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1. Introduction

Let f,−g : [a, b] → R both be continuous functions. Iff is a convex function, then
we have

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(t)dt.

The inequality (1.1) is well known as the Hadamard inequality (see [1] – [6]). For
some recent results which generalize, improve, and extend this classical inequality,
see the references of [3].

Whenf,−g both are convex functions satisfying
∫ b

a
g(x)dx > 0 andf(a+b

2
) ≥ 0,

S.-J. Yang in [7] generalized (1.1) as

(1.2)
f

(
a+b
2

)
g

(
a+b
2

) ≤ ∫ b

a
f(t)dt∫ b

a
g(t)dt

.

To go further in exploring (1.2), we define two mappingsL andF by L : [a, b]×
[a, b] 7→ R,

L(x, y; f, g) =

[∫ y

x

f(t)dt− (y − x)f

(
x + y

2

)] [
(y − x)g

(
x + y

2

)
−

∫ y

x

g(t)dt

]
andF : [a, b]× [a, b] 7→ R,

F (x, y; f, g) = g

(
x + y

2

) ∫ y

x

f(t)dt− f

(
x + y

2

) ∫ y

x

g(t)dt.

The aim of this paper is to study the properties ofL andF and obtain some new
refinements of (1.2).

To prove the theorems of this paper we need the following lemma.
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Lemma 1.1. Letf be a convex function on[a, b]. The mappingH is defined as

H(x, y; f) =

∫ y

x

f(t)dt− (y − x)f

(
x + y

2

)
.

ThenH(a, y; f) is nonnegative and monotonically increasing withy on [a, b] (see
[8]), H(x, b; f) is nonnegative and monotonically decreasing withx on [a, b] (see
[9]).
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2. Main Results

The properties ofL are embodied in the following theorem.

Theorem 2.1.Letf and−g both be convex functions on[a, b]. Then we have:

1. L(a, y; f, g) is nonnegative increasing withy on [a, b], L(x, b; f, g) is nonnega-
tive decreasing withx on [a, b].

2. When
∫ b

a
g(x)dx > 0 andf

(
a+b
2

)
≥ 0, for anyx, y ∈ (a, b) andα ≥ 0 and

β ≥ 0 such thatα + β = 1, we have the following refinement of (1.2)

f
(

a+b
2

)
g

(
a+b
2

) ≤ (b− a)f
(

a+b
2

)
2
∫ b

a
g(t)dt

+

∫ b

a
f(t)dt

2(b− a)g
(

a+b
2

)(2.1)

≤
(b− a)f

(
a+b
2

)
2
∫ b

a
g(t)dt

+

∫ b

a
f(t)dt

2(b− a)g
(

a+b
2

)
+

αL(a, y; f, g) + βL(x, b; f, g)

2(b− a)g
(

a+b
2

) ∫ b

a
g(t)dt

≤
∫ b

a
f(t)dt

2
∫ b

a
g(t)dt

+
2f

(
a+b
2

)
2g

(
a+b
2

) ≤ ∫ b

a
f(t)dt∫ b

a
g(t)dt

.

The main properties ofF are given in the following theorem.

Theorem 2.2.Letf and−g both be nonnegative convex functions on[a, b] satisfying∫ b

a
g(x)dx > 0. Then we have the following two results:

http://jipam.vu.edu.au
mailto:helan0505@163.com
http://jipam.vu.edu.au


Mappings Associated with
Inequalities of Hadamard-type

Lan He

vol. 10, iss. 3, art. 81, 2009

Title Page

Contents

JJ II

J I

Page 6 of 11

Go Back

Full Screen

Close

1. If f and−g both are increasing, thenF (a, y; f, g) is nonnegative increasing
with y on [a, b], and we have the following refinement of (1.2)

(2.2)
f

(
a+b
2

)
g

(
a+b
2

) ≤ f
(

a+b
2

)
g

(
a+b
2

) +
F (a, y; f, g)

g
(

a+b
2

) ∫ b

a
g(t)dt

≤
∫ b

a
f(t)dt∫ b

a
g(t)dt

,

wherey ∈ (a, b).

2. If f and−g both are decreasing, thenF (x, b; f, g) is nonnegative decreasing
with x on [a, b], and we have the following refinement of (1.2)

(2.3)
f

(
a+b
2

)
g

(
a+b
2

) ≤ f
(

a+b
2

)
g

(
a+b
2

) +
F (x, b; f, g)

g
(

a+b
2

) ∫ b

a
g(t)dt

≤
∫ b

a
f(t)dt∫ b

a
g(t)dt

,

wherex ∈ (a, b).
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3. Proof of Theorems

Proof of Theorem2.1.
(1) By Lemma1.1and the convexity off and−g, it is obvious thatH(a, y; f) and
H(a, y;−g) both are nonnegative increasing withy on [a, b]. ThenL(a, y; f, g) =
H(a, y; f)H(a, y;−g) is nonnegative increasing withy on [a, b]. By the same argu-
ments of proof forL(a, y; f, g), we can also prove thatL(x, b; f, g) is nonnegative
decreasing withx on [a, b].

(2) SinceH(a, y; f) is monotonically increasing withy on [a, b], for anyy ∈ (a, b)
andα ≥ 0, we have

(3.1) 0 = αL(a, a; f, g) ≤ αL(a, y; f, g) ≤ αL(a, b; f, g).

