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ABSTRACT. General companion inequalities related to Jensen’s inequality for the classes of
m-convex and(α, m)-convex functions are presented. We show how Jensen’s inequality for
these two classes, as well as Slater’s inequality, can be obtained from these general companion
inequalities as special cases. We also present several variants of the converse Jensen’s inequality,
weighted Hermit-Hadamard’s inequalities and inequalities of Giaccardi and Petrović for these
two classes of functions.
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1. I NTRODUCTION

Let [0, b] , b > 0, be an interval of the real lineR, and letK (b) be the class of all functions
f : [0, b] → R which are continuous and nonnegative on[0, b] and such thatf (0) = 0. We
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2 M. KLARI ČIĆ BAKULA , J. PEČARIĆ, AND M. RIBI ČIĆ

define the mean functionF of the functionf ∈ K (b) as

F (x) =

{ 1
x

∫ x

0
f (t) dt, x ∈ (0, b]

0, x = 0
.

We say that the functionf is convexon [0, b] if

f (tx + (1− t) y) ≤ tf (x) + (1− t) f (y)

holds for allx, y ∈ [0, b] andt ∈ [0, 1] . Let KC (b) denote the class of all functionsf ∈ K (b)
convex on[0, b] , and letKF (b) be the class of all functionsf ∈ K (b) convex in meanon [0, b] ,
i.e., the class of all functionsf ∈ K (b) for which F ∈ KC (b) . Let KS (b) denote the class of
all functionsf ∈ K (b) which arestarshapedwith respect to the origin on[0, b] , i.e., the class
of all functionsf with the property that

f (tx) ≤ tf (x)

holds for allx ∈ [0, b] andt ∈ [0, 1] . In the paper [1], Bruckner and Ostrow, among others,
proved that

KC (b) ⊂ KF (b) ⊂ KS (b) .

In the paper [10] G. Toader defined them-convexity: another intermediate between the usual
convexity and starshaped convexity.

Definition 1.1. The functionf : [0, b] → R, b > 0, is said to bem-convex, wherem ∈ [0, 1] ,
if we have

f (tx + m (1− t) y) ≤ tf (x) + m (1− t) f (y)

for all x, y ∈ [0, b] andt ∈ [0, 1] . We say thatf is m-concave if−f is m-convex.
Denote byKm (b) the class of allm-convex functions on[0, b] for whichf (0) ≤ 0.

Obviously, form = 1 Definition 1.1 recaptures the concept of standard convex functions on
[0, b] , and form = 0 the concept of starshaped functions.

The following lemmas hold (see [11]).

Lemma A. If f is in the classKm (b) , then it is starshaped.

Lemma B. If f is in the classKm (b) and0 < n < m ≤ 1, thenf is in the classKn (b).

From Lemma A and Lemma B it follows that

K1 (b) ⊂ Km (b) ⊂ K0 (b) ,

wheneverm ∈ (0, 1) . Note that in the classK1 (b) we have only the convex functionsf :
[0, b] → R for whichf (0) ≤ 0, i.e.,K1 (b) is a proper subclass of the class of convex functions
on [0, b] .

It is interesting to point out that for anym ∈ (0, 1) there are continuous and differentiable
functions which arem-convex, but which are not convex in the standard sense. Furthermore, in
the paper [12], the following theorem was proved.

Theorem A. For eachm ∈ (0, 1) there is anm-convex polynomialf such thatf is notn-convex
for anym < n ≤ 1.

For instance,f : [0,∞) → R defined as

f (x) =
1

12

(
x4 − 5x3 + 9x2 − 5x

)
is 16

17
-convex, but it is notm-convex for anym ∈

(
16
17

, 1
]

(see [7]).
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ON JENSEN’ S INEQUALITY FOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS 3

It is well known (see for example [8, p. 5]) that the functionf : (a, b) → R is convex iff
there is at least one line support forf at each pointx0 ∈ (a, b) , i.e.,

f (x0) ≤ f (x) + λ (x0 − x) ,

for all x ∈ (a, b) , whereλ ∈ R depends onx0 and is given byλ = f ′ (x0) whenf ′ (x0) exists,
andλ ∈

[
f ′− (x0) , f ′+ (x0)

]
whenf ′− (x0) 6= f ′+ (x0) .

The following Lemma [3] gives an analogous result form-convex functions.

Lemma C. If f is differentiable, thenf is m-convex iff

f (x) ≤ mf (y) + f ′ (x) (x−my)

for all x, y ∈ [0, b] .

