Journal of Inequalities in Pure and Applied Mathematics

CERTAIN INEQUALITIES CONCERNING BICENTRIC QUADRILATERALS, HEXAGONS AND OCTAGONS

MIRKO RADIĆ
University of Rijeka
Faculty of Philosophy Department of Mathematics 51000 Rijeka, OmLadinska 14, Croatia
mradic@pefri.hr

Received 15 April, 2004; accepted 24 November, 2004
Communicated by J. Sándor

Abstract

In this paper we restrict ourselves to the case when conics are circles one completely inside of the other. Certain inequalities concerning bicentric quadrilaterals, hexagons and octagons in connection with Poncelet's closure theorem are established.

Key words and phrases: Bicentric Polygon, Inequality.

1. Introduction

A polygon which is both chordal and tangential is briefly called a bicentric polygon. The following notation will be used.

If $A_{1} \cdots A_{n}$ is considered to be a bicentric n-gon, then its incircle is denoted by C_{1}, circumcircle by C_{2}, radius of C_{1} by r, radius of C_{2} by R, center of C_{1} by I, center of C_{2} by O, distance between I and O by d.

The first person who was concerned with bicentric polygons was the German mathematician Nicolaus Fuss (1755-1826). He found that C_{1} is the incircle and C_{2} the circumcircle of a bicentric quadrilateral $A_{1} A_{2} A_{3} A_{4}$ iff

$$
\begin{equation*}
\left(R^{2}-d^{2}\right)^{2}=2 r^{2}\left(R^{2}+d^{2}\right), \tag{1.1}
\end{equation*}
$$

(see [4]). The problem of finding this relation has been mentioned in [3] as one of 100 great problems of elementary mathematics.

Fuss also found the corresponding relations (conditions) for bicentric pentagon, hexagon, heptagon and octagon [5]. For bicentric hexagons and octagons these relations are

$$
\begin{equation*}
3 p^{4} q^{4}-2 p^{2} q^{2} r^{2}\left(p^{2}+q^{2}\right)=r^{4}\left(p^{2}-q^{2}\right)^{2} \tag{1.2}
\end{equation*}
$$

[^0]

Figure 1.1

Figure 1.2
and

$$
\begin{equation*}
\left[r^{2}\left(p^{2}+q^{2}\right)-p^{2} q^{2}\right]^{4}=16 p^{4} q^{4} r^{4}\left(p^{2}-r^{2}\right)\left(q^{2}-r^{2}\right) \tag{1.3}
\end{equation*}
$$

where $p=R+d, q=R-d$.
The very remarkable theorem concerning bicentric polygons was given by the French mathematician Poncelet (1788-1867). This theorem is known as Poncelet's closure theorem. For the case when conics are circles, one inside the other, this theorem can be stated as follows:

If there is one bicentric n-gon whose incircle is C_{1} and circumcircle C_{2}, then there are infinitely many bicentric n-gons whose incircle is C_{1} and circumcircle is C_{2}. For every point P_{1} on C_{2} there are points P_{2}, \ldots, P_{n} on C_{2} such that $P_{1} \cdots P_{n}$ are bicentric n-gons whose incircle is C_{1} and circumcircle is C_{2}.

Although the famous Poncelet's closure theorem dates from the nineteenth century, many mathematicians have been working on a number of problems in connection with it. Many contributions have been made, and much interesting information can be found concerning it in the references [1] and [6].

An important role in the following will have the least and the largest tangent that can be drawn from C_{2} to C_{1}. As can be seen from Figure 1.2, the following holds

$$
\begin{equation*}
t_{m}=\sqrt{(R-d)^{2}-r^{2}}, \quad t_{M}=\sqrt{(R+d)^{2}-r^{2}} . \tag{1.4}
\end{equation*}
$$

2. Certain Inequalities Concerning Bicentric Quadrilaterals

Let $A_{1} A_{2} A_{3} A_{4}$ be any given bicentric quadrilateral whose incircle is C_{1} and circumcircle C_{2} and let

$$
\begin{equation*}
t_{i}+t_{i+1}=\left|A_{i} A_{i+1}\right|, i=1,2,3,4 \tag{2.1}
\end{equation*}
$$

(Indices are calculated modulo 4.) In [8, Theorem 3.1 and Theorem 3.2] it is proven that the following hold

$$
\begin{equation*}
t_{1} t_{3}=t_{2} t_{4}=r^{2} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{4}+t_{4} t_{1}=2\left(R^{2}-d^{2}\right) \tag{2.3}
\end{equation*}
$$

Reversely, if $t_{1}, t_{2}, t_{3}, t_{4}$ are such that (2.2) and (2.3) hold, then there is a bicentric quadrilateral such that (2.1) holds.

Theorem 2.1. The tangent-lengths $t_{1}, t_{2}, t_{3}, t_{4}$ given by (2.1) satisfy the following inequalities

$$
\begin{equation*}
2 r \leq t_{1}+t_{3} \leq t_{m}+t_{M}, \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
2 r \leq t_{2}+t_{4} \leq t_{m}+t_{M} \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
4 r^{2} \leq t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2} \leq 4\left(R^{2}+d^{2}-r^{2}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{1}^{2 k}+t_{2}^{2 k}+t_{3}^{2 k}+t_{4}^{2 k} \geq 4 r^{2 k}, \quad k \in \mathbb{N} . \tag{2.8}
\end{equation*}
$$

The equalities hold only if $d=0$.
Proof. First let us remark that $t_{m} t_{M}=r^{2}$ since there is a bicentric quadrilateral as shown in Figure 2.1. Now, let C denote a circle whose diameter is $t_{m}+t_{M}$ (Figure 2.2). Then for each $t_{i}, i=1,2,3,4$, since $t_{m} \leq t_{i} \leq t_{M}$, there are points Q and R on C such that

$$
\begin{equation*}
t_{i}=|P Q|, \quad t_{i+2}=|P R|, \tag{2.9}
\end{equation*}
$$

where $|P Q|+|P R|=|Q R|$. In this connection let us remark that the power of the circle C at P is $t_{m} t_{M}$. Therefore $|P Q \| P R|=t_{m} t_{M}$.

Figure 2.1

Figure 2.2

Obviously $t_{i}+t_{i+2} \leq t_{m}+t_{M}$ since $t_{m}+t_{M}$ is a diameter of C. Also it is clear that $t_{i}+t_{i+2} \geq 2 r$ since $r^{2}=t_{m} t_{M}$.

This proves (2.4) and (2.5).
In the proof that (2.6) holds we shall use the relations

$$
\begin{equation*}
t_{m}=r \cdot \frac{R-d}{R+d}, \quad t_{M}=r \cdot \frac{R+d}{R-d} . \tag{2.10}
\end{equation*}
$$

It is easy to show that each of the above relations is equivalent to the Fuss relation (1.1). So, for the first of them we can write

$$
\begin{aligned}
& (R-d)^{2}-r^{2}=r^{2}\left(\frac{R-d}{R+d}\right)^{2} \\
& \left(R^{2}-d^{2}\right)^{2}-r^{2}(R+d)^{2}=r^{2}(R-d)^{2} \\
& \left(R^{2}-d^{2}\right)^{2}=2 r^{2}\left(R^{2}+d^{2}\right)
\end{aligned}
$$

The proof that (2.6) holds can be written as

$$
\begin{gathered}
2 r+2 r \leq t_{1}+t_{3}+t_{2}+t_{4} \\
t_{1}+t_{3}+t_{2}+t_{4} \leq 2\left(t_{m}+t_{M}\right)=2 r\left(\frac{R-d}{R+d}+\frac{R+d}{R-d}\right)=4 r \cdot \frac{R^{2}+d^{2}}{R^{2}-d^{2}}
\end{gathered}
$$

