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Abstract

In this paper, we will establish a martingale inequality, which extends the classic
Hoeffding inequality in some sense. In addition, our inequality improves the
results of Lee and Su [7] (2002) in some cases.
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1. Introduction
Given a probability space(Ω,F , P) and a filtrationF0 = {φ, Ω} ⊂ F1 ⊂ · · · ⊂
Fn = F , an integrable random variableX ∈ L1(Ω,F , P) can be written as

X − EX =
n∑

k=1

[
E(X|Fk)− E(X|Fk−1)

]
:=

n∑
k=1

dk,

wheredk is a martingale difference. An early inequality result is the following.
If for any k, there exist constantsak andbk, such thatP(dk ∈ [ak, bk]) = 1, then
for anyt > 0, we have the following classic Hoeffding inequality (cf. [5])

P(|X − EX| ≥ t) ≤ 2 exp

{
− 2t2∑n

k=1(bk − ak)2

}
.

De la Peña [2, 3] discussed a general class of exponential inequalities for
bounded martingale difference and ratios by the decoupling theory. Andreas [9]
gave exponential deviation inequalities for one-sided bounded martingale dif-
ference sequences. In the case of the length of longest increasing subsequences
and the independence number of sparse random graphs, Lee and Su [7] have
utilised the symmetry argument in the martingale inequality.

For these phenomena of measure concentration, the usual procedure in anal-
ysis is via martingale methods, information-theoretic methods and Talagrand’s
induction method (see [6, 8, 10]). In most applications,X is a function of
n independent (possibly vector valued) random variablesξ1, ξ2, . . . , ξn and the
filtration is Fk = σ(ξ1, ξ2, . . . , ξn). In this case we let{ξ′1, ξ

′
2, . . . , ξ

′
n} be an

independent copy of{ξ1, ξ2, . . . , ξn} and define

∆k = X(ξ1, ξ2, . . . , ξk−1, ξk, ξ
′

k+1, . . . , ξ
′

n)−X(ξ1, ξ2, . . . , ξk−1, ξ
′

k, ξ
′

k+1, . . . , ξ
′

n).
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Let dk = E(∆k|Fk). By definition, ∆k is the change in the value ofX
resulting from a change only in one coordinate. So, if there exists a constantck,
such that|∆k| ≤ ck a.s., then|dk| ≤ ck a.s. and we can apply the Hoeffding
inequality to obtain a tail bound forX. However, in many cases,ck grows too
rapidly and so the Hoeffding inequality does not provide any reasonable tail
bound. For improving the Hoeffding inequality, Lee and Su [7] obtained the
following reasonable tail bound forX.

Theorem 1.1 (See Theorem 1 in Lee and Su [7]). Assume that there exists a
positive and finite constantc such that for allk ≤ n, |∆k| ≤ c a.s. and there
exist0 < pk < 1 such that for eachk ≤ n, P(0 < |∆k| ≤ c|Fk−1) ≤ pk a.s.
Then, for everyt > 0,

(1.1) P(|X − EX| ≥ t) ≤ 2 exp

{
− t2

2c2
∑n

k=1 pk + 2ct/3

}
.

In this paper, we will demonstrate that if t
c
∑n

k=1 pk
is larger, especially if

t
c
∑n

k=1 pk
≥ 2.83e2.83, we can obtain a more precise inequality than (1.1). In

Section2, we will give the main results and show our inequalities are more
precise than (1.1) in some cases. In Section3, we apply our results to the
longest increasing subsequence.
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2. Main Results
In this section, we will continue to use the notions of Section1.

Theorem 2.1.LetX be an integrable random variable defined on a probability
space(Ω,F , P) which is in fact a function ofn independent random variables
ξ1, ξ2, . . . , ξn. We defineFk, ∆k, dk as in Section1. Assume that there exist
positive and finite constantsck such that for allk ≤ n,

(2.1) |∆k| ≤ ck a.s.

and there exist0 < pk < 1 such that for eachk ≤ n,

(2.2) P(0 < |∆k| ≤ ck|Fk−1) ≤ pk a.s.

Then, for everyt > 0,

(2.3) P(|X − EX| ≥ t) ≤ 2 exp

{
− t2

2
∑n

k=1 esckc2
kpk

}
,

wheres satisfies the equations = t∑n
k=1 esck c2kpk

. In addition, if there exists a

constantb, such thats ≥ b, we will obtain

(2.4) P(|X − EX| ≥ t) ≤ 2e−bt/2.