The notion ofm-convexity can be further generalized via introduction of another parameter
α ∈ [0, 1] in the definition ofm-convexity. The class of(α, m)-convex functions was first
introduced in [6] and it is defined as follows.

Definition 1.2. The functionf : [0, b] → R, b > 0, is said to be(α, m)-convex, where(α, m) ∈
[0, 1]2 , if we have

f (tx + m (1− t) y) ≤ tαf (x) + m (1− tα) f (y)

for all x, y ∈ [0, b] andt ∈ [0, 1] .
Denote byKα

m (b) the class of all(α, m)-convex functions on[0, b] for whichf (0) ≤ 0.

It can be easily seen that for(α, m) ∈ {(0, 0) , (α, 0) , (1, 0) , (1, m) , (1, 1) , (α, 1)} one ob-
tains the following classes of functions: increasing,α-starshaped, starshaped,m-convex, con-
vex andα-convex functions. Note that in the classK1

1 (b) are only convex functionsf : [0, b] →
R for which f (0) ≤ 0, i.e.,K1

1 (b) is a proper subclass of the class of all convex functions on
[0, b] . The interested reader can find more about partial ordering of convexity in [8, p. 8, 280].

Lemma C form-convex functions has its analogue for the class of(α, m)-convex functions,
as it is stated below (see [6]).

Lemma D. If f is differentiable, thenf is (α, m)-convex on[0, b] iff we have

f ′ (x) (x−my) ≥ α (f (x)−mf (y)) ,

for all x, y ∈ [0, b] .

The paper is organized as follows.
In Section 2 we first prove a general companion inequality related to Jensen’s inequality for

m-convex functions in its integral and discrete form. We show that Jensen’s inequality form-
convex functions, as well as Slater’s inequality, can be obtained from this general inequality
as two special cases. In this section we also present two converse Jensen’s inequalities for
m-convex functions.

In Section 3 we use results from Section 2 to prove several more inequalities form-convex
functions: weighted Hermite-Hadamard’s inequalities and inequalities of Giaccardi and Petro-
vić.

In Section 4 we give a selection of the results presented in Sections 2 and 3, but for the class
of (α, m)-convex functions.
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4 M. KLARI ČIĆ BAKULA , J. PEČARIĆ, AND M. RIBI ČIĆ

2. COMPANION I NEQUALITIES TO JENSEN’ S I NEQUALITY FOR m-CONVEX

FUNCTIONS

Theorem 2.1. Let (Ω,A, µ) be a measure space with0 < µ (Ω) < ∞ and letf : [0, b] →
R, b > 0, be a differentiablem−convex function on[0, b] with m ∈ (0, 1] . If u : Ω → [0, b] is a
measurable function such thatf ′ ◦ u is in L1 (µ) , then for anyξ, η ∈ [0, b] we have

(2.1)
f (ξ)

m
+ f ′ (ξ)

(
1

µ (Ω)

∫
Ω

udµ− ξ

m

)
≤ 1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ mf (η) +
1

µ (Ω)

∫
Ω

(u−mη) (f ′ ◦ u) dµ.

Proof. First observe that sinceu is measurable and bounded we haveu ∈ L∞ (µ) and sincef is
differentiable we also know thatf ◦ u ∈ L1 (µ) (moreover, it is inL∞ (µ)). On the other hand,
by the assumption we havef ′ ◦ u ∈ L1 (µ) , so it also follows thatu · (f ′ ◦ u) ∈ L1 (µ) .

From Lemma C we know that the inequalities

(2.2) f (x) + f ′ (x) (my − x) ≤ mf (y) ,

(2.3) f (y) ≤ mf (x) + f ′ (y) (y −mx) ,

hold for allx, y ∈ [0, b] . If in (2.2) we letx = ξ andy = u (t) , t ∈ Ω, we get

f (ξ) + f ′ (ξ) (mu (t)− ξ) ≤ m (f ◦ u) (t) , t ∈ Ω.

Integrating overΩ we obtain

µ (Ω) f (ξ) + f ′ (ξ)

(
m

∫
Ω

udµ− ξµ (Ω)

)
≤ m

∫
Ω

(f ◦ u) dµ,

from which the left hand side of(2.1) immediately follows.
In order to obtain the right hand side of(2.1) we proceed in a similar way: if in(2.3) we let

x = η andy = u (t) , t ∈ Ω, we get

(f ◦ u) (t) ≤ mf (η) + (f ′ ◦ u) (t) (u (t)−mη) , t ∈ Ω,

so after integration overΩ we obtain∫
Ω

(f ◦ u) dµ ≤ mµ (Ω) f (η) +

∫
Ω

(u−mη) (f ′ ◦ u) dµ,

from which the right hand side of(2.1) easily follows. �

If m = 1, Theorem 2.1 gives an analogous result for convex functions which was proved in
[5].