The proof that (2.7) holds is as follows.
Since $2 r \leq t_{1}+t_{3}, 2 r \leq t_{2}+t_{4}$, we have

$$
4 r^{2} \leq t_{1}^{2}+t_{3}^{2}+2 t_{1} t_{3}, \quad 4 r^{2} \leq t_{2}^{2}+t_{4}^{2}+2 t_{2} t_{4}
$$

or, since $2 t_{1} t_{3}=2 t_{2} t_{4}=2 r^{2}$,

$$
2 r^{2} \leq t_{1}^{2}+t_{3}^{2}, \quad 2 r^{2} \leq t_{2}^{2}+t_{4}^{2}
$$

Thus, $4 r^{2} \leq t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2}$.
From $t_{1}+t_{3} \leq t_{m}+t_{M}, t_{2}+t_{4} \leq t_{m}+t_{M}$ it follows that

$$
t_{1}^{2}+t_{3}^{2} \leq t_{m}^{2}+t_{M}^{2}, \quad t_{2}^{2}+t_{4}^{2} \leq t_{m}^{2}+t_{M}^{2}
$$

since $2 t_{1} t_{3}=2 t_{2} t_{4}=2 t_{m} t_{M}$. Thus, we obtain

$$
t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2} \leq 2\left(t_{m}^{2}+t_{M}^{2}\right)
$$

where $t_{m}^{2}+t_{M}^{2}=(R-d)^{2}-r^{2}+(R+d)^{2}-r^{2}=2\left(R^{2}+d^{2}-r^{2}\right)$.
In the same way it can be proved that 2.8 holds. So, starting from $2 r \leq t_{1}+t_{3}$, since $2 t_{1}^{k} t_{3}^{k}=2 r^{2 k}$, we can write

$$
\begin{aligned}
& 2 r^{2} \leq t_{1}^{2}+t_{3}^{2} \\
& 4 r^{4} \leq t_{1}^{4}+t_{3}^{4}+2 t_{1}^{2} t_{3}^{2} \text { or } 2 r^{4} \leq t_{1}^{4}+t_{3}^{4}
\end{aligned}
$$

and so on.
Starting from $t_{1}+t_{3} \leq t_{m}+t_{M}$ it can be written

$$
\begin{aligned}
t_{1}^{2}+t_{3}^{2} & \leq t_{m}^{2}+t_{M}^{2} \\
t_{1}^{4}+t_{3}^{4} & \leq t_{m}^{4}+t_{M}^{4}
\end{aligned}
$$

and so on.
Since $t_{m}=t_{M}$ only if $d=0$, it is clear that the relations (2.4) - (2.8) become equalities only if $d=0$. Thus, if $d \neq 0$, then in the above relations instead of \leq we may put $<$.

Theorem 2.1 is thus proved.

Corollary 2.2. The following holds

$$
\begin{equation*}
\frac{4}{r} \leq \sum_{i=1}^{4} \frac{1}{t_{i}} \leq \frac{4}{r} \cdot \frac{R^{2}+d^{2}}{R^{2}-d^{2}} \tag{2.11}
\end{equation*}
$$

Proof. From $2 r \leq t_{1}+t_{3}$ it follows that $\frac{2}{r} \leq \frac{1}{t_{1}}+\frac{1}{t_{3}}$, since

$$
\frac{1}{t_{1}}+\frac{1}{t_{3}}=\frac{t_{1}+t_{3}}{t_{1} t_{3}}=\frac{t_{1}+t_{3}}{r^{2}} \geq \frac{2 r}{r^{2}}=\frac{2}{r} .
$$

From $t_{1}+t_{3} \leq t_{m}+t_{M}$ it follows that $\frac{1}{t_{1}}+\frac{1}{t_{3}} \leq \frac{1}{t_{m}}+\frac{1}{t_{M}}$, since

$$
\frac{1}{t_{1}}+\frac{1}{t_{3}}=\frac{t_{1}+t_{3}}{r^{2}}, \quad \frac{1}{t_{m}}+\frac{1}{t_{M}}=\frac{t_{m}+t_{M}}{r^{2}} .
$$

Corollary 2.3. Let $a=t_{1}+t_{2}, b=t_{2}+t_{3}, c=t_{3}+t_{4}, d=t_{4}+t_{1}$. Then

$$
\begin{equation*}
8 r \leq a+b+c+d \leq 8 r \cdot \frac{R^{2}-d^{2}}{R^{2}+d^{2}} \tag{2.12}
\end{equation*}
$$

Corollary 2.4. Let a, b, c, d be as in Corollary 2.3 Then

$$
\begin{equation*}
4\left(R^{2}-d^{2}+2 r^{2}\right) \leq a^{2}+b^{2}+c^{2}+d^{2} \leq 4\left(3 R^{2}-2 r^{2}\right) \tag{2.13}
\end{equation*}
$$

Proof. Using relation (2.3) we can write

$$
a^{2}+b^{2}+c^{2}+d^{2}=2\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2}\right)+4\left(R^{2}-d^{2}\right)
$$

Now, using relations (2.7) we can write relations (2.13).
Corollary 2.5. The following holds

$$
\begin{equation*}
2 r^{2}+d^{2} \leq R^{2} \leq 2 r^{2}+d^{2}+2 r d \tag{2.14}
\end{equation*}
$$

Proof. Since $t_{1}+t_{3} \geq 2 r, t_{2}+t_{4} \geq 2 r$, we can write

$$
\begin{aligned}
\left(t_{1}+t_{3}\right)\left(t_{2}+t_{4}\right) & \geq 4 r^{2}, \\
t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{4}+t_{4} t_{1} & \geq 4 r^{2}, \\
2\left(R^{2}-d^{2}\right) & \geq 4 r^{2}, \\
R^{2}-d^{2} & \geq 2 r^{2} .
\end{aligned}
$$

The fact that $R^{2} \leq 2 r^{2}+d^{2}+2 r d$ is clear from the quadratic function

$$
f(d)=d^{2}+2 r d+R^{2}-2 r^{2}
$$

If $d=0$, then $f(d)=0$, but if $d>0$, then $f(d)>0$.
Remark 2.6. It may be interesting that relations (2.14) can be obtained directly from Fuss' relation (1.1). It was done by L. Fejes Toth in [11]. Namely, relation (1.1) implies

$$
\begin{equation*}
d^{2}=r^{2}+R^{2}-r \sqrt{r^{2}+4 R^{2}}, \tag{2.15}
\end{equation*}
$$

so the left side inequality of (2.14) becomes equivalent to $2 r^{2} \leq R^{2}$ or

$$
\begin{equation*}
r \sqrt{2} \leq R \tag{2.16}
\end{equation*}
$$

The right side of (2.14) is equivalent to (quadratic polynomial inequality in d)

$$
d \geq-r+\sqrt{R^{2}-r^{2}}
$$

or by using (2.15), after some simple computations, to (2.16), again.
Concerning the sign \leq in the relations (2.11) - (2.14), it is clear that in the case when $d \neq 0$, that is, when $t_{m} \neq t_{M}$, then instead of \leq may be put $<$.

In connection with Theorem 2.1, the following theorem is of some interest.

Theorem 2.7. Let $\underline{P}=P_{1} P_{2} P_{3} P_{4}$ and $\underline{Q}=Q_{1} Q_{2} Q_{3} Q_{4}$ be axially symmetric bicentric quadrilaterals whose incircle is C_{1} and circumcircle C_{2} (Figure 2.3). Denote by $2 p_{M}$ and $2 p_{m}$ respectively the perimeters of \underline{P} and \underline{Q}. Then for every bicentric quadrilateral $\underline{A}=A_{1} A_{2} A_{3} A_{4}$ whose incircle is C_{1} and circumcircle C_{2} it holds that

$$
\begin{equation*}
p_{m} \leq \sum_{i=1}^{4} t_{i} \leq p_{M} \tag{2.17}
\end{equation*}
$$

where $t_{i}+t_{i+1}=\left|A_{i} A_{i+1}\right|, i=1,2,3,4$. Also, if $d \neq 0$, then $p_{m}<p_{M}$ and

$$
\begin{equation*}
\sum_{i=1}^{4} t_{i}=p_{M} \quad \text { iff } \underline{A}=\underline{P}, \quad \sum_{i=1}^{4} t_{i}=p_{m} \quad \text { iff } \underline{A}=\underline{Q} . \tag{2.18}
\end{equation*}
$$

Proof. First we see that

$$
\begin{equation*}
p_{M}=t_{m}+2 r+t_{M}, \quad p_{m}=2\left(\hat{t}_{1}+\hat{t}_{3}\right), \tag{2.19}
\end{equation*}
$$

where $r=\left|P_{2} H\right|$ and

$$
\begin{array}{ll}
t_{m}=\left|P_{1} G\right|=\sqrt{(R-d)^{2}-r^{2}}, & t_{M}=\left|P_{3} H\right|=\sqrt{(R+d)^{2}-r^{2}} \\
\hat{t}_{1}=\left|E Q_{1}\right|=\sqrt{R^{2}-(r+d)^{2}}, & \hat{t}_{3}=\left|F Q_{3}\right|=\sqrt{R^{2}-(r-d)^{2}} \tag{2.21}
\end{array}
$$

