A CONVOLUTION APPROACH ON PARTIAL SUMS OF CERTAIN ANALYTIC AND UNIVALENT FUNCTIONS

K. K. DIXIT AND SAURABH PORWAL
Department of Mathematics
Janta College, Bakewar, Etawah
(U.P.) India-206124
EMail: kk.dixit@rediffmail.com saurabh.840@rediffmail.com

Partial Sums
K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

Acknowledgements:

03 May, 2009
28 September, 2009
S.S. Dragomir

30C45.
Analytic functions, Univalent functions, Convolution, Partial Sums.

In this paper, we determine sharp lower bounds for $\operatorname{Re}\left\{\frac{f(z) * \psi(z)}{f_{n}(z) * \psi(z)}\right\}$ and $\operatorname{Re}\left\{\frac{f_{n}(z) * \psi(z)}{f(z) * \psi(z)}\right\}$. We extend the results of ([1] - [5]) and correct the conditions for the results of Frasin [2, Theorem 2.7], [1, Theorem 2], Rosy et al. [4, Theorems 4.2 and 4.3], as well as Raina and Bansal [3, Theorem 6.2].

The authors are thankful to the referee for his valuable comments and suggestions.
The present investigation was supported by the University grant commission under grant No. F- 11-12/2006(SA-I).

Contents

```
Title Page
```


Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 3
2 Main Results 6

Partial Sums
K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 2 of 17

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

Let A denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z:|z|<1\}$. Further, by S we shall denote the class of all functions in A which are univalent in U. A function $f(z)$ in S is said to be starlike of order $\alpha(0 \leq \alpha<1)$, denoted by $S^{*}(\alpha)$, if it satisfies

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in U)
$$

and is said to be convex of order $\alpha(0 \leq \alpha<1)$, denoted by $K(\alpha)$, if it satisfies

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(z \in U) .
$$

Let $T^{*}(\alpha)$ and $C(\alpha)$ be subclasses of $S^{*}(\alpha)$ and $K(\alpha)$, respectively, whose functions are of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, \quad a_{k} \geq 0 \tag{1.2}
\end{equation*}
$$

A sufficient condition for a function of the form (1.1) to be in $S^{*}(\alpha)$ is that

$$
\begin{equation*}
\sum_{k=2}^{\infty}(k-\alpha)\left|a_{k}\right| \leq 1-\alpha \tag{1.3}
\end{equation*}
$$

Partial Sums
K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 3 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and to be in $K(\alpha)$ is that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k(k-\alpha)\left|a_{k}\right| \leq 1-\alpha . \tag{1.4}
\end{equation*}
$$

For functions of the form (1.2), Silverman [6] proved that the above sufficient conditions are also necessary.

Let $\phi(z) \in S$ be a fixed function of the form

$$
\begin{equation*}
\phi(z)=z+\sum_{k=2}^{\infty} c_{k} z^{k}, \quad\left(c_{k} \geq c_{2}>0, k \geq 2\right) \tag{1.5}
\end{equation*}
$$

Very recently, Frasin [2] defined the class $H_{\phi}\left(c_{k}, \delta\right)$ consisting of functions $f(z)$, of the form (1.1) which satisfy the inequality

$$
\begin{equation*}
\sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq \delta \tag{1.6}
\end{equation*}
$$

where $\delta>0$.
He shows that for suitable choices of c_{k} and $\delta, H_{\phi}\left(c_{k}, \delta\right)$ reduces to various known subclasses of S studied by various authors (for a detailed study, see [2] and the references therein).

In the present paper, we determine sharp lower bounds for $\operatorname{Re}\left\{\frac{f(z) * \psi(z)}{f_{n}(z) * \psi(z)}\right\}$ and $\operatorname{Re}\left\{\frac{f_{n}(z) * \psi(z)}{f(z) * \psi(z)}\right\}$, where

$$
f_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k}
$$

Partial Sums

K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 4 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
is a sequence of partial sums of a function

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

belonging to the class $H_{\phi}\left(c_{k}, \delta\right)$ and

$$
\psi(z)=z+\sum_{k=2}^{\infty} \lambda_{k} z^{k}, \quad\left(\lambda_{k} \geq 0\right)
$$

is analytic in open unit disc U and the operator "*" stands for the Hadamard product or convolution of two power series, which is defined for two functions $f, g \in A$, where $f(z)$ and $g(z)$ are of the form