The following theorem is a variant of Theorem 2.1 for the class of starshaped functions.

Theorem 2.2. Let (Ω,A, µ) be a measure space with0 < µ (Ω) < ∞ and letf : [0, b] →
R, b > 0, be a differentiable starshaped function. Ifu : Ω → [0, b] is a measurable function
such thatf ′ ◦ u is in L1 (µ) , then we have

1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ 1

µ (Ω)

∫
Ω

u (f ′ ◦ u) dµ.
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ON JENSEN’ S INEQUALITY FOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS 5

Proof. As a special case of Lemma D form = 0 we obtain

f (x) ≤ xf ′ (x) .

After putting
x = u (t) , t ∈ Ω,

we follow the same idea as in the proof of the previous theorem. �

Our next corollary is the discrete version of Theorem 2.1.

Corollary 2.3. Let f : [0, b] → R, b > 0, be a differentiablem−convex function on[0, b] with
m ∈ (0, 1] . Let p1, ..., pn be nonnegative real numbers such thatPn =

∑n
i=1 pi 6= 0 and let

xi ∈ [0, b] be given real numbers. Then for anyξ, η ∈ [0, b] we have

f (ξ)

m
+ f ′ (ξ)

(
1

Pn

n∑
i=1

pixi −
ξ

m

)

≤ 1

Pn

n∑
i=1

pif (xi) ≤ mf (η) +
1

Pn

n∑
i=1

pi (xi −mη) f ′ (xi) .

Proof. This is a direct consequence of Theorem 2.1: we simply choose

Ω = {1, 2, ..., n} ,

µ ({i}) = pi, i = 1, 2, ..., n,

u (i) = xi, i = 1, 2, ..., n.

�

Now we give an estimation of the difference between the first two inequalities in(2.1) . The
obtained inequality incorporates the integral version of the Dragomir-Goh result [2] for convex
functions defined on an open interval inR.

Corollary 2.4. Let all the assumptions of Theorem 2.1 be satisfied. We have

0 ≤ 1

µ (Ω)

∫
Ω

(f ◦ u) dµ− 1

m
f

(
m

µ (Ω)

∫
Ω

udµ

)
≤ m2 − 1

m
f

(
m

µ (Ω)

∫
Ω

udµ

)
+

1

µ (Ω)

∫
Ω

(
u− m2

µ (Ω)

∫
Ω

udµ

)
(f ′ ◦ u) dµ.

Proof. If we let ξ andη in (2.1) be defined as

ξ = η =
m

µ (Ω)

∫
Ω

udµ ∈ [0, b] ,

we obtain

1

m
f

(
m

µ (Ω)

∫
Ω

udµ

)
≤ 1

µ (Ω)

∫
Ω

(f ◦ u) dµ

≤ mf

(
m

µ (Ω)

∫
Ω

udµ

)
+

1

µ (Ω)

∫
Ω

(
u− m2

µ (Ω)

∫
Ω

udµ

)
(f ′ ◦ u) dµ.

�

Our next result is the integral Jensen’s inequality form-convex functions.
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Corollary 2.5. Let (Ω,A, µ) be a measure space with0 < µ (Ω) < ∞ and letf : [0, b] → R,
b > 0, be a differentiablem−convex function on[0, b] with m ∈ (0, 1] . If u : Ω → [0, b] is a
measurable function, then we have

1

m
f

(
m

µ (Ω)

∫
Ω

udµ

)
≤ 1

µ (Ω)

∫
Ω

(f ◦ u) dµ.

The following theorem gives Slater’s inequality form-convex functions.

Theorem 2.6.Let all the assumptions of Theorem 2.1 be satisfied. If

(2.4)
∫

Ω

(f ′ ◦ u) dµ 6= 0,

∫
Ω

u (f ′ ◦ u) dµ

m
∫

Ω
(f ′ ◦ u) dµ

∈ [0, b] ,

then we have
1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ mf

( ∫
Ω

u (f ′ ◦ u) dµ

m
∫

Ω
(f ′ ◦ u) dµ

)
.