Figure 2.3

Figure 2.4

According to Theorem 3.3 in [8$]$, the tangent lengths t_{2}, t_{3}, t_{4} can be expressed by t_{1} as follows:

$$
\begin{equation*}
t_{2}=\frac{\left(R^{2}-d^{2}\right) t_{1}+\sqrt{D}}{r^{2}+t_{1}^{2}}, \quad t_{3}=\frac{r^{2}}{t_{1}}, \quad t_{4}=\frac{r^{2}}{t_{2}} \tag{2.22}
\end{equation*}
$$

where

$$
\begin{equation*}
D=\left(R^{2}-d^{2}\right)^{2} t_{1}^{2}+r^{2}\left(r^{2}+t_{1}^{2}\right)^{2} . \tag{2.23}
\end{equation*}
$$

In this connection let us remark that for every point A_{1} on C_{2} there is a tangent t_{1} drawn from C_{2} to C_{1} (Figure 2.4). If t_{1} is given, then quadrilateral $A_{1} A_{2} A_{3} A_{4}$ is completely determined by t_{1}, and t_{2}, t_{3}, t_{4} can be calculated using expressions (2.22).

Let the sum $\sum_{i=1}^{4} t_{i}$, where t_{2}, t_{3}, t_{4} are expressed by t_{1}, be denoted by $s\left(t_{1}\right)$. It can be easily found that $\frac{\mathrm{d}}{\mathrm{d} t_{1}} s\left(t_{1}\right)=0$ can be written as

$$
\left(t_{1}^{2}-r^{2}\right)\left[t_{1}^{4}-2\left(R^{2}-d^{2}-r^{2}\right) t_{1}^{2}+r^{4}\right]=0
$$

from which it follows that

$$
\left(t_{1}^{2}\right)_{1}=r^{2}, \quad\left(t_{1}^{2}\right)_{2}=\hat{t}_{1}^{2}, \quad\left(t_{1}^{2}\right)_{3}=\hat{t}_{3}^{2}
$$

where \hat{t}_{1} and \hat{t}_{3} are given by (2.21). In this connection let us remark that

$$
\pm \sqrt{\left(R^{2}-d^{2}-r^{2}\right)^{2}-r^{4}}= \pm 2 d r
$$

since, using Fuss' relation (1.1), we can write

$$
\begin{aligned}
\left(R^{2}-d^{2}-r^{2}\right)^{2}-r^{4} & =\left(R^{2}-d^{2}\right)^{2}-2\left(R^{2}-d^{2}\right) r^{2} \\
& =2 r^{2}\left(R^{2}+d^{2}\right)-2\left(R^{2}-d^{2}\right) r^{2}=4 d^{2} r^{2}
\end{aligned}
$$

The part of the expression $\frac{\mathrm{d}^{2}}{\mathrm{~d} t_{1}^{2}} s\left(t_{1}\right)$ important for discussion can be expressed as

$$
t_{1}^{4}-2\left(R^{2}-d^{2}-r^{2}\right) t_{1}^{2}+r^{4}+2\left(t_{1}^{2}-r^{2}\right)\left[t_{1}^{2}-\left(R^{2}-d^{2}-r^{2}\right)\right]
$$

For brevity, let the above expression be denoted by $S\left(t_{1}\right)$. It is easy to find that

$$
\begin{gather*}
S(r)=-R^{2}+2 r^{2}+d^{2}<0 \tag{2.24}\\
S\left(\hat{t}_{1}\right)=2 d r>0 \tag{2.25}\\
S\left(\hat{t}_{3}\right)=\left(R^{2}-2 r^{2}-d^{2}-2 r d\right)(-2 d r)>0 \tag{2.26}
\end{gather*}
$$

where the relations (2.14) are used.
In this connection let us remark that by Theorem 3.3 in [8] the following holds:

$$
\begin{aligned}
& \text { if } t_{1}=r \text { and } t_{2}, t_{3}, t_{4} \text { are given by (2.22), then } \sum_{i=1}^{4} t_{i}=p_{M}, \\
& \text { if } t_{1}=\hat{t}_{1} \text { and } t_{2}, t_{3}, t_{4} \text { are given by (2.22), then } \sum_{i=1}^{4} t_{i}=p_{m}, \\
& \text { if } t_{1}=\hat{t}_{3} \text { and } t_{2}, t_{3}, t_{4} \text { are given by (2.22), then } \sum_{i=1}^{4} t_{i}=p_{m} \text {. }
\end{aligned}
$$

Theorem 2.7 is thus proved.
Corollary 2.8. Let \underline{A} be as in Theorem 2.7 that is, \underline{A} is any given bicentric quadrilateral whose incircle is C_{1} and circumcircle C_{2}. Then

$$
\text { area of } \underline{Q} \leq \text { area of } \underline{A} \leq \text { area of } \underline{P} \text {. }
$$

Proof. From (2.17) it follows that

$$
\begin{equation*}
r p_{m} \leq r\left(t_{1}+t_{2}+t_{3}+t_{4}\right) \leq r p_{M} \tag{2.27}
\end{equation*}
$$

Using relations (2.22) and denoting the area of \underline{A} by $J\left(t_{1}\right)$, the inequalities 2.27) can be written as

$$
J\left(\hat{t}_{1}\right) \leq J\left(t_{1}\right) \leq J\left(t_{m}\right)
$$

where

$$
J\left(t_{1}\right)=r\left(t_{1}+\frac{r^{2}}{t_{1}}+\frac{\left(R^{2}-d^{2}\right) t_{1}+\sqrt{D}}{r^{2}+t_{1}^{2}}+\frac{r^{2}\left(r^{2}+t_{1}^{2}\right)}{\left(R^{2}-d^{2}\right) t_{1}+\sqrt{D}}\right) .
$$

Since, according to Theorem 3.3 in [8], we have

$$
\begin{aligned}
& J\left(t_{m}\right)=J(r)=J\left(t_{M}\right), \\
& J\left(\hat{t}_{1}\right)=J\left(\hat{t}_{3}\right),
\end{aligned}
$$

the graph of $J\left(t_{1}\right)$ is like that shown in Figure 2.5.

Figure 2.5
Of course, $J\left(t_{m}\right)=r\left(t_{m}+2 r+t_{M}\right), J\left(\hat{t}_{2}\right)=2 r\left(\hat{t}_{1}+\hat{t}_{2}\right)$. Let us remark that $\hat{t}_{2}=\hat{t}_{3}$. (See Figure 2.3.)

Corollary 2.9. The following holds

$$
\frac{p_{m}}{r^{2}} \leq \sum_{i=1}^{4} \frac{1}{t_{i}} \leq \frac{p_{M}}{r^{2}} .
$$

Proof. Since $t_{1} t_{3}=t_{2} t_{4}=r^{2}$, we have

$$
\begin{equation*}
\sum_{i=1}^{4} \frac{1}{t_{i}}=\frac{t_{1} t_{2} t_{3}+t_{2} t_{3} t_{4}+t_{3} t_{4} t_{1}+t_{4} t_{1} t_{2}}{t_{1} t_{2} t_{3} t_{4}}=\frac{t_{1}+t_{2}+t_{3}+t_{4}}{r^{2}} \tag{2.28}
\end{equation*}
$$

From the proof it is clear that

$$
\sum_{i=1}^{4} \frac{1}{t_{i}}=\operatorname{maximum}(\text { minimum }) \text { iff } \sum_{i=1}^{4} t_{i}=\operatorname{maximum}(\text { minimum }) .
$$

Corollary 2.10. The following holds

$$
p_{m}^{2}-4\left(R^{2}-d^{2}\right) \leq \sum_{i=1}^{4} t_{i}^{2} \leq p_{M}^{2}-4\left(R^{2}-d^{2}\right)
$$

Proof. Since $\left(t_{1}+t_{2}+t_{3}+t_{4}\right)^{2}=\sum_{i=1}^{4} t_{i}^{2}+4\left(R^{2}-d^{2}\right)$, we have

$$
p_{m}^{2} \leq \sum_{i=1}^{4} t_{i}^{2}+4\left(R^{2}-d^{2}\right) \leq p_{M}^{2}
$$

