TWO NEW MAPPINGS ASSOCIATED WITH INEQUALITIES OF HADAMARD-TYPE FOR CONVEX FUNCTIONS

LAN HE

Department of Mathematics and Physics
Chongqing Institute of Science and Technology
Xingsheng Lu 4, YangjiaPing 400050
Chongqing City, China.
EMail: helan0505@163.com

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

18 April, 2008
23 April, 2009
S.S. Dragomir

Primary 26D07; Secondary 26B25, 26D15.
Convex function, Monotonicity, Integral inequality, Refinement.
In this paper, we define two mappings associated with the Hadamard inequality, investigate their main properties and give some refinements.

Mappings Associated with Inequalities of Hadamard-type

Lan He
vol. 10, iss. 3, art. 81, 2009

Title Page
Contents

44

4
Page 1 of 11
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 3
2 Main Results 5
3 Proof of Theorems 7
Mappings Associated with Inequalities of Hadamard-type

Lan He
vol. 10, iss. 3, art. 81, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 2 of 11	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

Let $f,-g:[a, b] \rightarrow \mathbb{R}$ both be continuous functions. If f is a convex function, then we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \tag{1.1}
\end{equation*}
$$

The inequality (1.1) is well known as the Hadamard inequality (see [1] - [6]). For some recent results which generalize, improve, and extend this classical inequality, see the references of [3].

When $f,-g$ both are convex functions satisfying $\int_{a}^{b} g(x) d x>0$ and $f\left(\frac{a+b}{2}\right) \geq 0$, S.-J. Yang in [7] generalized (1.1) as

$$
\begin{equation*}
\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} \leq \frac{\int_{a}^{b} f(t) d t}{\int_{a}^{b} g(t) d t} \tag{1.2}
\end{equation*}
$$

To go further in exploring (1.2), we define two mappings L and F by $L:[a, b] \times$ $[a, b] \mapsto \mathbb{R}$,
$L(x, y ; f, g)=\left[\int_{x}^{y} f(t) d t-(y-x) f\left(\frac{x+y}{2}\right)\right]\left[(y-x) g\left(\frac{x+y}{2}\right)-\int_{x}^{y} g(t) d t\right]$
and $F:[a, b] \times[a, b] \mapsto \mathbb{R}$,

$$
F(x, y ; f, g)=g\left(\frac{x+y}{2}\right) \int_{x}^{y} f(t) d t-f\left(\frac{x+y}{2}\right) \int_{x}^{y} g(t) d t .
$$

The aim of this paper is to study the properties of L and F and obtain some new refinements of (1.2).

To prove the theorems of this paper we need the following lemma.

Mappings Associated with Inequalities of Hadamard-type

> Lan He
vol. 10, iss. 3, art. 81, 2009

Title Page
Contents
4

Page 3 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Lemma 1.1. Let f be a convex function on $[a, b]$. The mapping H is defined as

$$
H(x, y ; f)=\int_{x}^{y} f(t) d t-(y-x) f\left(\frac{x+y}{2}\right)
$$

Then $H(a, y ; f)$ is nonnegative and monotonically increasing with y on $[a, b]$ (see [8]), $H(x, b ; f)$ is nonnegative and monotonically decreasing with x on $[a, b]$ (see [9]).

Mappings Associated with Inequalities of Hadamard-type

Lan He
vol. 10, iss. 3, art. 81, 2009

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 4 of 11	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Results

The properties of L are embodied in the following theorem.
Theorem 2.1. Let f and $-g$ both be convex functions on $[a, b]$. Then we have:

1. $L(a, y ; f, g)$ is nonnegative increasing with y on $[a, b], L(x, b ; f, g)$ is nonnegative decreasing with x on $[a, b]$.
2. When $\int_{a}^{b} g(x) d x>0$ and $f\left(\frac{a+b}{2}\right) \geq 0$, for any $x, y \in(a, b)$ and $\alpha \geq 0$ and $\beta \geq 0$ such that $\alpha+\beta=1$, we have the following refinement of (1.2)

$$
\begin{align*}
\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} \leq & \frac{(b-a) f\left(\frac{a+b}{2}\right)}{2 \int_{a}^{b} g(t) d t}+\frac{\int_{a}^{b} f(t) d t}{2(b-a) g\left(\frac{a+b}{2}\right)} \tag{2.1}\\
\leq & \frac{(b-a) f\left(\frac{a+b}{2}\right)}{2 \int_{a}^{b} g(t) d t}+\frac{\int_{a}^{b} f(t) d t}{2(b-a) g\left(\frac{a+b}{2}\right)} \\
& \quad+\frac{\alpha L(a, y ; f, g)+\beta L(x, b ; f, g)}{2(b-a) g\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t} \\
\leq & \frac{\int_{a}^{b} f(t) d t}{2 \int_{a}^{b} g(t) d t}+\frac{2 f\left(\frac{a+b}{2}\right)}{2 g\left(\frac{a+b}{2}\right)} \leq \frac{\int_{a}^{b} f(t) d t}{\int_{a}^{b} g(t) d t}
\end{align*}
$$