Proof. If the conditions(2.4) are satisfied, then in Theorem 2.1 we may choose

η =

∫
Ω

u (f ′ ◦ u) dµ

m
∫

Ω
(f ′ ◦ u) dµ

,

so from the right hand side of the inequality(2.1) we obtain

1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ mf

( ∫
Ω

u (f ′ ◦ u) dµ

m
∫

Ω
(f ′ ◦ u) dµ

)
,

since in this case∫
Ω

(u−mη) (f ′ ◦ u) dµ =

∫
Ω

(
u−

∫
Ω

u (f ′ ◦ u) dµ∫
Ω

(f ′ ◦ u) dµ

)
(f ′ ◦ u) dµ = 0.

�

If m = 1 Theorem 2.6 recaptures Slater’s result from [9]: iff is convex and increasing and
if
∫

Ω
(f ′ ◦ u) dµ 6= 0 we have∫

Ω
u (f ′ ◦ u) dµ∫

Ω
(f ′ ◦ u) dµ

=
1

ν (Ω)

∫
Ω

udν ∈ [0, b] ,

where the positive measureν is defined asdν = (f ′ ◦ u) dµ.
In the next two theorems we give converses of the integral Jensen’s inequality form-convex

functions.

Theorem 2.7. Let (Ω,A, µ) be a measure space with0 < µ (Ω) < ∞ and letf : [0,∞) → R
be anm−convex function on[0,∞) with m ∈ (0, 1] . If u : Ω → [a, b] , 0 ≤ a < b < ∞, is a
measurable function such thatf ◦ u is in L1 (µ) , then we have

(2.5)
1

µ (Ω)

∫
Ω

(f ◦ u) dµ

≤ min

{
b− u

b− a
f (a) + m

u− a

b− a
f

(
b

m

)
, m

b− u

b− a
f
( a

m

)
+

u− a

b− a
f (b)

}
,

where

u =
1

µ (Ω)

∫
Ω

udµ.
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ON JENSEN’ S INEQUALITY FOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS 7

Proof. We may write

(f ◦ u) (t) = f

(
b− u (t)

b− a
a + m

u (t)− a

b− a

b

m

)
, t ∈ Ω.

Sincef is m-convex on[0,∞) we have

(f ◦ u) (t) ≤ b− u (t)

b− a
f (a) + m

u (t)− a

b− a
f

(
b

m

)
, t ∈ Ω,

and after integration overΩ we get

(2.6)
∫

Ω

(f ◦ u) dµ ≤ µ (Ω)

[
b− u

b− a
f (a) + m

u− a

b− a
f

(
b

m

)]
.

In the similar way we obtain∫
Ω

(f ◦ u) dµ ≤ µ (Ω)

[
m

b− u

b− a
f
( a

m

)
+

u− a

b− a
f (b)

]
,

so(2.5) immediately follows. �

Theorem 2.8. Let all the assumptions of Theorem 2.7 be satisfied and suppose also that the
functionu is symmetric abouta+b

2
. Then we have

1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ min

{
f (a) + mf

(
b
m

)
2

,
mf

(
a
m

)
+ f (b)

2

}
.

Proof. Sinceu is symmetric abouta+b
2

we have

u (t) = a + b− u (t) =
u (t)− a

b− a
a + m

b− u (t)

b− a

b

m

from which we get

(2.7)
∫

Ω

(f ◦ u) dµ ≤ µ (Ω)

[
u− a

b− a
f (a) + m

b− u

b− a
f

(
b

m

)]
.

If we add(2.6) to (2.7) and then divide the sum by2µ (Ω) we obtain

1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ 1

2

[
b− u

b− a
f (a) + m

u− a

b− a
f

(
b

m

)
+

u− a

b− a
f (a) + m

b− u

b− a
f

(
b

m

)]
=

f (a) + mf
(

b
m

)
2

.

Analogously we obtain

1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤
mf

(
a
m

)
+ f (b)

2
.

�

Corollary 2.9. Let f : [0,∞) → R be anm−convex function on[0,∞) with m ∈ (0, 1] .
Let p1, ..., pn be nonnegative real numbers such thatPn =

∑n
i=1 pi 6= 0 and letxi ∈ [a, b] ,

0 ≤ a < b < ∞, be given real numbers. Than we have

1

Pn

n∑
i=1

pif (xi) ≤ min

{
b− x

b− a
f (a) + m

x− a

b− a
f

(
b

m

)
, m

b− x

b− a
f
( a

m

)
+

x− a

b− a
f (b)

}
,
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where

x =
1

Pn

n∑
i=1

pixi.