From the proof it is clear that

$$
\sum_{i=1}^{4} t_{i}^{2}=\operatorname{maximum}(\text { minimum }) \text { iff } \sum_{i=1}^{4} t_{i}=\text { maximum (minimum) }
$$

Corollary 2.11. When the arithmetic mean $A\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ is maximum, then the harmonic mean $H\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ is minimum and vice versa.
Proof. From (2.28) it follows that

$$
A\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \cdot H\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=r^{2}
$$

Corollary 2.12. Let t_{1} be given such that $t_{m} \leq t_{1} \leq t_{M}$. Then the equation

$$
J\left(t_{1}\right) J(x)=J\left(t_{m}\right) J\left(\hat{t}_{1}\right)
$$

has four positive roots $x_{1}, x_{2}, x_{3}, x_{4}$ and we have

$$
x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}=2\left(R^{2}-d^{2}\right), x_{1} x_{2} x_{3} x_{4}=r^{4} .
$$

Proof. There is a bicentric quadrilateral $X_{1} X_{2} X_{3} X_{4}$ whose incircle is C_{1} and circumcircle C_{2} such that

$$
\begin{aligned}
& \text { area of } A_{1} A_{2} A_{3} A_{4} \cdot \text { area of } X_{1} X_{2} X_{3} X_{4}=J\left(t_{m}\right) J\left(\hat{t}_{1}\right), \\
& x_{i}+x_{i+1}=\left|X_{i} X_{i+1}\right|, i=1,2,3,4 .
\end{aligned}
$$

In connection with the sum $t_{1}^{v}+t_{2}^{v}+t_{3}^{v}+t_{4}^{v}$, where v is a real number, the following theorem will be proved.
Theorem 2.13. If there is a bicentric quadrilateral whose tangent lengths are $t_{1}, t_{2}, t_{3}, t_{4}$, then there is a bicentric quadrilateral whose tangent lengths are $t_{1}^{v}, t_{2}^{v}, t_{3}^{v}, t_{4}^{v}$, where v may be any given real number.

Proof. Let $\underline{A}=A_{1} A_{2} A_{3} A_{4}$ be a bicentric quadrilateral whose incircle is C_{1} and circumcircle C_{2} and let $\left|A_{i} A_{i+1}\right|=t_{i}+t_{i+1}, i=1,2,3,4$. Then

$$
\begin{equation*}
t_{1}^{v} t_{3}^{v}=t_{2}^{v} t_{4}^{v}=\left(r^{v}\right)^{2} . \tag{2.29}
\end{equation*}
$$

According to what we said in connection with the relations (2.2) and (2.3) there is a bicentric quadrilateral $\underline{A}^{(v)}=A_{1}^{(v)} A_{2}^{(v)} A_{3}^{(v)} A_{4}^{(v)}$ such that

$$
A_{i}^{(v)} A_{i+1}^{(v)}=t_{i}^{v}+t_{i+1}^{v}, i=1,2,3,4
$$

Let its incircle and circumcircle be denoted respectively by $C_{1}^{(v)}$ and $C_{2}^{(v)}$ and let

$$
\begin{aligned}
& r_{v}=\text { radius of } C_{1}^{(v)} \\
& R_{v}=\text { radius of } C_{2}^{(v)} \\
& d_{v}=\text { distance between the centers of } C_{1}^{(v)} \text { and } C_{2}^{(v)}
\end{aligned}
$$

From (2.29) we see that

$$
\begin{equation*}
r_{v}=r^{v} . \tag{2.30}
\end{equation*}
$$

In order to obtain R_{v} and d_{v} we shall use relations

$$
\begin{gather*}
t_{1}^{v} t_{2}^{v}+t_{2}^{v} t_{3}^{v}+t_{3}^{v} t_{4}^{v}+t_{4}^{v} t_{1}^{v}=2\left(R_{v}^{2}-d_{v}^{2}\right), \tag{2.31}\\
\left(R_{v}^{2}-d_{v}^{2}\right)^{2}=2 r_{v}^{2}\left(R_{v}^{2}+d_{v}^{2}\right), \tag{2.32}
\end{gather*}
$$

where the second is Fuss' relation. If, for brevity, the left-hand side of 2.31) is denoted by s, we can write

$$
\frac{s}{2}=R_{v}^{2}-d_{v}^{2}, \quad \frac{s^{2}}{4}=2 r_{v}^{2}\left(R_{v}^{2}+d_{v}^{2}\right)
$$

from which follows that

$$
\begin{equation*}
R_{v}=\frac{\sqrt{s^{2}+4 s r_{v}^{2}}}{4 r_{v}}, \quad d_{v}=\frac{\sqrt{s^{2}-4 s r_{v}^{2}}}{4 r_{v}} . \tag{2.33}
\end{equation*}
$$

Theorem 2.13 is thus proved.
Before we state some of its corollaries here are some examples.
Example 2.1. If $v=0$, then $s=4, r_{v}=1, R_{v}=\sqrt{2}, d_{v}=0$.
Example 2.2. If $v=-1$, then $s=\frac{2\left(R^{2}-d^{2}\right)}{r^{4}}, r_{v}=\frac{1}{r}, R_{v}=\frac{R}{r^{2}}, d_{v}=\frac{d}{r^{2}}$.
Corollary 2.14. The following holds

$$
2\left(t_{1, v}+t_{3, v}\right) \leq \sum_{i=1}^{4} t_{i}^{v} \leq t_{m, v}+t_{M, v}+2 r_{v}
$$

where

$$
\begin{aligned}
& t_{m, v}^{2}=\left(R_{v}-d_{v}\right)^{2}-r_{v}^{2}, \quad t_{M, v}^{2}=\left(R_{v}+d_{v}\right)^{2}-r_{v}^{2} \\
& t_{1, v}^{2}=R_{v}^{2}-\left(d_{v}+r_{v}\right)^{2}, \quad t_{3, v}^{2}=R_{v}^{2}-\left(d_{v}-r_{v}\right)^{2}
\end{aligned}
$$

This corollary is analogous to Theorem 2.7. (See (2.17).)

Corollary 2.15. The following holds

$$
\begin{aligned}
& 2 r_{v} \leq t_{1}^{v}+t_{3}^{v} \leq t_{m, v}+t_{M, v} \\
& 2 r_{v} \leq t_{2}^{v}+t_{4}^{v} \leq t_{m, v}+t_{M, v} \\
& 4 r_{v} \leq t_{1}^{v}+t_{2}^{v}+t_{3}^{v}+t_{4}^{v} \leq 4 r_{v} \cdot \frac{R_{v}^{2}+d_{v}^{2}}{R_{v}^{2}-d_{v}^{2}}
\end{aligned}
$$

The proof is analogous to the proof that (2.4) - 2.6) hold. We can imagine that in Figure 2.2 instead of $t_{i}, t_{i+2}, t_{m}, t_{M}, r$ there are $t_{i}^{v}, t_{i+2}^{v}, t_{m, v}, t_{M, v}, r_{v}$.

Corollary 2.16. The following holds

$$
\begin{equation*}
A\left(t_{1}^{v}, t_{2}^{v}, t_{3}^{v}, t_{4}^{v}\right) \cdot H\left(t_{1}^{v}, t_{2}^{v}, t_{3}^{v}, t_{4}^{v}\right)=r_{v}^{2} \tag{2.34}
\end{equation*}
$$

This corollary is analogous to Corollary 2.11

Theorem 2.17. Each of the following six sums is maximum (minimum) iff the sum $\sum_{i=1}^{4} t_{i}$ is maximum (minimum).
a) $\sum_{i=1}^{4} t_{i}^{2}$,
b) $\sum_{i=1}^{4} t_{i}^{-2}$,
c) $\sum_{i=1}^{4} t_{i}^{3}$,
d) $\sum_{i=1}^{4} t_{i}^{-3}$,
e) $\sum_{i=1}^{4} t_{i}^{4}, \quad$ f) $\sum_{i=1}^{4} t_{i}^{-4}$.