Mappings Associated with Inequalities of Hadamard-type
vol. 10, iss. 3, art. 81, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 5 of 11	
Go Back	
Full Screen	

The main properties of F are given in the following theorem.
Theorem 2.2. Let f and $-g$ both be nonnegative convex functions on $[a, b]$ satisfying $\int_{a}^{b} g(x) d x>0$. Then we have the following two results:

Close
journal of inequalities in pure and applied mathematics

1. If f and $-g$ both are increasing, then $F(a, y ; f, g)$ is nonnegative increasing with y on $[a, b]$, and we have the following refinement of (1.2)

$$
\begin{equation*}
\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} \leq \frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)}+\frac{F(a, y ; f, g)}{g\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t} \leq \frac{\int_{a}^{b} f(t) d t}{\int_{a}^{b} g(t) d t} \tag{2.2}
\end{equation*}
$$

Mappings Associated with Inequalities of Hadamard-type

Lan He
vol. 10, iss. 3, art. 81, 2009

$$
\begin{equation*}
\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} \leq \frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)}+\frac{F(x, b ; f, g)}{g\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t} \leq \frac{\int_{a}^{b} f(t) d t}{\int_{a}^{b} g(t) d t} \tag{2.3}
\end{equation*}
$$

Title Page

Contents

Page 6 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Proof of Theorems

Proof of Theorem 2.1.

(1) By Lemma 1.1 and the convexity of f and $-g$, it is obvious that $H(a, y ; f)$ and $H(a, y ;-g)$ both are nonnegative increasing with y on $[a, b]$. Then $L(a, y ; f, g)=$ $H(a, y ; f) H(a, y ;-g)$ is nonnegative increasing with y on $[a, b]$. By the same arguments of proof for $L(a, y ; f, g)$, we can also prove that $L(x, b ; f, g)$ is nonnegative decreasing with x on $[a, b]$.
(2) Since $H(a, y ; f)$ is monotonically increasing with y on $[a, b]$, for any $y \in(a, b)$ and $\alpha \geq 0$, we have

$$
\begin{equation*}
0=\alpha L(a, a ; f, g) \leq \alpha L(a, y ; f, g) \leq \alpha L(a, b ; f, g) \tag{3.1}
\end{equation*}
$$

As $H(x, b ; f)$ is monotonically decreasing with x on $[a, b]$, for any $x \in(a, b)$ and $\beta \geq 0$, we have

$$
\begin{equation*}
0=\beta L(a, a ; f, g) \leq \beta L(x, b ; f, g) \leq \beta L(a, b ; f, g) \tag{3.2}
\end{equation*}
$$

When $\alpha+\beta=1$, expression (3.1) plus (3.2) yields

$$
\begin{equation*}
0=L(a, a ; f, g) \leq \alpha L(a, y ; f, g)+\beta L(x, b ; f, g) \leq L(a, b ; f, g) \tag{3.3}
\end{equation*}
$$

Expression (3.3) plus

$$
(b-a)^{2} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right)+\int_{a}^{b} f(t) d t \int_{a}^{b} g(t) d t
$$

yields

$$
\begin{equation*}
(b-a)^{2} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right)+\int_{a}^{b} f(t) d t \int_{a}^{b} g(t) d t \tag{3.4}
\end{equation*}
$$

Mappings Associated with Inequalities of Hadamard-type
vol. 10, iss. 3, art. 81, 2009

Title Page
Contents

Page 7 of 11
Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& \leq(b-a)^{2} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right)+\int_{a}^{b} f(t) d t \int_{a}^{b} g(t) d t \\
& \quad+\alpha L(a, y ; f, g)+\beta L(x, b ; f, g) \\
& \leq(b-a) g\left(\frac{a+b}{2}\right) \int_{a}^{b} f(t) d t+(b-a) f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t .
\end{aligned}
$$

By the convexity of f and $g, \int_{a}^{b} g(x) d x>0, f\left(\frac{a+b}{2}\right) \geq 0$ and (1.1), we get
(3.5) $(b-a) g\left(\frac{a+b}{2}\right) \geq \int_{a}^{b} g(t) d t>0, \quad \int_{a}^{b} f(t) d t \geq(b-a) f\left(\frac{a+b}{2}\right) \geq 0$.

