p-VALENT MEROMORPHIC FUNCTIONS WITH ALTERNATING COEFFICIENTS BASED ON INTEGRAL OPERATOR

SH. NAJAFZADEH, A. EBADIAN, AND S. SHAMS
Department of Mathematics, Faculty of Science
Maragheh University, Maragheh, Iran
najafzadeh1234@yahoo.ie
Department of Mathematics, Faculty of Science
Urmia University, Urmia, Iran
a.ebadian@mail.urmia.ac.ir

Received 11 April, 2007; accepted 15 January, 2008
Communicated by S.S. Dragomir

AbSTRACT. By using a linear operator, a subclass of meromorphically p-valent functions with alternating coefficients is introduced. Some important properties of this class such as coefficient bounds, distortion bounds, etc. are found.

Key words and phrases: Meromorphic Functions, Alternating Coefficients, Distortion Bounds.
2000 Mathematics Subject Classification. 30C45, 30C50.

1. Introduction

Let Σ_{p} be the class of functions of the form

$$
\begin{equation*}
f(z)=A z^{-p}+\sum_{n=p}^{\infty} a_{n} z^{n}, \quad A \geq 0 \tag{1.1}
\end{equation*}
$$

that are regular in the punctured disk $\Delta^{*}=\{z: 0<|z|<1\}$ and σ_{p} be the subclass of Σ_{p} consisting of functions with alternating coefficients of the type

$$
\begin{equation*}
f(z)=A z^{-p}+\sum_{n=p}^{\infty}(-1)^{n-1} a_{n} z^{n}, \quad a_{n} \geq 0, \quad A \geq 0 \tag{1.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Sigma_{p}^{*}(\beta)=\left\{f \in \Sigma_{p}: \operatorname{Re}\left(\frac{z[\mathcal{J}(f(z))]^{\prime}}{\mathcal{J}(f(z))}\right)<-\beta, 0 \leq \beta<p\right\} \tag{1.3}
\end{equation*}
$$

and let $\sigma_{p}^{*}(\beta)=\Sigma_{p}^{*}(\beta) \cap \sigma_{p}$ where

$$
\begin{equation*}
\mathcal{J}(f(z))=(\gamma-p+1) \int_{0}^{1}\left(u^{\gamma}\right) f(u z) d u, \quad p<\gamma \tag{1.4}
\end{equation*}
$$

is a linear operator.
With a simple calculation we obtain

$$
\mathcal{J}(f(z))= \begin{cases}A z^{-p}+\sum_{n=p}^{\infty}(-1)^{n-1}\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n} z^{n}, & f(z) \in \sigma_{p} \tag{1.5}\\ A z^{-p}+\sum_{n=p}^{\infty}\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n} z^{n}, & f(z) \in \Sigma_{p}\end{cases}
$$

For more details about meromorphic p-valent functions, we can see the recent works of many authors in [1], [2], [3].

Also, Uralegaddi and Ganigi [4] worked on meromorphic univalent functions with alternating coefficients.

2. Coefficient Estimates

Theorem 2.1. Let

$$
f(z)=A z^{-p}+\sum_{n=p}^{\infty} a_{n} z^{n} \in \Sigma_{p}
$$

If

$$
\begin{equation*}
\sum_{n=p}^{\infty}(n+\beta)\left(\frac{\gamma-p+1}{\gamma+n+1}\right)\left|a_{n}\right| \leq A(p-\beta) \tag{2.1}
\end{equation*}
$$

then $f(z) \in \Sigma_{p}^{*}(\beta)$.
Proof. It is sufficient to show that

$$
M=\left|\frac{\frac{z[\mathcal{J} f(z))]^{\prime}}{\mathcal{J} f(z))}+p}{\frac{z[\mathcal{J} f(z))^{\prime}}{\mathcal{J} f(z))}-(p-2 \beta)}\right|<1 \quad \text { for } \quad|z|<1 .
$$

However, by (1.5)

$$
\begin{aligned}
M & =\left|\frac{-p A z^{-p}+\sum_{n=p}^{\infty} n\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n} z^{n}+p A z^{-p}+\sum_{n=p}^{\infty} p\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n} z^{n}}{-p A z^{-p}+\sum_{n=p}^{\infty} n\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n} z^{n}-(p-2 \beta) A z^{-p}-\sum_{n=p}^{\infty}(p-2 \beta)\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n} z^{n}}\right| \\
& \leq \frac{\sum_{n=p}^{\infty}\left[(n+p)\left(\frac{\gamma-p+1}{\gamma+n+1}\right)\right]\left|a_{n}\right|}{2 A(p-\beta)-\sum_{n=p}^{\infty}(n-p+2 \beta)\left(\frac{\gamma-p+1}{\gamma+n+1}\right)\left|a_{n}\right|} .
\end{aligned}
$$