In other words,

$$
\begin{equation*}
2\left(\hat{t}_{1}^{v}+\hat{t}_{3}^{v}\right) \leq \sum_{i=1}^{4} t_{i}^{v} \leq t_{m}^{v}+2 r^{v}+t_{M}^{v}, \quad v=2,-2,3,-3,4,-4, \tag{2.35}
\end{equation*}
$$

where $t_{m}, t_{M}, \hat{t}_{1}, \hat{t}_{3}$ are given by (2.20) and (2.21).
Proof. a) It holds

$$
\left(t_{1}+t_{2}+t_{3}+t_{4}\right)^{2}=\sum_{i=1}^{4} t_{i}^{2}+4\left(R^{2}-d^{2}\right)
$$

b) Since $t_{1} t_{3}=t_{2} t_{4}=r^{2}$, we can write

$$
\sum_{i=1}^{4} t_{i}^{-2}=\frac{r^{4}\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2}\right)}{r^{8}}=\frac{t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2}}{r^{4}}
$$

c) From

$$
\left(t_{1}+t_{2}+t_{3}+t_{4}\right)^{3}=\left(t_{1}+t_{2}+t_{3}+t_{4}\right)^{2}\left(t_{1}+t_{2}+t_{3}+t_{4}\right)
$$

or

$$
\left(\sum_{i=1}^{4} t_{i}\right)^{3}=\left[t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2}+4\left(R^{2}-d^{2}+r^{2}\right)\right]\left(t_{1}+t_{2}+t_{3}+t_{4}\right)
$$

follows

$$
\left(t_{1}+t_{2}+t_{3}+t_{4}\right)\left[\left(t_{1}+t_{2}+t_{3}+t_{4}\right)^{2}-6\left(R^{2}-d^{2}\right)-3 r^{2}\right]=\sum_{i=1}^{4} t_{i}^{3}
$$

d) It holds

$$
\sum_{i=1}^{4} t_{i}^{-3}=\frac{t_{1}^{3}+t_{2}^{3}+t_{3}^{3}+t_{4}^{3}}{r^{6}}
$$

e) From

$$
\left(\sum_{i=1}^{4} t_{i}^{2}\right)^{2}=\sum_{i=1}^{4} t_{i}^{4}+2\left(\sum_{i=1}^{4} t_{i}^{2} t_{i+1}^{2}+2 r^{4}\right)
$$

since

$$
\begin{equation*}
\left(\sum_{i=1}^{4} t_{i} t_{i+1}\right)^{2}=\sum_{i=1}^{4} t_{i}^{2} t_{i+1}^{2}+2 r^{2}\left(\sum_{i=1}^{4} t_{i}^{2}\right)+4 r^{4} \tag{2.36}
\end{equation*}
$$

we get

$$
\sum_{i=1}^{4} t_{i}^{4}=\left(\sum_{i=1}^{4} t_{i}^{2}\right)^{2}+4 r^{2}\left(\sum_{i=1}^{4} t_{i}^{2}\right)-8\left(R^{2}-d^{2}\right)^{2}+4 r^{4}
$$

f) It holds

$$
\sum_{i=1}^{4} t_{i}^{-4}=\frac{t_{1}^{4}+t_{2}^{4}+t_{3}^{4}+t_{4}^{4}}{r^{8}}
$$

Theorem 2.17 is proved.

In connection with b), d), f) in this theorem let us remark that

$$
\sum_{i=1}^{4} \frac{1}{t_{i}^{k}}=\sum_{i=1}^{4}\left(\frac{t_{i}}{r^{2}}\right)^{k}
$$

It is easy to see that this is equivalent to

$$
A\left(t_{1}^{k}, t_{2}^{k}, t_{3}^{k}, t_{4}^{k}\right) \cdot H\left(t_{1}^{k}, t_{2}^{k}, t_{3}^{k}, t_{4}^{k}\right)=r^{2 k}
$$

Corollary 2.18. Let $f_{i}\left(t_{1}\right), i=1,2,3,4$, be the functions given by

$$
f_{1}\left(t_{1}\right)=t_{1}, \quad f_{2}\left(t_{1}\right)=t_{2}, \quad f_{3}\left(t_{1}\right)=\frac{r^{2}}{t_{1}}, \quad f_{4}\left(t_{1}\right)=\frac{r^{2}}{t_{2}}
$$

where t_{2} is expressed in (2.22). Then each of the following two equations

$$
\begin{equation*}
\frac{d}{d t_{1}} \sum_{i=1}^{4} f_{i}\left(t_{1}\right)=0, \quad \frac{d}{d t_{1}} \sum_{i=1}^{4} f_{i}^{k}\left(t_{1}\right)=0, \quad k=2,3,4 \tag{2.37}
\end{equation*}
$$

has in the interval $\left[t_{m}, t_{M}\right]$ the same solutions $t_{m}, \hat{t}_{1}, r, \hat{t}_{3}, t_{M}$ given by (2.20) and (2.21).
Thus, the graph of the function $F\left(t_{1}\right)=\sum_{i=1}^{4} f_{i}^{k}\left(t_{1}\right)$ is like the graph of the function $J\left(t_{1}\right)$ shown in Figure 2.5.

If $f\left(t_{1}\right)$ and $g\left(t_{1}\right)$ are polynomials which respectively correspond to the equations given by (2.37), then $f\left(t_{1}\right) \mid g\left(t_{1}\right)$.

Remark 2.19. We conjecture that Corollary 2.18 is valid for every real number $k \neq 0$.
Corollary 2.20. $\sum_{i=1}^{4} t_{i}^{2} t_{i+1}^{2}$ is minimum when $\sum_{i=1}^{4} t_{i}$ is maximum and vice versa. In other words, the following holds

$$
4 r^{2}\left(R^{2}-r^{2}+d^{2}\right) \leq \sum_{i=1}^{4} t_{i}^{2} t_{i+1}^{2} \leq 4\left(R^{2}-r^{2}-d^{2}\right)^{2}
$$

where

$$
\begin{aligned}
t_{m}^{2} r^{2}+r^{2} t_{M}^{2}+t_{M}^{2} r^{2}+r^{2} t_{m}^{2} & =4 r^{2}\left(R^{2}-r^{2}+d^{2}\right) \\
\hat{t}_{1}^{2} \hat{t}_{2}^{2}+\hat{t}_{2}^{2} \hat{t}_{3}^{2}+\hat{t}_{3}^{2} \hat{t}_{4}^{2}+\hat{t}_{4}^{2} \hat{t}_{1}^{2} & =4\left(R^{2}-r^{2}-d^{2}\right)^{2}
\end{aligned}
$$

Proof. From (2.36), since $\sum_{i=1}^{4} t_{i} t_{i+1}=2\left(R^{2}-d^{2}\right)$, it follows that

$$
4\left(R^{2}-d^{2}\right)^{2}-4 r^{4}=\sum_{i=1}^{4} t_{i}^{2} t_{i+1}^{2}+2 r^{2}\left(\sum_{i=1}^{4} t_{i}^{2}\right)
$$

In this connection let us remark that from

$$
4 r^{2}\left(R^{2}-r^{2}+d^{2}\right) \leq 4\left(R^{2}-r^{2}-d^{2}\right)^{2}
$$

using Fuss' relation (1.1), we get the following inequality

$$
\begin{equation*}
R^{2} \leq 2 r^{2}+3 d^{2} \tag{2.38}
\end{equation*}
$$

(Cf. with (2.14). The equality holds only if $d=0$.)

Remark 2.21. W. J. Blundon and R. H. Eddy in [2] have proved that for semiperimeter s of bicentric polygons, the following inequalities hold

$$
s \leq r+\sqrt{r^{2}+4 R^{2}}, \quad s^{2} \geq 8 r\left(\sqrt{r^{2}+4 R^{2}}-r\right)
$$

and two other inequalities in s. (Both inequalities are based upon (2.16) stated in Remark 2.6.)
Inequalities (2.38), using (2.15) stated in Remark 2.6, can also be proved.