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad \text { and } \quad g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}
$$

as

$$
(f * g)(z)=f(z) * g(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}
$$

In this paper, we extend the results of Silverman [5], Frasin ([1], [2]) Rosy et al. [4] as well as Raina and Bansal [3] and we point out that some conditions on the results of Frasin ([2, Theorem 2.7], [1, Theorem 2]), Rosy et al. ([4, Theorem 4.2, 4.3]), Raina and Bansal ([3, Theorem 6.2]) are incorrect and we correct them. It is seen that this study not only gives a particular case of the results ([1] - [5]) but also gives rise to several new results.

Partial Sums

K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 5 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Results

Theorem 2.1. If $f \in H_{\phi}\left(c_{k}, \delta\right)$ and $\psi(z)=z+\sum_{k=2}^{\infty} \lambda_{k} z^{k}, \lambda_{k} \geq 0$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z) * \psi(z)}{f_{n}(z) * \psi(z)}\right\} \geq \frac{c_{n+1}-\lambda_{n+1} \delta}{c_{n+1}} \quad(z \in U) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}(z) * \psi(z)}{f(z) * \psi(z)}\right\} \geq \frac{c_{n+1}}{c_{n+1}+\lambda_{n+1} \delta} \quad(z \in U) \tag{2.2}
\end{equation*}
$$

where

$$
c_{k} \geq \begin{cases}\lambda_{k} \delta & \text { if } k=2,3, \ldots, n, \\ \frac{\lambda_{k} c_{n+1}}{\lambda_{n+1}} & \text { if } k=n+1, n+2, \ldots\end{cases}
$$

The results (2.1) and (2.2) are sharp with the function given by

$$
\begin{equation*}
f(z)=z+\frac{\delta}{c_{n+1}} z^{n+1} \tag{2.3}
\end{equation*}
$$

where $0<\delta \leq \frac{c_{n+1}}{\lambda_{n+1}}$.
Proof. Define the function $\omega(z)$ by

$$
\begin{align*}
\frac{1+\omega(z)}{1-\omega(z)} & =\frac{c_{n+1}}{\left(\lambda_{n+1}\right) \delta}\left[\frac{f(z) * \psi(z)}{f_{n}(z) * \psi(z)}-\left(\frac{c_{n+1}-\delta \lambda_{n+1}}{c_{n+1}}\right)\right] \tag{2.4}\\
& =\frac{1+\sum_{k=2}^{n} \lambda_{k} a_{k} z^{k-1}+\frac{c_{n+1}}{\left(\lambda_{n+1}\right)} \sum_{k=n+1}^{\infty} \lambda_{k} a_{k} z^{k-1}}{1+\sum_{k=2}^{n} \lambda_{k} a_{k} z^{k-1}} .
\end{align*}
$$

Partial Sums

K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 6 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

It suffices to show that $|\omega(z)| \leq 1$. Now, from (2.4) we can write

$$
\omega(z)=\frac{\frac{c_{n+1}}{\left(\lambda_{n+1}\right) \delta} \sum_{k=n+1}^{\infty} \lambda_{k} a_{k} z^{k-1}}{2+2 \sum_{k=2}^{n} \lambda_{k} a_{k} z^{k-1}+\frac{c_{n+1}}{\left(\lambda_{n+1}\right) \delta} \sum_{k=n+1}^{\infty} \lambda_{k} a_{k} z^{k-1}} .
$$

Hence we obtain

$$
|\omega(z)| \leq \frac{\frac{c_{n+1}}{\left(\lambda_{n+1}\right)} \sum_{k=n+1}^{\infty} \lambda_{k}\left|a_{k}\right|}{2-2 \sum_{k=2}^{n} \lambda_{k}\left|a_{k}\right|-\frac{c_{n+1}}{\left(\lambda_{n+1}\right) \delta} \sum_{k=n+1}^{\infty} \lambda_{k}\left|a_{k}\right|}
$$