The last expression is less than or equal to 1 provided

$$
\sum_{n=p}^{\infty}\left[(n+p)\left(\frac{\gamma-p+1}{\gamma+n+1}\right)\right]\left|a_{n}\right| \leq 2 A(p-\beta)-\sum_{n=p}^{\infty}(n-p+2 \beta)\left(\frac{\gamma-p+1}{\gamma+n+1}\right)\left|a_{n}\right|
$$

which is equivalent to

$$
\sum_{n=p}^{\infty}(n+\beta)\left(\frac{\gamma-p+1}{\gamma+n+1}\right)\left|a_{n}\right| \leq A(p-\beta)
$$

which is true by (2.1) so the proof is complete.
The converse of Theorem 2.1 is also true for functions in $\sigma_{p}^{*}(\beta)$, where p is an odd number.

Theorem 2.2. A function $f(z)$ in σ_{p} is in $\sigma_{p}^{*}(\beta)$ if and only if

$$
\begin{equation*}
\sum_{n=p}^{\infty}(n+\beta)\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n} \leq A(p-\beta) \tag{2.2}
\end{equation*}
$$

Proof. According to Theorem 2.1 it is sufficient to prove the "only if" part. Suppose that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z(\mathcal{J} f(z))^{\prime}}{(\mathcal{J} f(z))}\right)=\operatorname{Re}\left(\frac{-A p z^{-p}+\sum_{n=p}^{\infty} n(-1)^{n-1}\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n} z^{n}}{A z^{-p}+\sum_{n=p}^{\infty}(-1)^{n-1}\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n} z^{n}}\right)<-\beta \tag{2.3}
\end{equation*}
$$

By choosing values of z on the real axis so that $\frac{\left(z(\mathcal{J} f(z))^{\prime}\right.}{(\mathcal{J} f(z))}$ is real and clearing the denominator in (2.3) and letting $z \rightarrow-1$ through real values we obtain

$$
A p-\sum_{n=p}^{\infty} n\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n} \geq \beta\left(A+\sum_{n=p}^{\infty}\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n}\right)
$$

which is equivalent to

$$
\sum_{n=p}^{\infty}(n+\beta)\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n} \leq A(p-\beta) .
$$

Corollary 2.3. If $f(z) \in \sigma_{p}^{*}(\beta)$ then

$$
\begin{equation*}
a_{n} \leq \frac{A(p-\beta)(\gamma+n+1)}{(n+\beta)(\gamma-p+1)} \quad \text { for } \quad n=p, p+1, \ldots . \tag{2.4}
\end{equation*}
$$

The result is sharp for functions of the type

$$
\begin{equation*}
f_{n}(z)=A z^{-p}+(-1)^{n-1} \frac{A(p-\beta)(\gamma+n+1)}{(n+\beta)(\gamma-p+1)} z^{n} . \tag{2.5}
\end{equation*}
$$

3. Distortion Bounds and Important Properties of $\sigma_{p}^{*}(\beta)$

In this section we obtain distortion bounds for functions in the class $\sigma_{p}^{*}(\beta)$ and prove some important properties of this class, where p is an odd number.

Theorem 3.1. Let $f(z)=A z^{-p}+\sum_{n=p}^{\infty}(-1)^{n-1} a_{n} z^{n}, a_{n} \geq 0$ be in the class $\sigma_{p}^{*}(\beta)$ and $\beta \geq \gamma+1$ then

$$
\begin{equation*}
A r^{-p}-\frac{A(p-\beta)}{\gamma-p+1} r^{p} \leq|f(z)| \leq A r^{-p}+\frac{A(p-\beta)}{\gamma-p+1} r^{p} \tag{3.1}
\end{equation*}
$$

Proof. Since $\beta \geq \gamma+1$, so $\frac{n+\beta}{\gamma+n+1} \geq 1$. Then

$$
(\gamma-p+1) \sum_{n=p}^{\infty} a_{n} \leq \sum_{n=p}^{\infty}\left(\frac{n+\beta}{\gamma+n+1}\right)(\gamma-p+1) a_{n} \leq A(p-\beta),
$$

and we have

$$
\begin{aligned}
|f(z)| & =\left|A z^{-p}+\sum_{n=p}^{\infty}(-1)^{n-1} a_{n} z^{n}\right| \\
& \leq \frac{A}{r^{p}}+r^{p} \sum_{n=p}^{\infty} a_{n} \leq \frac{A}{r^{p}}+r^{p} \frac{A(p-\beta)}{(\gamma-p+1)}
\end{aligned}
$$

Similarly,

$$
|f(z)| \geq \frac{A}{r^{p}}-\sum_{n=p}^{\infty} a_{n} r^{n} \geq \frac{A}{r^{p}}-r^{p} \sum_{n=p}^{\infty} a_{n} \geq \frac{A}{r^{p}}-\frac{A(p-\beta)}{\gamma-p+1} r^{p}
$$