3. Certain Inequalities Concerning Bicentric Hexagons

Let now, in this section, C_{1} and C_{2} be given circles such that there is a bicentric hexagon whose incircle is C_{1} and circumcircle C_{2} and let

$$
\begin{aligned}
& r=\text { radius of } C_{1}, \quad R=\text { radius of } C_{2}, \\
& d=\text { distance between centers of } C_{1} \text { and } C_{2},
\end{aligned}
$$

$$
\begin{equation*}
t_{m}=\sqrt{(R-d)^{2}-r^{2}}, \quad t_{M}=\sqrt{(R+d)^{2}-r^{2}} . \tag{3.1}
\end{equation*}
$$

We shall use the following results given in [9, Theorem 1-2].
Let $\underline{A}=A_{1} \cdots A_{6}$ be any given bicentric hexagon whose incircle is C_{1} and circumcircle C_{2} and let

$$
\begin{equation*}
t_{i}+t_{i+1}=\left|A_{i} A_{i+1}\right|, i=1, \ldots, 6 \tag{3.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1}=r^{2} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{1} t_{4}=t_{2} t_{5}=t_{3} t_{6}=h \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
h=t_{m} t_{M} . \tag{3.6}
\end{equation*}
$$

If t_{1} is given, then t_{2}, \ldots, t_{6} are given by

$$
\begin{align*}
t_{3} & =\frac{a}{2}+\left(\frac{a}{2}\right)^{2}-b, \quad t_{5}=\frac{b}{t_{3}} \tag{3.7}\\
t_{2} & =\frac{h}{t_{5}}, \quad t_{4}=\frac{h}{t_{1}}, \quad t_{6}=\frac{h}{t_{3}} \tag{3.8}
\end{align*}
$$

where

$$
\begin{equation*}
a=\frac{\left(r^{4}-h^{2}\right) t_{1}}{r^{2} t_{1}^{2}+h^{2}}, \quad b=\frac{h^{2}\left(r^{2}+t_{1}^{2}\right)}{r^{2} t_{1}^{2}+h^{2}} . \tag{3.9}
\end{equation*}
$$

Thus, for every t_{1} such that $t_{m} \leq t_{1} \leq t_{M}$ there is a bicentric hexagon whose tangent lengths are $t_{1}, t_{2}, \ldots, t_{6}$, where t_{2}, \ldots, t_{6} are given by (3.7) and (3.8).

Theorem 3.1. The following results hold

$$
\begin{gather*}
2 \sqrt{h} \leq t_{i}+t_{i+3} \leq t_{m}+t_{M}, i=1,2,3 \tag{3.10}\\
6 \sqrt{h} \leq \sum_{i=1}^{6} t_{i} \leq 3\left(t_{m}+t_{M}\right)
\end{gather*}
$$

and

$$
\begin{equation*}
6 h \leq \sum_{i=1}^{6} t_{i}^{2} \leq 6\left(R^{2}+d^{2}-r^{2}+h\right) \tag{3.12}
\end{equation*}
$$

Proof. Analogous to the proof of Theorem 2.1. (Here vertices A_{i} and A_{i+3} are opposite and instead of r^{2} we have h.)

Theorem 3.2. The following result holds

$$
\begin{equation*}
r^{2} \geq 3 h \tag{3.13}
\end{equation*}
$$

where $r^{2}=3 h$ only if $d=0$.
Proof. Since from (3.5) we have

$$
\begin{equation*}
t_{2}=\frac{h}{t_{5}}, \quad t_{4}=\frac{h}{t_{1}}, \quad t_{6}=\frac{h}{t_{3}}, \tag{3.14}
\end{equation*}
$$

the relation (3.4) can be written as

$$
\begin{equation*}
t_{1}+t_{3}+t_{5}=\left(\frac{r}{h}\right)^{2} t_{1} t_{3} t_{5} \tag{3.15}
\end{equation*}
$$

Using this relation and relation (2.4) we can write

$$
\begin{aligned}
& t_{3}+t_{5}=\left(\frac{r}{h}\right)^{2} t_{1} t_{3} t_{5}-t_{1} \\
& t_{1}\left(t_{3}+t_{5}\right)+t_{3} t_{5}=r^{2}
\end{aligned}
$$

from which follows that

$$
\begin{equation*}
t_{3}+t_{5}=a, \quad t_{3} t_{5}=b \tag{3.16}
\end{equation*}
$$

where a and b are given by (3.9). Thus, we have the equation

$$
t_{3}+\frac{b}{t_{3}}=a \quad \text { or } \quad t_{3}^{2}-a t_{3}+b=0
$$

Let the discriminant of the above square equation in t_{3} be denoted by D. Then we can write

$$
\begin{equation*}
D=-4 h^{2} r^{2} t_{1}^{4}+\left[\left(r^{4}-h^{2}\right)^{2}-4 h^{4}-4 h^{2} r^{4}\right] t_{1}^{2}-4 h^{4} r^{2} \geq 0 \tag{3.17}
\end{equation*}
$$

Now, the discriminant of the corresponding quadratic equation in t_{1}^{2} is given by

$$
D_{1}=\left[\left(r^{4}-h^{2}\right)^{2}-4 h^{4}-4 h^{2} r^{4}\right]^{2}-64 h^{6} r^{4} .
$$

Since $D_{1} \geq 0$ must hold, we have the following inequality

$$
\left(r^{4}-h^{2}\right)^{2}-4 h^{4}-4 h^{2} r^{4}-8 h^{3} r^{2} \geq 0
$$

which can be written as

$$
\left(r^{2}-3 h\right)\left(r^{2}+h\right) \geq 0 .
$$

Thus, $r^{2}-3 h \geq 0$.
If $d=0$, then $r=R \cos 30^{\circ}=\frac{R \sqrt{3}}{2}, t_{m}=t_{M}=R \sin 30^{\circ}=\frac{R}{2}$ and $r^{2}=t_{m} t_{M}$. Theorem 3.2 is proved.

In proving this theorem we also have proved that for every t_{1} such that $t_{m} \leq t_{1} \leq t_{M}$ the inequality (3.17) holds.

It may be of some interest to note that Theorem 3.2 can be readily proved using a connection between arithmetic and harmonic means. Namely, starting from

$$
A\left(t_{1}, t_{3}, t_{5}\right) \geq H\left(t_{1}, t_{3}, t_{5}\right)
$$

we can write

$$
\left(t_{1}+t_{3}+t_{5}\right) \cdot \frac{t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1}}{t_{1} t_{3} t_{5}} \geq 9
$$

or, since $t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1}=r^{2}$,

$$
\begin{equation*}
r^{2} \geq 9 \cdot \frac{t_{1} t_{3} t_{5}}{t_{1}+t_{3}+t_{5}} \tag{3.18}
\end{equation*}
$$

Also we have that the relation (3.15) can be written as

$$
\begin{equation*}
r^{2}=h^{2} \cdot \frac{t_{1}+t_{3}+t_{5}}{t_{1} t_{3} t_{5}} \tag{3.19}
\end{equation*}
$$

Now, using relations (3.18) and (3.19) we can write

$$
r^{4} \geq 9 r^{2} \frac{t_{1} t_{3} t_{5}}{t_{1}+t_{3}+t_{5}}=9\left(h^{2} \cdot \frac{t_{1}+t_{3}+t_{5}}{t_{1} t_{3} t_{5}}\right) \frac{t_{1} t_{3} t_{5}}{t_{1}+t_{3}+t_{5}}=9 h^{2}
$$

or

$$
r^{2} \geq 3 h
$$

Corollary 3.3. The following result holds

$$
t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1} \geq 3 h, \quad t_{2} t_{4}+t_{4} t_{6}+t_{6} t_{2} \geq 3 h
$$

Proof. Follows from (3.3), (3.4) and (3.13).

Corollary 3.4. It holds

$$
\begin{equation*}
h \geq 3 \cdot \frac{t_{1} t_{3} t_{5}}{t_{1}+t_{3}+t_{5}} \tag{3.20}
\end{equation*}
$$

Proof. Since $\left(\frac{r}{h}\right)^{2} \geq \frac{3}{h}$, the relation follows from 3.19.
Corollary 3.5. The following holds

$$
\begin{equation*}
h \geq 3 \cdot \frac{t_{2} t_{4} t_{6}}{t_{2}+t_{4}+t_{6}} \tag{3.21}
\end{equation*}
$$

Proof. From (3.3), using (3.5), we get

$$
r^{2}=h^{2} \cdot \frac{t_{2}+t_{4}+t_{6}}{t_{2} t_{4} t_{6}}
$$

Corollary 3.6. The following result holds

$$
\begin{equation*}
\sum_{i=1}^{6} t_{i} t_{i+1} \geq 6 h \tag{3.22}
\end{equation*}
$$

Proof. Starting from $r^{2} \geq 3 h$, we can write

$$
\begin{aligned}
& r^{4} \geq 9 h^{2} \\
& r^{4}-3 h^{2} \geq 6 h^{2}, \\
& \frac{r^{4}-3 h^{2}}{h} \geq 6 h .
\end{aligned}
$$

In [9, Theorem 3] it is proved that $\sum_{i=1}^{6} t_{i} t_{1+1}=\frac{r^{4}-3 h^{2}}{h}$.
The following theorem is analogous to Theorem 2.7 but with much more involved calculation. Before its statement we have the following preliminary work.