Now $|\omega(z)| \leq 1$ if

$$
2 \frac{c_{n+1}}{\left(\lambda_{n+1}\right) \delta} \sum_{k=n+1}^{\infty} \lambda_{k}\left|a_{k}\right| \leq 2-2 \sum_{k=2}^{n} \lambda_{k}\left|a_{k}\right|
$$

or, equivalently,

$$
\begin{equation*}
\sum_{k=2}^{n} \lambda_{k}\left|a_{k}\right|+\frac{c_{n+1}}{\left(\lambda_{n+1}\right) \delta} \sum_{k=n+1}^{\infty} \lambda_{k}\left|a_{k}\right| \leq 1 \tag{2.5}
\end{equation*}
$$

It suffices to show that the L.H.S. of (2.5) is bounded above by $\sum_{k=2}^{\infty} \frac{c_{k}}{\delta}\left|a_{k}\right|$, which is equivalent to

$$
\begin{equation*}
\sum_{k=2}^{n}\left(\frac{c_{k}-\delta \lambda_{k}}{\delta}\right)\left|a_{k}\right|+\sum_{k=n+1}^{\infty}\left(\frac{\lambda_{n+1} c_{k}-c_{n+1} \lambda_{k}}{\lambda_{n+1} \delta}\right)\left|a_{k}\right| \geq 0 \tag{2.6}
\end{equation*}
$$

Partial Sums

K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 7 of 17
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

To see that the function given by (2.3) gives a sharp result we observe that for $z=r e^{i \pi / n}$

$$
\begin{aligned}
\frac{f(z) * \psi(z)}{f_{n}(z) * \psi(z)} & =1+\frac{\delta}{c_{n+1}} \lambda_{n+1} z^{n} \rightarrow 1-\frac{\delta}{c_{n+1}} \lambda_{n+1} \\
& =\frac{c_{n+1}-\delta \lambda_{n+1}}{c_{n+1}}
\end{aligned}
$$

when $r \rightarrow 1^{-}$.
To prove the second part of this theorem, we write

$$
\begin{aligned}
\frac{1+\omega(z)}{1-\omega(z)} & =\frac{c_{n+1}+\lambda_{n+1} \delta}{\lambda_{n+1} \delta}\left[\frac{f_{n}(z) * \psi(z)}{f(z) * \psi(z)}-\left(\frac{c_{n+1}}{c_{n+1}+\lambda_{n+1} \delta}\right)\right] \\
& =\frac{1+\sum_{k=2}^{n} \lambda_{k} a_{k} z^{k-1}-\frac{c_{n+1}}{\lambda_{n+1} \delta} \sum_{k=n+1}^{\infty} \lambda_{k} a_{k} z^{k-1}}{1+\sum_{k=2}^{\infty} \lambda_{k} a_{k} z^{k-1}}
\end{aligned}
$$

where

$$
|\omega(z)| \leq \frac{\left(\frac{c_{n+1}+\lambda_{n+1} \delta}{\lambda_{n+1} \delta}\right) \sum_{k=n+1}^{\infty} \lambda_{k}\left|a_{k}\right|}{2-2 \sum_{k=2}^{n} \lambda_{k}\left|a_{k}\right|-\frac{c_{n+1}-\lambda_{n+1} \delta}{\lambda_{n+1} \delta} \sum_{k=n+1}^{\infty} \lambda_{k}\left|a_{k}\right|} \leq 1
$$

This last inequality is equivalent to

$$
\sum_{k=2}^{n} \lambda_{k}\left|a_{k}\right|+\frac{c_{n+1}}{\left(\lambda_{n+1}\right) \delta} \sum_{k=n+1}^{\infty} \lambda_{k}\left|a_{k}\right| \leq 1
$$

Making use of (1.6), we get (2.6). Finally, equality holds in (2.2) for the function $f(z)$ given by (2.3).

Partial Sums

K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 8 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Taking $\psi(z)=\frac{z}{1-z}$ in Theorem 2.1, we obtain the following result given by Frasin in [2].
Corollary 2.2. If $f \in H_{\phi}\left(c_{k}, \delta\right)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{n}(z)}\right\} \geq \frac{c_{n+1}-\delta}{c_{n+1}} \quad(z \in U) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}(z)}{f(z)}\right\} \geq \frac{c_{n+1}}{c_{n+1}+\delta} \quad(z \in U) \tag{2.8}
\end{equation*}
$$

where

$$
c_{k} \geq \begin{cases}\delta & \text { if } k=2,3, \ldots, n \\ c_{n+1} & \text { if } k=n+1, n+2, \ldots\end{cases}
$$