Proof. The proof is analogous to the proof of Corollary 2.3. �

3. SOME FURTHER RESULTS

In this section we first show that the Fejér inequalities [4] (i.e., weighted Hermite-Hadamard’s
inequalities) form-convex functions presented in [13, Th7, Th8] can be obtained as special
cases of Theorem 2.1 and Theorem 2.7.

Corollary 3.1. Let f : [0, b] → R be anm−convex function on[0, b] with m ∈ (0, 1] and let
g : [a, b] → [0,∞) be integrable and symmetric abouta+b

2
, where0 ≤ a < b < ∞. If f is

differentiable andf ′ is in L1 ([a, b]), then[
f (mb)

m
− b− a

2
f ′ (mb)

] ∫ b

a

g (x) dx

≤
∫ b

a

f (x) g (x) dx ≤
∫ b

a

[(x−ma) f ′ (x) + mf (a)] g (x) dx.

Proof. This is a simple consequence of Theorem 2.1. We just chooseµ to be the Lebesgue
measure defined asdµ = g (x) dx, Ω = [a, b], u (x) = x for all x ∈ [a, b] , ξ = mb andη = a.
Note that in this case we have

1

µ (Ω)

∫
Ω

udµ =

∫ b

a
xg (x) dx∫ b

a
g (x) dx

=
a + b

2
.

�

Corollary 3.2. Let f : [0,∞) → R be anm−convex function on[0,∞) with m ∈ (0, 1] and
let g : [a, b] → [0,∞) be integrable and symmetric abouta+b

2
, where0 ≤ a < b < ∞. If f is in

L1 ([a, b]), then

(3.1)
∫ b

a

f (x) g (x) dx ≤ min

{
f (a) + mf

(
b
m

)
2

,
mf

(
a
m

)
+ f (b)

2

}∫ b

a

g (x) dx.

If f is also differentiable, then

(3.2)
1

m
f

(
m

a + b

2

)∫ b

a

g (x) dx ≤
∫ b

a

f (x) g (x) dx.

Proof. If we chooseµ to be the Lebesgue measure defined asdµ = g (x) dx, Ω = [a, b],
u (x) = x for all x ∈ [a, b] , then (3.1) is obtain directly from Theorem 2.7. Similarly, the
inequality(3.2) is obtained from Corollary 2.5. �

In two following theorems we prove inequalities of Giaccardi and Petrović for m-convex
functions.

Theorem 3.3. Let f : [0,∞) → R be anm−convex function on[0,∞) with m ∈ (0, 1] . Let
x0, xi andpi (i = 1, ..., n) be nonnegative real numbers. If

(3.3) (xi − x0) (x̃− xi) ≥ 0 (i = 1, 2, . . . , n), x̃ 6= x0,

J. Inequal. Pure and Appl. Math., 7(5) Art. 194, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


ON JENSEN’ S INEQUALITY FOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS 9

wherex̃ =
∑n

k=1 pkxk, then

(3.4)
n∑

k=1

pkf (xk)

≤ min

{
mAf

(
x̃

m

)
+ (Pn − 1) Bf (x0) , Af (x̃) + m (Pn − 1) Bf

(x0

m

)}
,

where

A =

∑n
k=1 pk (xk − x0)

x̃− x0

, B =
x̃

x̃− x0

.

Proof. From the condition(3.3) we may deduce that

x0 ≤ xi ≤ x̃, (i = 1, ..., n) ,

or
x̃ ≤ xi ≤ x0, (i = 1, ..., n) .

Suppose that the first conclusion holds true. We may apply Corollary 2.9 to obtain

1

Pn

n∑
k=1

pkf (xk)

≤ min

{
x̃− x

x̃− x0

f (x0) + m
x− x0

x̃− x0

f

(
x̃

m

)
, m

x̃− x

x̃− x0

f
(x0

m

)
+

x− x0

x̃− x0

f (x̃)

}
.

Since

Pn

[
x̃− x

x̃− x0

f (x0) + m
x− x0

x̃− x0

f

(
x̃

m

)]
= (Pn − 1)

x̃

x̃− x0

f (x0) + m

∑n
k=1 pk (xk − x0)

x̃− x0

f

(
x̃

m

)
,

and

Pn

[
m

x̃− x

x̃− x0

f
(x0

m

)
+

x− x0

x̃− x0

f (x̃)

]
= m (Pn − 1)

x̃

x̃− x0

f
(x0

m

)
+

∑n
k=1 pk (xk − x0)

x̃− x0

f (x̃) ,

the inequality(3.4) is proved.
The other case is similar. �

Corollary 3.4. Let f : [0,∞) → R be anm−convex function on[0,∞) with m ∈ (0, 1] . Let
xi andpi (i = 1, ..., n) be nonnegative real numbers. If

0 6= x̃ =
n∑

k=1

pkxk ≥ xi (i = 1, ..., n),

then
n∑

k=1

pkf (xk) ≤ min

{
mf

(
x̃

m

)
+ (Pn − 1) f (0) , f (x̃) + m (Pn − 1) f (0)

}
.