In Figure 3.1a we have drawn an axially symmetric bicentric hexagon $P_{1} \cdots P_{6}$. The marked tangent lengths \bar{t}_{2} and \bar{t}_{3} are given by

$$
\begin{equation*}
\bar{t}_{2}=-t_{M}+R+d \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{t}_{3}=-t_{m}+R-d . \tag{3.2}
\end{equation*}
$$

The proof is as follows.
Since $\bar{t}_{2}=t_{6}$ and $t_{4}=t_{M}$, the relation (3.4) can be written as

$$
\left(\bar{t}_{2}\right)^{2}+2 t_{M} \bar{t}_{2}-r^{2}=0,
$$

from which follows (3.23).
Since $\bar{t}_{3}=t_{5}, t_{1}=t_{m}$, the relation (3.3) can be written as

$$
\left(\bar{t}_{3}\right)^{2}+2 t_{m} \bar{t}_{3}-r^{2}=0,
$$

from which follows (3.24).

Figure 3.1a

Figure 3.1b

In Figure 3.1 b we have drawn an axially symmetric bicentric hexagon $Q_{1} \cdots Q_{6}$. The marked tangent lengths $\hat{t}_{1}, \hat{t}_{2}, \hat{t}_{3}$ are given by

$$
\begin{align*}
& \hat{t}_{1}=\sqrt{R^{2}-(r+d)^{2}}, \tag{3.25}\\
& \hat{t}_{3}=\sqrt{R^{2}-(r-d)^{2}}, \tag{3.26}
\end{align*}
$$

$$
\begin{equation*}
\hat{t}_{2}=\frac{r^{2}-\hat{t}_{1} \hat{t}_{3}}{\hat{t}_{1}+\hat{t}_{3}} \tag{3.27}
\end{equation*}
$$

For \hat{t}_{1} and \hat{t}_{3} it is obvious from Figure 3.1b. Also, from Figure 3.1 b we see that $\hat{t}_{2}=t_{5}$, so relation (3.3) can be written as

$$
t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1}=r^{2}
$$

from which follows

$$
t_{5}=\frac{r^{2}-\hat{t}_{1} \hat{t}_{3}}{\hat{t}_{1}+\hat{t}_{3}}
$$

Now, let $A_{1} \cdots A_{6}$ be a bicentric hexagon whose incircle is C_{1} and circumcircle C_{2} and let its area be denoted by $J\left(t_{1}\right)$, that is

$$
\begin{equation*}
J\left(t_{1}\right)=r\left(t_{1}+t_{2}+\cdots+t_{6}\right), \tag{3.28}
\end{equation*}
$$

where $t_{i}+t_{i+1}=\left|A_{i} A_{i+1}\right|, i=1, \ldots, 6$, and t_{2}, \ldots, t_{6} are given by (3.7) and (3.8).
According to Theorem 2 in [9], we have

$$
\begin{equation*}
J\left(t_{m}\right)=J\left(\bar{t}_{2}\right)=J\left(\bar{t}_{3}\right)=J\left(t_{M}\right) \tag{3.29}
\end{equation*}
$$

and

$$
\begin{equation*}
J\left(\hat{t}_{1}\right)=J\left(\hat{t}_{2}\right)=J\left(\hat{t}_{3}\right) \tag{3.30}
\end{equation*}
$$

Theorem 3.7. Let the perimeter of the hexagon $P_{1} \cdots P_{6}$ shown in Figure 3.1a be denoted by $2 p_{M}$, and let the perimeter of the hexagon $Q_{1} \ldots Q_{6}$ shown in Figure 3.1 b be denoted by $2 p_{m}$. Then

$$
\begin{equation*}
r p_{m} \leq J\left(t_{1}\right) \leq r p_{M} \tag{3.31}
\end{equation*}
$$

that is

$$
\begin{aligned}
& J\left(t_{1}\right)=\text { maximum if } t_{1} \in\left\{t_{m}, \bar{t}_{2}, \bar{t}_{3}, t_{M}\right\}, \\
& J\left(t_{1}\right)=\text { minimum if } t_{1} \in\left\{\hat{t}_{1}, \hat{t}_{2}, \hat{t}_{3}\right\} .
\end{aligned}
$$

Proof. The relation (3.28), using relations given by (3.7) and (3.8), can be written as

$$
J\left(t_{1}\right)=\frac{r^{2}\left(h^{4}+2 h^{2} r^{2} t_{1}^{2}+r^{4} t_{1}^{4}+h t_{1}^{2}\left(r^{2}+t_{1}^{2}\right)^{2}\right)}{h t_{1}\left(r^{2}+t_{1}^{2}\right)\left(h^{2}+r^{2} t_{1}^{2}\right)} .
$$

From $\frac{\mathrm{d}}{\mathrm{d} t_{1}} J\left(t_{1}\right)=0$, we obtain the equation

$$
\frac{r^{2}\left(h-t_{1}^{2}\right)\left[h\left(h^{2}+h t_{1}^{2}+t_{1}^{4}\right)+2 h r^{2} t_{1}^{2}-r^{4} t_{1}^{2}\right]\left[3 h^{2} t_{1}^{2}+\left(h^{2}+t_{1}^{4}\right) r^{2}-r^{4} t_{1}^{2}\right]}{h t_{1}^{2}\left(r^{2}+t_{1}^{2}\right)^{2}\left(h^{2}+r^{2} t_{1}^{2}\right)^{2}}=0
$$

from which follow

$$
\begin{gather*}
\left(t_{1}^{2}\right)_{1}=h \tag{3.32}\\
\left(t_{1}^{2}\right)_{2,3}=\frac{\left(r^{2}-h\right)^{2} \pm \sqrt{\left(r^{2}-h\right)^{4}-4 h^{4}}}{2 h} \tag{3.33}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(t_{1}^{2}\right)_{4,5}=\frac{r^{4}-3 h^{2} \pm \sqrt{\left(r^{4}-3 h^{2}\right)^{2}-4 r^{4} h^{2}}}{2 r^{2}} \tag{3.34}
\end{equation*}
$$

Since R, r, d satisfy Fuss' relation (1.2), it can be shown, using this relation, that

$$
\begin{array}{ll}
\left(t_{1}\right)_{1}=\hat{t}_{2}, & \left(t_{1}\right)_{2}=\hat{t}_{3}, \quad\left(t_{1}\right)_{3}=\hat{t}_{1} \\
\left(t_{1}\right)_{4}=\bar{t}_{3}, & \left(t_{1}\right)_{5}=\bar{t}_{2} .
\end{array}
$$

So, for example, it can be found that $t_{3}=\left(t_{1}\right)_{4}$ is equivalent to

$$
64 r^{4}(R-d+r)(-R+d+r)\left[3\left(R^{2}-d^{2}\right)^{4}-4 r^{2}\left(R^{2}+d^{2}\right)\left(R^{2}-d^{2}\right)^{2}-16 R^{2} r^{4} d^{2}\right]=0,
$$

where only the last factor is equal to zero since Fuss' relation (1.2) holds, which can be written as

$$
3\left(R^{2}-d^{2}\right)^{4}-4 r^{2}\left(R^{2}+d^{2}\right)\left(R^{2}-d^{2}\right)^{2}-16 R^{2} r^{4} d^{2}=0 .
$$

In the same way as in Theorem 2.7, only with somewhat more involved calculation, it can be shown that the graph of $J\left(t_{1}\right)$ is like that shown in Figure 3.2.