The results (2.7) and (2.8) are sharp with the function given by (2.3).
If we put $\psi(z)=\frac{z}{(1-z)^{2}}$ in Theorem 2.1, we obtain:
Corollary 2.3. If $f \in H_{\phi}\left(c_{k}, \delta\right)$, then

$$
\begin{equation*}
\operatorname{Re} \frac{f^{\prime}(z)}{f_{n}^{\prime}(z)} \geq \frac{c_{n+1}-(n+1) \delta}{c_{n+1}} \quad(z \in U) \tag{2.9}
\end{equation*}
$$

Partial Sums

K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 9 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
The results (2.9) and (2.10) are sharp with the function given by (2.3).

Remark 1. Frasin has shown in Theorem 2.7 of [2] that for $f \in H_{\phi}\left(c_{k}, \delta\right)$, inequalities (2.9) and (2.10) hold with the condition

$$
c_{k} \geq \begin{cases}k \delta & \text { if } \quad k=2,3, \ldots, n, \tag{2.12}\\ k \delta\left(1+\frac{c_{n+1}}{n+1}\right) & \text { if } \quad k=n+1, n+2, \ldots\end{cases}
$$

However, it can be easily seen that the condition (2.12) for $k=n+1$ gives

$$
c_{n+1} \geq(n+1) \delta\left(1+\frac{c_{n+1}}{(n+1) \delta}\right)
$$

or, equivalently $\delta \leq 0$, which contradicts the initial assumption $\delta>0$. So Theorem 2.7 of [2] does not seem suitable with the condition (2.12), but our condition (2.11) remedies this problem.

Taking $\psi(z)=\frac{z}{1-z}, c_{k}=\frac{[(1+\beta) k-(\alpha+\beta)]}{1-\alpha}\binom{k+\lambda-1}{k}$, where $\lambda \geq 0, \beta \geq 0,-1 \leq$ $\alpha<1$ and $\delta=1$ in Theorem 2.1, we obtain the following result given by Rosy et al. in [4].
Corollary 2.4. If f is of the form (1.1) and satisfies the condition $\sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq 1$, where $c_{k}=\frac{[(1+\beta) k-(\alpha+\beta)]}{1-\alpha}\binom{k+\lambda-1}{k}, \lambda \geq 0, \beta \geq 0,-1 \leq \alpha<1$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{n}(z)}\right\} \geq \frac{c_{n+1}-1}{c_{n+1}} \quad(z \in U) \tag{2.13}
\end{equation*}
$$

Partial Sums
K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 10 of 17
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Taking

$$
\psi(z)=\frac{z}{(1-z)^{2}}, \quad c_{k}=\frac{[(1+\beta) k-(\alpha+\beta)]}{1-\alpha}\binom{k+\lambda-1}{k},
$$

where $\lambda \geq 0, \beta \geq 0,-1 \leq \alpha<1$ and $\delta=1$ in Theorem 2.1, we obtain
Corollary 2.5. If f is of the form (1.1) and satisfies the condition

$$
\sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq 1
$$

Partial Sums
K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents
then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)}\right\} \geq \frac{c_{n+1}-(n+1)}{c_{n+1}} \quad(z \in U) \tag{2.16}
\end{equation*}
$$

Page 11 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Remark 2. Rosy et al. has obtained inequalities (2.16) \& (2.17) in Theorem 4.2 \& 4.3 of [4] without any restriction on c_{k}. However, when we critically observe the proof of Theorem 4.2 we find that inequality (4.16) of [4, Theorem 4.2]

$$
\sum_{k=2}^{n}\left(c_{k}-k\right)\left|a_{k}\right|+\sum_{k=n+1}^{\infty}\left(c_{k}-\frac{c_{n+1} k}{n+1}\right)\left|a_{k}\right| \geq 0
$$

cannot hold if condition (2.18) does not occur. So Theorems $4.2 \& 4.3$ of [4] are not proper and proper results are mentioned in Corollary 2.5.