Proof. In fact, we only prove the formP(X − EX ≥ t), and the other form
P(X − EX ≤ −t) is similar. By Jensen’s inequality, for anys > 0, we have

E(esdk |Fk−1) = E(esE(∆k|Fk)|Fk−1) ≤ E(es∆k |Fk−1), a.e.
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From (2.1), (2.2) and the following elementary inequality,

∀x ∈ R, ex ≤ 1 + x +
|x|2

2
e|x|,

we can obtain

E(es∆k |Fk−1) ≤ E
(

1 + s∆k +
|s∆k|2

2
e|s∆k||Fk−1

)
≤ 1 +

s2

2
esckE(∆2

k|Fk−1)

≤ 1 +
s2

2
esckc2

kpk

≤ exp

{
s2

2
esckc2

kpk

}
a.e.

It is easy to check that

X − EX =
n∑

k=1

dk.

Thus, by Markov’s inequality, for anys > 0,

P(X − EX ≥ t) ≤ e−stEes(X−EX)

≤ e−stEes
∑n

k=1 dk

≤ e−stE
[
es

∑n−1
k=1 dkE

(
esdn|Fn−1

)]
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≤ exp

{
−st +

s2

2
escnc2

npn

}
Ees

∑n−1
k=1 dk

≤ · · ·

≤ exp

{
−st +

s2

2

n∑
k=1

esckc2
kpk

}
.

If we could take

(2.5) s =
t∑n

k=1 esckc2
kpk

,

(2.3) can be shown. In fact, puttingfn(s) =
∑n

k=1 escksc2
kpk, it is easy to see

that for anyn, fn(s) is a continuous function ins, and is nondecreasing on
[0,∞) with fn(0) = 0. Thus, for anyt > 0, there exists only one solution that
satisfies equations = t∑n

k=1 esck c2kpk
. The remainder of the proof is straightfor-

ward.

Remark 1. It is easy to see that the solution of the equations = t∑n
k=1 esck c2kpk

could not be given concretely. However, we can use the formula (2.4), by ob-
taining a low bound ofs in many cases.

Corollary 2.2. Under the conditions of Theorem1.1, we assume that for all
1 ≤ k ≤ n, ck = c. Then, for everyt > 0,

(2.6) P(|X − EX| ≥ t) ≤ 2 exp

{
− t2

2escc2
∑n

k=1 pk

}
,
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wheres satisfies the equations = t
escc2

∑n
k=1 pk

. In addition, if there exists a
constantb, such thats ≥ b, we obtain

(2.7) P(|X − EX| ≥ t) ≤ 2e−bt/2.

Next, we will show that, in some cases, the conditions ≥ b in Corollary2.2
could be obtained and our results are better than inequality (1.1).

Proposition 2.3. Under the conditions of Corollary2.2,

(R1) Assuming that for any givent > 0,

(2.8)
t

c
∑n

k=1 pk

≥ 2.83e2.83,

then we have the following inequality

(2.9) P(|X − EX| ≥ t) ≤ 2e−2.83t/(2c),

and in this case, our bounde−2.83t/(2c) is better than (1.1).

(R2) Conversely, if for any givent > 0,

(2.10)
t

c
∑n

k=1 pk

≤ 2.82e2.82,

then (1.1) is better than our result.
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Proof. By s = t
escc2

∑n
k=1 pk

and t
c
∑n

k=1 pk
≥ 2.83e2.83, it is easy to see that

scesc ≥ 2.83e2.83 and sc ≥ 2.83.

From Corollary2.2, (2.9) can be obtained.
Next we will show that our bounde−2.83t/(2c) is better than (1.1). For t

c
∑n

k=1 pk

≥ 3e3, we know

t

c
∑n

k=1 pk

(1/c− s/3) < s, s =
t

escc2
∑n

k=1 pk

;(2.11)

⇔ t

c2
∑n

k=1 pk

<
ts

3c
∑n

k=1 pk

+ s, sesc =
t

c2
∑n

k=1 pk

;

⇔ sesc <
ts

3c
∑n

k=1 pk

+ s, sesc =
t

c2
∑n

k=1 pk

;

⇔ esc <
t

3c
∑n

k=1 pk

+ 1, sesc =
t

c2
∑n

k=1 pk

;

⇔ c(esc − 1)
n∑

k=1

pk < t/3, sesc =
t

c2
∑n

k=1 pk

;

⇔ 2c2esc

n∑
k=1

pk < 2c2

n∑
k=1

pk + 2ct/3, sesc =
t

c2
∑n

k=1 pk

.

Thus, by comparing (2.6) and (1.1), the proof of(R1) is given under the con-
dition t

c
∑n

k=1 pk
≥ 3e3. To proving remainders, by (2.11), we only show the
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following relations

(2.12)


t

c
∑n

k=1 pk
(1/c− s/3) ≥ s, if 2.83e2.83 ≤ t

c
∑n

k=1 pk
< 3e3;

t
c
∑n

k=1 pk
(1/c− s/3) ≤ s, if t

c
∑n

k=1 pk
< 2.82e2.82.