As H(x, b; f) is monotonically decreasing withx on [a, b], for anyx ∈ (a, b) and
β ≥ 0, we have

(3.2) 0 = βL(a, a; f, g) ≤ βL(x, b; f, g) ≤ βL(a, b; f, g).

Whenα + β = 1, expression (3.1) plus (3.2) yields

(3.3) 0 = L(a, a; f, g) ≤ αL(a, y; f, g) + βL(x, b; f, g) ≤ L(a, b; f, g).

Expression (3.3) plus

(b− a)2f

(
a + b

2

)
g

(
a + b

2

)
+

∫ b

a

f(t)dt

∫ b

a

g(t)dt

yields

(b− a)2f

(
a + b

2

)
g

(
a + b

2

)
+

∫ b

a

f(t)dt

∫ b

a

g(t)dt(3.4)
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≤ (b− a)2f

(
a + b

2

)
g

(
a + b

2

)
+

∫ b

a

f(t)dt

∫ b

a

g(t)dt

+ αL(a, y; f, g) + βL(x, b; f, g)

≤ (b− a)g

(
a + b

2

) ∫ b

a

f(t)dt + (b− a)f

(
a + b

2

) ∫ b

a

g(t)dt.

By the convexity off andg,
∫ b

a
g(x)dx > 0, f

(
a+b
2

)
≥ 0 and (1.1), we get

(3.5) (b−a)g

(
a + b

2

)
≥

∫ b

a

g(t)dt > 0,

∫ b

a

f(t)dt ≥ (b−a)f

(
a + b

2

)
≥ 0.

Using (3.5), we obtain

(b− a)2f

(
a + b

2

)
g

(
a + b

2

)
+

∫ b

a

f(t)dt

∫ b

a

g(t)dt(3.6)

≥ (b− a)f

(
a + b

2

) ∫ b

a

g(t)dt + (b− a)f

(
a + b

2

) ∫ b

a

g(t)dt

= 2(b− a)f

(
a + b

2

) ∫ b

a

g(t)dt

and

(3.7) (b− a)g

(
a + b

2

) ∫ b

a

f(t)dt + (b− a)f

(
a + b

2

) ∫ b

a

g(t)dt

≤ 2(b− a)g

(
a + b

2

) ∫ b

a

f(t)dt.
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Combining (3.4), (3.6) and (3.7), and dividing the combined formula by

2(b− a)g

(
a + b

2

) ∫ b

a

g(t)dt

yields (2.1).
This completes the proof of Theorem2.1.

Proof of Theorem2.2.
(1) By Lemma1.1 and the convexity off and−g, we can see thatH(a, y; f) and
H(a, y;−g) both are nonnegative increasing withy on [a, b]. From the nonnegative
increasing properties off andg, we get that

F (a, y; f, g) = g

(
a + y

2

) ∫ y

a

f(t)dt− f

(
a + y

2

) ∫ y

a

g(t)dt

= g

(
a + y

2

) (∫ y

a

f(t)dt− (y − a)f

(
a + y

2

))
+ f

(
a + y

2

) (∫ y

a

g(t)dt− (y − a)g

(
a + y

2

))
= g

(
a + y

2

)
·H(a, y; f) + f

(
a + y

2

)
·H(a, y;−g)

is nonnegative increasing withy on [a, b].
SinceF (a, y; f, g) is monotonically increasing withy on [a, b], for anyy ∈ (a, b),

we have

(3.8) 0 = F (a, a; f, g) ≤ F (a, y; f, g) ≤ F (a, b; f, g).

Expression (3.8) plus

f

(
a + b

2

) ∫ b

a

g(t)dt

http://jipam.vu.edu.au
mailto:helan0505@163.com
http://jipam.vu.edu.au


Mappings Associated with
Inequalities of Hadamard-type

Lan He

vol. 10, iss. 3, art. 81, 2009

Title Page

Contents

JJ II

J I

Page 10 of 11

Go Back

Full Screen

Close

yields

f

(
a + b

2

) ∫ b

a

g(t)dt ≤ f

(
a + b

2

) ∫ b

a

g(t)dt + F (a, y; f, g)(3.9)

≤ f

(
a + b

2

) ∫ b

a

g(t)dt + F (a, b; f, g)

= g

(
a + b

2

) ∫ b

a

f(t)dt.

Expression (3.9) divided by

g

(
a + b

2

) ∫ b

a

g(t)dt

yields (2.2).

(2) By Lemma1.1 and the convexity off and−g, we can see thatH(x, b; f) and
H(x, b;−g) are both nonnegative decreasing withx on [a, b]. Further, from the non-
negative decreasing properties off andg, we obtain that

F (x, b; f, g) = g

(
x + b

2

)
·H(x, b; f) + f

(
x + b

2

)
·H(x, b;−g)

is nonnegative decreasing withx on [a, b].
For anyx ∈ (a, b), then

(3.10) 0 = F (a, a; f, g) ≤ F (x, b; f, g) ≤ F (a, b; f, g).

Using (3.10), by the same arguments of proof for (1) of Theorem2.2, we can also
prove that (2.3) is true.

This completes the proof of Theorem2.2.
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