + {f(a) —mf
m

or symmetrically, if we havé (b) —mf (=

£
ﬁ/ﬂ(fou)d,uﬁmf () + [F 0 =mi ()] (?iZ)
()

<mf
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Proof. We can write

(fou><t>=f(bb%“fﬁa+m[1—bb%“(ﬂ %) req

Sincef is («, m)-convex we have
den®= () p@m - () ] (1)

o (8w (2] (2 e

so after integration oveR we obtain

08 i [Tendesmg (D)4 o | f@-ms (%)]/ﬂ(bb‘fﬂadu.

Analogously, from

oy =1 (M2 e 1= 1020 2 e,

—a m

we obtain

@)~ [(Fomanzms (L) + o [10) - s (%)}/ﬁ(“ﬁ;“)adu.

Suppose now that (a) — mf (%) > 0. We know that the functior : [0, c0) — R defined
asy (z) = z, wherea € (0, 1] is fixed, is concave off, o) , so from the integral Jensen’s
inequality we have

o (bb_—uc(f))ad“ : (mlsz) J bb_—uc(f)d“)a ) (Z:Z)a

Using that, from(4.4]) we obtain

o [wonansns (D)4 [r@-ms (2)] (3=2)

On the other hand, from the generalized Bernoulli’'s inequality we have
b—u\" b—1u u—a
<1— _ — 1 —
<b—a> =1 a(l b—a) ! .
so from({4.4) we may deduce
() o= (3)) =)
m m b—a
b uU—a
— — — | [1— .
2t () L= ()] [=ei=

Analogously, iff (b) — mf (%) > 0, from we obtain

ﬁ/{z(fou)duﬁmf(%>+ SO =mi ()] (Z:ZY
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and

R
(g
VN
| =
N——
+
—
SIQ
/\
QI
v

m> [ror-mr ()] [1-05=3)

This completes the proof. O

Remark 4.5. It can be easily seen that the assertion of Thedgrem 4.4 remains vatid=fot
since in this case we directly have

1 b—u(t) b—1u
d —
M(Q)/Q b—a HTb_a

1 u(t)—a, U—a
,u(Q)/Q b—a d'u_b—a'
This means that in this case the conditigiis:) — mf (£) > 0andf (b) — mf (%) > 0 can

be omitted, which implies that fax = 1 Theorenj 4.4 gives the previously obtained result for
m-convex functions given in Theorgm 2.7.

At the end of this section we give two variants of the weighted Hadamard inequality for
(ar, m)-convex functions and also a variant of Hadamard’s inequality.

Corollary 4.6. Let f : [0,b] — R be an(«, m)-convex function of0, b] with (a,m) € (0,1)°
and letg : [a,b] — [0, co) be integrable and symmetric abo#?, where0 < a < b < cc. If f
is differentiable andf’ is in L! ([a, b]), then
f(mb)  b—a
m 2

f o) / g (@) da

/ F () g () de < / {x‘amaf'uwmf(a) g (z)dz.

Proof. The proof is similar to that of Corollafy 3.1. O

Corollary 4.7. Let f : [0,00) — R be an(a, m)-convex function off0, co) , with a € (0, 1)
andm € (0,1], and letg : [a,b] — [0,00) be integrable and symmetric abo&}®, where
0<a<b<oo.lf fisinL'([a,b]),then

/abfmg(m)dxg [mf (£)+ 3 (r0=mr (2)] [ swa
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If f is differentiable, then we also have

(4.6) %f( “b)/ d:p</ f (2

Proof. If we chooseu to be the Lebesgue measure definedias= ¢ (z)dz, Q = [a,b],
u(x) =« forall z € [a,b], then(B.1) is obtained directly from Theoren 4.4. Note that in this

case we have
a—a\" _ (b—u\" 1
b—a \b—a) 2o

The inequality(4.6)) is a simple consequence of Corollary|4.3. O

Corollary 4.8. Let f : [0,00) — R be an(«, m)-convex function o0, co) , with o € (0, 1)
andm € (0,1],and let0 < a < b < co. If fisin L' ([a,b]), then

b
i [ r@ar<min{ng (L) s [r@-mr (1)),
mt () + g PO —ms ()]}
If f is differentiable, then we also have

1 b 1 b
L) <t [ 1

Proof. Directly from Corollary 4.7. We simply choose the functigto be the constant function
1, and in that case we have

[ (=2) o= [ (55) o= 155
U

Variants of other inequalities, which were proved for the classwefonvex functions in
Section$ P and]|3, can be also stated for this class of mappings, but we omit the details.
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