Using (3.5), we obtain

$$
\begin{align*}
& (b-a)^{2} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right)+\int_{a}^{b} f(t) d t \int_{a}^{b} g(t) d t \tag{3.6}\\
& \geq(b-a) f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t+(b-a) f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t \\
& =2(b-a) f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t
\end{align*}
$$

and

$$
\begin{align*}
(b-a) g\left(\frac{a+b}{2}\right) \int_{a}^{b} f(t) d t+(b-a) f & \left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t \tag{3.7}\\
& \leq 2(b-a) g\left(\frac{a+b}{2}\right) \int_{a}^{b} f(t) d t
\end{align*}
$$

Mappings Associated with Inequalities of Hadamard-type

Lan He

vol. 10, iss. 3, art. 81, 2009

Title Page

Contents

Page 8 of 11

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Combining (3.4), (3.6) and (3.7), and dividing the combined formula by

$$
2(b-a) g\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t
$$

yields (2.1).
This completes the proof of Theorem 2.1.

Proof of Theorem 2.2.

(1) By Lemma 1.1 and the convexity of f and $-g$, we can see that $H(a, y ; f)$ and $H(a, y ;-g)$ both are nonnegative increasing with y on $[a, b]$. From the nonnegative increasing properties of f and g, we get that

$$
\begin{aligned}
F(a, y ; f, g)= & g\left(\frac{a+y}{2}\right) \int_{a}^{y} f(t) d t-f\left(\frac{a+y}{2}\right) \int_{a}^{y} g(t) d t \\
= & g\left(\frac{a+y}{2}\right)\left(\int_{a}^{y} f(t) d t-(y-a) f\left(\frac{a+y}{2}\right)\right) \\
& +f\left(\frac{a+y}{2}\right)\left(\int_{a}^{y} g(t) d t-(y-a) g\left(\frac{a+y}{2}\right)\right) \\
& =g\left(\frac{a+y}{2}\right) \cdot H(a, y ; f)+f\left(\frac{a+y}{2}\right) \cdot H(a, y ;-g)
\end{aligned}
$$

is nonnegative increasing with y on $[a, b]$.
Since $F(a, y ; f, g)$ is monotonically increasing with y on $[a, b]$, for any $y \in(a, b)$, we have

$$
\begin{equation*}
0=F(a, a ; f, g) \leq F(a, y ; f, g) \leq F(a, b ; f, g) \tag{3.8}
\end{equation*}
$$

Expression (3.8) plus

$$
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t
$$

Mappings Associated with Inequalities of Hadamard-type

Lan He
vol. 10, iss. 3, art. 81, 2009

Title Page
Contents

Page 9 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
yields

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t & \leq f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t+F(a, y ; f, g) \tag{3.9}\\
& \leq f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t+F(a, b ; f, g) \\
& =g\left(\frac{a+b}{2}\right) \int_{a}^{b} f(t) d t
\end{align*}
$$

Expression (3.9) divided by

$$
g\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) d t
$$

yields (2.2).
(2) By Lemma 1.1 and the convexity of f and $-g$, we can see that $H(x, b ; f)$ and $H(x, b ;-g)$ are both nonnegative decreasing with x on $[a, b]$. Further, from the nonnegative decreasing properties of f and g, we obtain that

$$
F(x, b ; f, g)=g\left(\frac{x+b}{2}\right) \cdot H(x, b ; f)+f\left(\frac{x+b}{2}\right) \cdot H(x, b ;-g)
$$

is nonnegative decreasing with x on $[a, b]$.
For any $x \in(a, b)$, then

$$
\begin{equation*}
0=F(a, a ; f, g) \leq F(x, b ; f, g) \leq F(a, b ; f, g) \tag{3.10}
\end{equation*}
$$

Using (3.10), by the same arguments of proof for (1) of Theorem 2.2, we can also prove that (2.3) is true.

This completes the proof of Theorem 2.2.

References

[1] J. HADAMARD, Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171215.
[2] L.-C. WANG, Three mapping related to Hermite-Hadamard inequalities, J. Sichuan Univ., 39 (2002), 652-656. (In Chinese).
[3] S.S. DRAGOMIR, Y.J. CHO AND S.S. KIM, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., 245 (2000), 489-501.
[4] G.-S. YANG and K.-L. TSENG, Inequalities of Hadamard's type for Lipschitzian mappings, J. Math. Anal. Appl., 260 (2001), 230-238.
[5] M. MATIC AND J. PEČARIĆ, Note on inequalities of Hadamard's type for Lipschitzian mappings, Tamkang J. Math., 32(2) (2001), 127-130.
[6] L.-C. WANG, Convex Functions and Their Inequalities, Sichuan University Press, Chengdu, China, 2001. (Chinese).
[7] S.-J. YANG, A direct proof and extensions of an inequality, J. Math. Res. Exposit., 24(4) (2004), 649-652.
[8] S.S. DRAGOMIR AND R.P. AGARWAL, Two new mappings associated with Hadamard's inequalities for convex functions, Appl. Math. Lett., 11(3) (1998), 33-38.
[9] L.-C. WANG, Some refinements of Hermite-Hadamard inequalities for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 15 (2004), 40-45.

Mappings Associated with Inequalities of Hadamard-type

Lan He
vol. 10, iss. 3, art. 81, 2009

Title Page
Contents

Page 11 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