Taking $\psi(z)=\frac{z}{1-z}, c_{k}=\lambda_{k}-\alpha \mu_{k}, \delta=1-\alpha$, where $0 \leq \alpha<1, \lambda_{k} \geq 0$, $\mu_{k} \geq 0$, and $\lambda_{k} \geq \mu_{k}(k \geq 2)$ in Theorem 2.1, we obtain the following result given by Frasin in [1].

Corollary 2.6. If f is of the form (1.1) and satisfies the condition

$$
\sum_{k=2}^{\infty}\left(\lambda_{k}-\alpha \mu_{k}\right)\left|a_{k}\right| \leq 1-\alpha
$$

then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{n}(z)}\right\} \geq \frac{\lambda_{n+1}-\alpha \mu_{n+1}-1+\alpha}{\lambda_{n+1}-\alpha \mu_{n+1}} \quad(z \in U) \tag{2.19}
\end{equation*}
$$

Partial Sums
K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 12 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The results (2.19) and (2.20) are sharp with the function given by

$$
\begin{equation*}
f(z)=z+\frac{1-\alpha}{\lambda_{n+1}-\alpha \mu_{n+1}} z^{n+1} . \tag{2.21}
\end{equation*}
$$

Taking $\psi(z)=\frac{z}{(1-z)^{2}}, c_{k}=\lambda_{k}-\alpha \mu_{k}, \delta=1-\alpha$ where $0 \leq \alpha<1, \lambda_{k} \geq 0$, $\mu_{k} \geq 0$, and $\lambda_{k} \geq \mu_{k}(k \geq 2)$ in Theorem 2.1, we obtain:

Corollary 2.7. If f is of the form (1.1) and satisfies the condition

$$
\sum_{k=2}^{\infty}\left(\lambda_{k}-\alpha \mu_{k}\right)\left|a_{k}\right| \leq 1-\alpha
$$

Partial Sums
K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 13 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

Remark 3. Frasin has obtained inequalities (2.22) \& (2.23) in Theorem 2 of [1] under the condition
(2.25) $\lambda_{k+1}-\alpha \mu_{k+1} \geq \begin{cases}k(1-\alpha) & \text { if } k=2,3, \ldots, n, \\ k(1-\alpha)+\frac{k\left(\lambda_{n+1}-\alpha \mu_{n+1}\right)}{n+1} & \text { if } k=n+1, n+2, \ldots\end{cases}$

However, when we critically observe the proof of Theorem 2 of [1], we find that
the last inequality of this theorem

$$
\begin{align*}
& \sum_{k=2}^{n}\left(\frac{\lambda_{k}-\alpha \mu_{k}}{1-\alpha}-k\right)\left|a_{k}\right| \tag{2.26}\\
&+\sum_{k=n+1}^{\infty}\left(\frac{\lambda_{k}-\alpha \mu_{k}}{1-\alpha}-\left(1+\frac{\lambda_{n+1}-\alpha \mu_{n+1}}{(n+1)(1-\alpha)}\right) k\right)\left|a_{k}\right| \geq 0
\end{align*}
$$

Partial Sums
K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009
cannot hold for the function given by (2.21) for supporting the sharpness of the results (2.22) \& (2.23). So condition 2.25 of Theorem 2 in [1] is incorrect and the corrected results are mentioned in Corollary 2.7.

Taking

$$
\psi(z)=\frac{z}{1-z}, \quad c_{k}=\frac{\{(1+\beta) k-(\alpha+\beta)\} \mu_{k}}{1-\alpha}
$$

and $\delta=1$, where $-1 \leq \alpha<1, \beta \geq 0, \mu_{k} \geq 0(\forall k \in N \backslash\{1\})$ in Theorem 2.1, we obtain the following result given by Raina and Bansal in [3].

Corollary 2.8. If f is of the form (1.2) and satisfies the condition $\sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq 1$, where

$$
c_{k}=\frac{\{(1+\beta) k-(\alpha+\beta)\} \mu_{k}}{1-\alpha}
$$

Title Page
 ,

Contents

Page 14 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and $\left\langle\mu_{k}\right\rangle_{k=2}^{\infty}$ is a nondecreasing sequence such that

$$
\mu_{2} \geq \frac{1-\alpha}{2+\beta-\alpha}\left(0<\frac{1-\alpha}{2+\beta-\alpha}<1, \quad-1 \leq \alpha<1, \beta \geq 0\right)
$$

then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{n}(z)}\right\} \geq \frac{c_{n+1}-1}{c_{n+1}} \quad(z \in U) \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}(z)}{f(z)}\right\} \geq \frac{c_{n+1}}{c_{n+1}+1} \quad(z \in U) \tag{2.28}
\end{equation*}
$$