Proof. This is a special case of Theorem 3.3 forx0 = 0. �
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4. I NEQUALITIES FOR (α, m)-CONVEX FUNCTIONS

In this section we first give a general companion inequality to Jensen’s inequality for(α, m)−convex
functions.

Theorem 4.1. Let (Ω,A, µ) be a measure space with0 < µ (Ω) < ∞ and letf : [0, b] → R,
b > 0, be a differentiable(α, m)−convex function on[0, b] with (α, m) ∈ (0, 1]2 . If u : Ω →
[0, b] is a measurable function such thatf ′ ◦ u is in L1 (µ) , then for anyξ, η ∈ [0, b] we have

(4.1)
f (ξ)

m
+

f ′ (ξ)

α

(
1

µ (Ω)

∫
Ω

udµ− ξ

m

)
≤ 1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ mf (η) +
1

αµ (Ω)

∫
Ω

(u−mη) (f ′ ◦ u) dµ.

Proof. From Lemma D we know that the inequalities

(4.2) αf (x) + f ′ (x) (my − x) ≤ αmf (y) ,

(4.3) αf (y) ≤ αmf (x) + f ′ (y) (y −mx) ,

hold for allx, y ∈ [0, b] . If in (4.2) we letx = ξ andy = u (t) , t ∈ Ω, we get

αf (ξ) + f ′ (ξ) (mu (t)− ξ) ≤ αm (f ◦ u) (t) , t ∈ Ω.

Integrating overΩ we obtain

µ (Ω) αf (ξ) + f ′ (ξ)

(
m

∫
Ω

udµ− ξµ (Ω)

)
≤ αm

∫
Ω

(f ◦ u) dµ,

from which the left hand side of(4.1) immediately follows.
In order to obtain the right hand side of(4.1) we proceed in a similar way: if in(4.3) we let

x = η andy = u (t) , t ∈ Ω, we get

α (f ◦ u) (t) ≤ αmf (η) + (f ′ ◦ u) (t) (u (t)−mη) , t ∈ Ω,

so after integration overΩ we obtain

α

∫
Ω

(f ◦ u) dµ ≤ αmµ (Ω) f (η) +

∫
Ω

(u−mη) (f ′ ◦ u) dµ,

from which the right hand side of(4.1) easily follows. �

The following theorem is a variant of Theorem 4.1 for the class ofα-starshaped functions
(i.e. (α, 0)-convex functions).

Theorem 4.2. Let (Ω,A, µ) be a measure space with0 < µ (Ω) < ∞ and letf : [0, b] →
R, b > 0, be a differentiableα-starshaped function. Ifu : Ω → [0, b] is a measurable function
such thatf ′ ◦ u is in L1 (µ) , then we have

1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ 1

αµ (Ω)

∫
Ω

u (f ′ ◦ u) dµ.

Proof. Similarly to the proof of Theorem 2.2. �

Our next corollary gives the integral version of the Dragomir-Goh result [2] for the class of
(α, m)-functions.
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Corollary 4.3. Let all the assumptions of Theorem 4.1 be satisfied. We have

0 ≤ 1

µ (Ω)

∫
Ω

(f ◦ u) dµ− 1

m
f

(
m

µ (Ω)

∫
Ω

udµ

)
≤ m2 − 1

m
f

(
m

µ (Ω)

∫
Ω

udµ

)
+

1

αµ (Ω)

∫
Ω

(
u− m2

µ (Ω)

∫
Ω

udµ

)
(f ′ ◦ u) dµ.

Proof. If we let ξ andη in (4.1) be defined as

ξ = η =
m

µ (Ω)

∫
Ω

udµ ∈ [0, b] ,

we obtain
1

m
f

(
m

µ (Ω)

∫
Ω

udµ

)
≤ 1

µ (Ω)

∫
Ω

(f ◦ u) dµ

≤ mf

(
m

µ (Ω)

∫
Ω

udµ

)
+

1

αµ (Ω)

∫
Ω

(
u− m2

µ (Ω)

∫
Ω

udµ

)
(f ′ ◦ u) dµ.