Theorem 3.2. Let

$$
f(z)=A z^{-p}+\sum_{n=p}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=A z^{-p}+\sum_{n=p}^{\infty}(-1)^{n-1} b_{n} z^{n}
$$

be in the class $\sigma_{p}^{*}(\beta)$. Then the weighted mean of f and g defined by

$$
W_{j}(z)=\frac{1}{2}[(1-j) f(z)+(1+j) g(z)]
$$

is also in the same class.
Proof. Since f and g belong to $\sigma_{p}^{*}(\beta)$, then by 2.2 we have

$$
\left\{\begin{array}{l}
\sum_{n=p}^{\infty}(n+\beta)\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n} \leq A(p-\beta) \tag{3.2}\\
\sum_{n=p}^{\infty}(n+\beta)\left(\frac{\gamma-p+1)}{\gamma+n+1}\right) b_{n} \leq A(p-\beta)
\end{array}\right.
$$

After a simple calculation we obtain

$$
W_{j}(z)=A z^{-p}+\sum_{n=p}^{\infty}\left[\frac{1-j}{2} a_{n}+\frac{1+j}{2} b_{n}\right](-1)^{n-1} z^{n}
$$

However,

$$
\begin{aligned}
& \sum_{n=p}^{\infty}(n+\beta)\left(\frac{\gamma-p+1)}{\gamma+n+1}\right)\left[\frac{1-j}{2} a_{n}+\frac{1+j}{2} b_{n}\right] \\
& =\left(\frac{1-j}{2}\right) \sum_{n=p}^{\infty}(n+\beta)\left(\frac{\gamma-p+1)}{\gamma+n+1}\right) a_{n}+\left(\frac{1+j}{2}\right) \sum_{n=p}^{\infty}(n+\beta)\left(\frac{\gamma-p+1)}{\gamma+n+1}\right) b_{n} \\
& \text { by } \stackrel{\sqrt{3.2}}{\leq}\left(\frac{1-j}{2}\right) A(p-\beta)+\left(\frac{1+j}{2}\right) A(p-\beta) \\
& =A(p-\beta)
\end{aligned}
$$

Hence by Theorem 2.2, $W_{j}(z) \in \sigma_{p}^{*}(\beta)$.

Theorem 3.3. Let

$$
f_{k}(z)=A z^{-p}+\sum_{n=p}^{\infty}(-1)^{n-1} a_{n, k} z^{n} \in \sigma_{p}^{*}(\beta), \quad k=1,2, \ldots, m
$$

then the arithmetic mean of $f_{k}(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{1}{m} \sum_{k=1}^{m} f_{k}(z) \tag{3.3}
\end{equation*}
$$

is also in the same class.
Proof. Since $f_{k}(z) \in \sigma_{p}^{*}(\beta)$, then by 2.2 we have

$$
\begin{equation*}
\sum_{n=p}^{\infty}(n+\beta)\left(\frac{\gamma-p+1}{\gamma+n+1}\right) a_{n, k} \leq A(p-\beta) \quad(k=1,2, \ldots, m) . \tag{3.4}
\end{equation*}
$$

After a simple calculation we obtain

$$
\begin{aligned}
F(z) & =\frac{1}{m} \sum_{k=1}^{m}\left(A z^{-p}+\sum_{n=p}^{\infty}(-1)^{n-1} a_{n, k} z^{n}\right) \\
& =A z^{-p}+\sum_{n=p}^{\infty}(-1)^{n-1}\left(\frac{1}{m} \sum_{k=1}^{m} a_{n, k}\right) z^{n} .
\end{aligned}
$$

However,

$$
\sum_{n=p}^{\infty}(n+\beta)\left(\frac{\gamma-p+1}{\gamma+n+1}\right)\left(\frac{1}{m} \sum_{k=1}^{m} a_{n, k}\right) \stackrel{\text { by ((3.4) }}{\leq} \frac{1}{m} \sum_{k=1}^{m} A(p-\beta)=A(p-\beta)
$$

which in view of Theorem 2.2 yields the proof of Theorem 3.3 .

References

[1] H. IRMAK AND S. OWA, Certain inequalities for multivalent starlike and meromorphically multivalent functions, Bulletin of the Institute of Mathematics, Academia Sinica, 31(1) (2001), 11-21.
[2] S.B. JOSHI and H.M. SRIVASTAVA, A certain family of meromorphically multivalent functions, Computers and Mathematics with Applications, 38 (1999), 201-211.
[3] Sh. NAJAFZADEH, A. TEHRANCHI AND S.R. KULKARNI, Application of differential operator on p-valent meromorphic functions, An. Univ. Oradea Fasc. Mat., 12 (2005), 75-90.
[4] B.A. URALEGADDI and M. D. GANIGI, Meromorphic starlike functions with alternating coefficients, Rendiconti di Mathematica, Serie VII, 11 (1991), 441-446.