The results (2.27) and (2.28) are sharp with the function given by

$$
\begin{equation*}
f(z)=z-\frac{1}{c_{n+1}} z^{n+1} \tag{2.29}
\end{equation*}
$$

Taking $\psi(z)=\frac{z}{(1-z)^{2}}, c_{k}=\frac{\{(1+\beta) k-(\alpha+\beta)\} \mu_{k}}{1-\alpha}$ and $\delta=1$, where $-1 \leq \alpha<1$, $\beta \geq 0, \mu_{k} \geq 0(\forall k \in N \backslash\{1\})$ in Theorem 2.1, we obtain the following result given by Raina and Bansal in [3].

Corollary 2.9. If f is of the form (1.2) and satisfies the condition

$$
\sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq 1
$$

where

$$
c_{k}=\frac{\{(1+\beta) k-(\alpha+\beta)\} \mu_{k}}{1-\alpha}
$$

Partial Sums
K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 15 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and $\left\langle\mu_{k}\right\rangle_{k=2}^{\infty}$ is a nondecreasing sequence such that

$$
\mu_{2} \geq \frac{2(1-\alpha)}{2+\beta-\alpha} \quad\left(0<\frac{1-\alpha}{2+\beta-\alpha}<1, \quad-1 \leq \alpha<1, \beta \geq 0\right)
$$

Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)}\right\} \geq \frac{c_{n+1}-(n+1)}{c_{n+1}} \quad(z \in U) \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)}\right\} \geq \frac{c_{n+1}}{c_{n+1}+(n+1)} \quad(z \in U) \tag{2.31}
\end{equation*}
$$

where

$$
c_{k} \geq \begin{cases}k & \text { if } \quad k=2,3, \ldots, n, \tag{2.32}\\ \frac{k c_{n+1}}{n+1} & \text { if } k=n+1, n+2, \ldots\end{cases}
$$

The results (2.30) and (2.31) are sharp with the function given by (2.29).
Remark 4. Raina and Bansal [3] have obtained inequalities (2.30) \& (2.31) in Theorem 6.2 of [3] without any restriction on c_{k}. However, we easily see that condition (2.32) is must.

Remark 5. Taking $\psi(z)=\frac{z}{1-z}, c_{k}=(k-\alpha), c_{k}=k(k-\alpha), \delta=1-\alpha, 0 \leq \alpha<1$ in Theorem 2.1, we obtain Theorems 1-3 given by Silverman in [5].
Remark 6. Taking $\psi(z)=\frac{z}{(1-z)^{2}}, c_{k}=(k-\alpha), c_{k}=k(k-\alpha), \delta=1-\alpha$, $0 \leq \alpha<1$ in Theorem 2.1, we obtain Theorems 4-5 given by Silverman in [5].

Partial Sums

K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 16 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] B.A. FRASIN, Partial sums of certain analytic and univalent functions, Acta Math. Acad. Paed. Nyir., 21 (2005), 135-145.
[2] B.A. FRASIN, Generalization of partial sums of certain analytic and univalent functions, Appl. Math. Lett., 21(7) (2008), 735-741.
[3] R.K. RAINA AND D. BANSAL, Some properties of a new class of analytic functions defined in terms of a Hadamard product, J. Inequal. Pure Appl. Math., 9(1) (2008), Art. 22. [ONLINE: http://jipam.vu.edu.au/article. php?sid=957]
[4] T. ROSY, K.G. SUBRAMANIAN AND G. MURUGUSUNDARAMOORTHY, Neighbourhoods and partial sums of starlike functions based on Ruscheweyh derivatives, J. Inequal. Pure Appl. Math., 4(4) (2003), Art. 64. [ONLINE: http://jipam.vu.edu.au/article.php?sid=305]
[5] H. SILVERMAN, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209 (1997), 221-227.
[6] H. SILVERMAN, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.

Partial Sums

K. K. Dixit and Saurabh Porwal vol. 10, iss. 4, art. 101, 2009

Title Page
Contents

Page 17 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