�

It may be interesting to note here that the variants of Jensen’s inequality and Slater’s in-
equality for the class of(α, m)-convex functions are the same as the variants for the class of
m-convex functions(α 6= 0) , i.e., they do not depend onα.

In the next theorem we give a converse of the integral Jensen’s inequality for(α, m)-convex
functions.

Theorem 4.4. Let (Ω,A, µ) be a measure space with0 < µ (Ω) < ∞ and letf : [0,∞) → R
be an(α, m)-convex function on[0,∞) , with α ∈ (0, 1) andm ∈ (0, 1] . If u : Ω → [a, b] ,
0 ≤ a < b < ∞, is a measurable function such thatf ◦ u is in L1 (µ) , then we have

1

µ (Ω)

∫
Ω

(f ◦ u) dµ

≤ min

{
mf

(
b

m

)
+

1

µ (Ω)

[
f (a)−mf

(
b

m

)]∫
Ω

(
b− u (t)

b− a

)α

dµ,

mf
( a

m

)
+

1

µ (Ω)

[
f (b)−mf

( a

m

)] ∫
Ω

(
u (t)− a

b− a

)α

dµ

}
.

If additionally we havef (a)−mf
(

b
m

)
≥ 0, then

1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ mf

(
b

m

)
+

[
f (a)−mf

(
b

m

)](
b− u

b− a

)α

≤ mf

(
b

m

)
+

[
f (a)−mf

(
b

m

)][
1− α

u− a

b− a

]
,

or symmetrically, if we havef (b)−mf
(

a
m

)
≥ 0, then

1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ mf
( a

m

)
+
[
f (b)−mf

( a

m

)](u− a

b− a

)α

≤ mf
( a

m

)
+
[
f (b)−mf

( a

m

)] [
1− α

b− u

b− a

]
.
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Proof. We can write

(f ◦ u) (t) = f

(
b− u (t)

b− a
a + m

[
1− b− u (t)

b− a

]
b

m

)
, t ∈ Ω.

Sincef is (α, m)-convex we have

(f ◦ u) (t) ≤
(

b− u (t)

b− a

)α

f (a) + m

[
1−

(
b− u (t)

b− a

)α]
f

(
b

m

)
= mf

(
b

m

)
+

[
f (a)−mf

(
b

m

)](
b− u (t)

b− a

)α

, t ∈ Ω,

so after integration overΩ we obtain

(4.4)
1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ mf

(
b

m

)
+

1

µ (Ω)

[
f (a)−mf

(
b

m

)]∫
Ω

(
b− u (t)

b− a

)α

dµ.

Analogously, from

(f ◦ u) (t) = f

(
u (t)− a

b− a
b + m

[
1− u (t)− a

b− a

]
a

m

)
, t ∈ Ω,

we obtain

(4.5)
1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ mf
( a

m

)
+

1

µ (Ω)

[
f (b)−mf

( a

m

)] ∫
Ω

(
u (t)− a

b− a

)α

dµ.

Suppose now thatf (a)−mf
(

b
m

)
≥ 0. We know that the functionϕ : [0,∞) → R defined

asϕ (x) = xα, whereα ∈ (0, 1] is fixed, is concave on[0,∞) , so from the integral Jensen’s
inequality we have

1

µ (Ω)

∫
Ω

(
b− u (t)

b− a

)α

dµ ≤
(

1

µ (Ω)

∫
Ω

b− u (t)

b− a
dµ

)α

=

(
b− u

b− a

)α

.

Using that, from(4.4) we obtain

1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ mf

(
b

m

)
+

[
f (a)−mf

(
b

m

)](
b− u

b− a

)α

.

On the other hand, from the generalized Bernoulli’s inequality we have(
b− u

b− a

)α

≤ 1− α

(
1− b− u

b− a

)
= 1− α

u− a

b− a
,

so from(4.4) we may deduce

mf

(
b

m

)
+

[
f (a)−mf

(
b

m

)](
b− u

b− a

)α

≤ mf

(
b

m

)
+

[
f (a)−mf

(
b

m

)][
1− α

u− a

b− a

]
.

Analogously, iff (b)−mf
(

a
m

)
≥ 0, from (4.5) we obtain

1

µ (Ω)

∫
Ω

(f ◦ u) dµ ≤ mf
( a

m

)
+
[
f (b)−mf

( a

m

)](u− a

b− a

)α

,
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and

mf
( a

m

)
+
[
f (b)−mf

( a

m

)](u− a

b− a

)α

≤ mf
( a

m

)
+
[
f (b)−mf

( a

m

)] [
1− α

b− u

b− a

]
.