Figure 3.2

Theorem 3.7 is proved.
Corollary 3.8. Each of the following three sums
a) $\sum_{i=1}^{6} t_{i}^{2}$,
b) $\sum_{i=1}^{6} \frac{1}{t_{i}}$,
c) $\sum_{i=1}^{6} \frac{1}{t_{i}^{2}}$
has maximum if $t_{1}=t_{m}$ and minimum if $t_{1}=\hat{t}_{1}$.
Proof. a) We have

$$
\begin{aligned}
\left(t_{1}+\ldots+t_{6}\right)^{2}= & t_{1}^{2}+\ldots+t_{6}^{2}+2\left(t_{1} t_{2}+t_{2} t_{3}+\ldots+t_{5} t_{6}+t_{6} t_{1}\right) \\
& +2\left(t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{1}\right)+2\left(t_{2} t_{4}+t_{4} t_{6}+t_{6} t_{2}\right) \\
= & \sum_{i=1}^{6} t_{i}^{2}+2 \cdot \frac{r^{4}-3 h^{2}}{h}+4 r^{2} .(\text { See [9, Theorem 3].) }
\end{aligned}
$$

b) We have

$$
\sum_{i=1}^{6} \frac{1}{t_{i}}=\frac{h^{2}\left(t_{1}+\ldots+t_{6}\right)}{h^{3}}=\frac{t_{1}+\ldots+t_{6}}{h}
$$

Corollary 3.9. Let t_{1} be given such that $t_{m} \leq t_{1} \leq t_{M}$. Then the equation

$$
J\left(t_{1}\right) J(x)=J\left(t_{m}\right) J\left(\hat{t}_{1}\right)
$$

has six positive roots x_{1}, \ldots, x_{6} and we obtain

$$
\sum_{i=1}^{6} x_{i} x_{i+1}=\frac{r^{4}-3 h^{2}}{h}, \quad \sum_{i=1}^{6} x_{i} x_{i+1} x_{i+2} x_{i+3}=r^{4}-3 h^{2}, \quad x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}=h^{3}
$$

The proof is analogous to the proof of Corollary 2.12 .

4. Certain Inequalities Concerning Bicentric Octagons

In this section, let C_{1} and C_{2} be given circles such that there is a bicentric octagon whose incircle is C_{1} and circumcircle C_{2} and let

$$
\begin{aligned}
& r=\text { radius of } C_{1}, R=\text { radius of } C_{2} \\
& d=\text { distance between centers of } C_{1} \text { and } C_{2}
\end{aligned}
$$

$$
\begin{equation*}
t_{m}=\sqrt{(R-d)^{2}-r^{2}}, \quad t_{M}=\sqrt{(R+d)^{2}-r^{2}} \tag{4.1}
\end{equation*}
$$

We shall use some results given in [9, Theorem 4-5].
Let $\underline{A}=A_{1} \cdots A_{8}$ be any given bicentric octagon whose incircle is C_{1} and circumcircle C_{2} and let

$$
\begin{equation*}
t_{i}+t_{i+1}=\left|A_{i} A_{i+1}\right|, i=1, \ldots, 8 \tag{4.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
r^{4}-r^{2}\left(t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{7}+t_{7} t_{1}+t_{1} t_{5}+t_{3} t_{7}\right)+t_{1} t_{3} t_{5} t_{7}=0 \tag{4.3}
\end{equation*}
$$

A bicentric octagon may be convex or non-convex, but the relations (4.3) - 4.6) have the same form.

The theorem below will now be proved.
Theorem 4.1. Let $A_{1} \cdots A_{8}$ be a bicentric octagon. Then

$$
\begin{equation*}
\left(r-\frac{h}{r}\right)^{2} \geq 4 h \tag{4.7}
\end{equation*}
$$

where equality holds only if $d=0$.
Proof. The relation (4.3), using relations $t_{1} t_{5}=t_{3} t_{7}=h$, can be written as

$$
\begin{equation*}
\left(h+t_{1}^{2}\right) t_{3}^{2}-\left(r-\frac{h}{r}\right)^{2} t_{1} t_{3}+h\left(h+t_{1}^{2}\right)=0 \tag{4.8}
\end{equation*}
$$

The discriminant of the above quadratic equation in t_{3} is

$$
D=\left(r-\frac{h}{r}\right)^{4} t_{1}^{2}-4 h\left(h+t_{1}^{2}\right)^{2}
$$

Since $D \geq 0$, we obtain

$$
-4 h t_{1}^{4}+\left[\left(r-\frac{h}{r}\right)^{4}-8 h^{2}\right] t_{1}^{2}-4 h^{3} \geq 0
$$

We shall use the discriminant

$$
D_{1}=\left[\left(r-\frac{h}{r}\right)^{4}-8 h^{2}\right]^{2}-64 h^{4}
$$

of the corresponding quadratic equation in t_{1}^{2} given by

$$
-4 h t_{1}^{4}+\left[\left(r-\frac{h}{r}\right)^{4}-8 h^{2}\right] t_{1}^{2}-4 h^{3}=0
$$

From $D_{1} \geq 0$ it follows that

$$
\left(r-\frac{h}{r}\right)^{4}-8 h^{2} \geq 8 h^{2}
$$

i.e.

$$
\left(r-\frac{h}{r}\right)^{2} \geq 4 h
$$

It remains to prove that $\left(r-\frac{h}{r}\right)^{2}=4 h$ only if $d=0$. Since

$$
\begin{gathered}
r=R \cos 22.5^{\circ}, h=r^{2} \sin ^{2} 22.5^{\circ} \text { and } \\
\cos ^{2} 22.5^{\circ}=\frac{2+\sqrt{2}}{4}, \sin ^{2} 22.5^{\circ}=\frac{2-\sqrt{2}}{4}
\end{gathered}
$$

we have

$$
\left(r-\frac{h}{r}\right)^{2}=r^{2}(2-\sqrt{2}), \quad 4 h=r^{2}(2-\sqrt{2})
$$

Theorem 4.1 is proved.

Corollary 4.2. The following inequalities hold

$$
\begin{equation*}
t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{7}+t_{7} t_{1} \geq 4 t_{m} t_{M} \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{2} t_{4}+t_{4} t_{6}+t_{6} t_{8}+t_{8} t_{2} \geq 4 t_{m} t_{M} \tag{4.10}
\end{equation*}
$$

Proof. The relations (4.3) and (4.4), using relations (4.5), can be written as

$$
\begin{aligned}
& t_{1} t_{3}+t_{3} t_{5}+t_{5} t_{7}+t_{7} t_{1}=\left(r-\frac{h}{r}\right)^{2} \\
& t_{2} t_{4}+t_{4} t_{6}+t_{6} t_{8}+t_{8} t_{2}=\left(r-\frac{h}{r}\right)^{2}
\end{aligned}
$$

Remark 4.3. It can be shown that for almost every property considered for bicentric quadrilaterals there are analogous properties for bicentric hexagons and octagons. But, since the number of the pages in the paper is limited, we omit some analogous theorems for bicentric hexagons and octagons. So that all we have stated about bicentric hexagons and octagons can be considered as some steps or an insight into possibilities for further research.

References

[1] H.J.M. BOS, C. KERS, F. OORT AND D.W. RAVEN, Poncelet's closure theorem, Exposition. Math., 5 (1987), 289, 364.
[2] W.J. BLUNDON AND R.H. EDDY, Problem 488, Nieuw Arch. Wiskunde, 26 (1978), 2321; solution in 26 (1978), 465.
[3] H. DÖRRIE, 100 Great Problems of Elementary Mathematics, Dover, 1965.
[4] N. FUSS, De quadrilateris quibus circulum tam inscribere quam circumscribere licet, Nova Acta Acad. Sci. Petrop., 10 (1797), 103-125.
[5] N. FUSS, De polygonis symmetrice irregularibus circulo simul inscriptis et circumscriptis, Nova Acta Acad. Sci. Imp. Petrop., 13 (1802), 166-189.
[6] P. GRIFFITHS AND J. HARRIS, On Cayley's explicit solution to Poncelet's porism, Enseign. Math., 24(1-2) (1978), 31-40.
[7] J.V. PONCELET, Traité des propriétés projectives des figures, t.I, Paris 1865, (first ed. in 1822).
[8] M. RADIĆ, Some relations concerning triangles and bicentric quadrilaterals in connection with Poncelet's closure theorem, Math. Maced., 1 (2003), 35-58.
[9] M. RADIĆ, Some properties and relations concerning bicentric hexagons and octagons in connection with Poncelet's closure theorem, to appear.
[10] M. RADIĆ, Extreme Areas of Triangles in Poncelet's Closure Theorem, Forum Geometricorum, 4 (2004), 23-26.
[11] L. FEJES TOTH, Inequalities concerning polygons and polyhedra, Duke Math. J., 15(1) (1948), 817-822.

[^0]: ISSN (electronic): 1443-5756
 (c) 2005 Victoria University. All rights reserved.

 118-04