This completes the proof. �

Remark 4.5. It can be easily seen that the assertion of Theorem 4.4 remains valid forα = 1,
since in this case we directly have

1

µ (Ω)

∫
Ω

b− u (t)

b− a
dµ =

b− u

b− a
,

1

µ (Ω)

∫
Ω

u (t)− a

b− a
dµ =

u− a

b− a
.

This means that in this case the conditionsf (a) −mf
(

b
m

)
≥ 0 andf (b) −mf

(
a
m

)
≥ 0 can

be omitted, which implies that forα = 1 Theorem 4.4 gives the previously obtained result for
m-convex functions given in Theorem 2.7.

At the end of this section we give two variants of the weighted Hadamard inequality for
(α, m)-convex functions and also a variant of Hadamard’s inequality.

Corollary 4.6. Let f : [0, b] → R be an(α, m)-convex function on[0, b] with (α, m) ∈ (0, 1]2

and letg : [a, b] → [0,∞) be integrable and symmetric abouta+b
2

, where0 ≤ a < b < ∞. If f
is differentiable andf ′ is in L1 ([a, b]), then[

f (mb)

m
− b− a

2α
f ′ (mb)

] ∫ b

a

g (x) dx

≤
∫ b

a

f (x) g (x) dx ≤
∫ b

a

[
x−ma

α
f ′ (x) + mf (a)

]
g (x) dx.

Proof. The proof is similar to that of Corollary 3.1. �

Corollary 4.7. Let f : [0,∞) → R be an(α, m)-convex function on[0,∞) , with α ∈ (0, 1)
and m ∈ (0, 1] , and letg : [a, b] → [0,∞) be integrable and symmetric abouta+b

2
, where

0 ≤ a < b < ∞. If f is in L1 ([a, b]) , then∫ b

a

f (x) g (x) dx

≤ min

{
mf

(
b

m

)∫ b

a

g (x) dx +

[
f (a)−mf

(
b

m

)]∫ b

a

(
b− x

b− a

)α

g (x) dx,

mf
( a

m

)∫ b

a

g (x) dx +
[
f (b)−mf

( a

m

)] ∫ b

a

(
x− a

b− a

)α

g (x) dx

}
.

If additionally we havef (a)−mf
(

b
m

)
≥ 0, then∫ b

a

f (x) g (x) dx ≤
[
mf

(
b

m

)
+

1

2α

(
f (a)−mf

(
b

m

))]∫ b

a

g (x) dx,

or symmetrically, if we havef (b)−mf
(

a
m

)
≥ 0, then∫ b

a

f (x) g (x) dx ≤
[
mf

( a

m

)
+

1

2α

(
f (b)−mf

( a

m

))]∫ b

a

g (x) dx.
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If f is differentiable, then we also have

(4.6)
1

m
f

(
m

a + b

2

)∫ b

a

g (x) dx ≤
∫ b

a

f (x) g (x) dx.

Proof. If we chooseµ to be the Lebesgue measure defined asdµ = g (x) dx, Ω = [a, b],
u (x) = x for all x ∈ [a, b] , then(3.1) is obtained directly from Theorem 4.4. Note that in this
case we have (

u− a

b− a

)α

=

(
b− u

b− a

)α

=
1

2α
.

The inequality(4.6) is a simple consequence of Corollary 4.3. �

Corollary 4.8. Let f : [0,∞) → R be an(α, m)-convex function on[0,∞) , with α ∈ (0, 1)
andm ∈ (0, 1] , and let0 ≤ a < b < ∞. If f is in L1 ([a, b]) , then

1

b− a

∫ b

a

f (x) dx ≤ min

{
mf

(
b

m

)
+

1

α + 1

[
f (a)−mf

(
b

m

)]
,

mf
( a

m

)
+

1

α + 1

[
f (b)−mf

( a

m

)]}
.

If f is differentiable, then we also have

1

m
f

(
m

a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx.

Proof. Directly from Corollary 4.7. We simply choose the functiong to be the constant function
1, and in that case we have∫ b

a

(
b− x

b− a

)α

g (x) dx =

∫ b

a

(
x− a

b− a

)α

g (x) dx =
b− a

α + 1
.

�

Variants of other inequalities, which were proved for the class ofm-convex functions in
Sections 2 and 3, can be also stated for this class of mappings, but we omit the details.
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