Sinces = t
escc2

∑n
k=1 pk

, (2.12) is equivalent to the following relations

(2.13)

cesc(1/c− s/3) ≥ 1, if 2.83e2.83 ≤ t
c
∑n

k=1 pk
< 3e3;

cesc(1/c− s/3) ≤ 1, if t
c
∑n

k=1 pk
< 2.82e2.82.

Lettingf(s) = cesc(1/c−s/3)−1 andsc = x, we havef(x) = ex(1−x/3)−1.
It is not difficult to check thatf(x) is an increasing function in[0, 2.82] and a
decreasing function in[2.83,∞) (or see Figure 1). Andf(0) = 0, f(x0) = 0,
wherex0 ∈ [2.82, 2.83]. The rest is obvious.

Remark 2. In the above proposition, though the bounds2.82e2.82 and2.83e2.83

are coarser, we can easily determine which inequalities are a little sharper by
using these bounds.

Remark 3. The above results show that for givenn (resp. t), our inequality is
more precise in the case of sufficiently larget (resp. smalln). However, in many
cases, we need computer power to use our inequality. For example, assuming

t
c
∑n

k=1 pk
= B, whereB is given, then we often need to control the solution of

the equationxex = B.
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3. The Longest Increasing Subsequence
In this section, we discuss the longest increasing subsequence as in Lee and
Su [7] (2002) and show our results are little sharper. Consider the symmetric
groupSn of permutationsπ on the number1, 2, . . . , n, equipped with the uni-
form probability measure. Given a permutationπ = (π(1), π(2), . . . , π(n)), an
increasing subsequencei1, i2, . . . , ik is a subsequence of1, 2, . . . , n such that

i1 < i2 < · · · < ik, π(i1) < π(i2) < · · · < π(ik).

We writeLn(π) for the length of longest increasing subsequences ofπ.
Let Ui = (Xi, Yi), i = 1, 2, . . . , n, be a sequence of i.i.d. uniform sample on

the unit square[0, 1]2. Ui1 , Ui2 , . . . , Uik is called a monotone increasing chain
of heightk if

Xij < Xij+1, Yij < Yij+1 for j = 1, 2, . . . , k − 1.

DefineLn(U) to be the maximum height of the chains in the sampleU1, U2, . . . , Un.
By Hammersley [4] (1972) and Aldous and Diaconis [1] (1999), the follow-

ing facts are known:

(F1) Ln(π) has the same distribution asLn(U).

(F2)
Ln(π)√

n
→ 2, in probability and in mean.

Let {U ′
1, U

′
2, . . . , U

′
n} be an independent copy of{U1, U2, . . . , Un}. It is easy

to see that, letting

∆k = Ln(U1, . . . , Uk−1, Uk, U
′

k+1, . . . , U
′

n)−Ln(U1, . . . , Uk−1, U
′

k, U
′

k+1, . . . , U
′

n)
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∆k takes values only+1, 0, −1. Moreover, sinceE(∆k|Fk−1), whereFk−1 =
σ(U1, U2, . . . , Uk−1), we have

P(∆k = +1|Fk−1) = P(∆k = −1|Fk−1).

Letting pk = 2ELn−k+1(Uk, Uk+1, . . . , Un)/(n − k + 1), from Lee and Su [7]
(2002), there is the following fact:

(F3) P(∆k = +1|Fk−1) ≤ pk/2.

For the longest increasing subsequence, we have the following result.

Theorem 3.1. There exists a constantδ < 1/2, such that for all sufficiently
largen and anyr > 0,

(3.1) P(|Ln(U)− ELn(U)| > rn) ≤ 2 exp

{
−δrn log n

2

}
.

Proof. For anyr > 0 and sufficiently largen, s in Corollary2.2needs to satisfy
the equations = rn

es
∑n

k=1 pk
. Since

1√
n

ELn(U) → 2 as n →∞,

we have

1√
n

n∑
k=1

ELk(U)

k
→ 4 as n →∞, i.e., n−1/2

n∑
k=1

pk → 4.

By the equations = rn
es

∑n
k=1 pk

, we know that for sufficiently largen, ses =

O(
√

n). Thus there exists a constantδ < 1/2, such thatses > eδ log nδ log n,
i.e.,s ≥ δ log n. By Corollary2.2, we have the result.
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Remark 4. By Proposition2.3, we know our results are sharper than the ones
in Lee and Su [7] to a certainty. Lee and Su [7] gave the following result by an
application of inequality (1.1).

Theorem LS.Given anyε > 0, for all sufficiently largen and anyt > 0,

(3.2) P (|Ln(π)− ELn(π)| ≥ t) ≤ 2

(
− t2

(16 + ε)
√

n + 2t/3

)
.

Here if takingt = rn, thenP (|Ln(π)− ELn(π)| ≥ rn) ≤ O(e−n), which is
coarser than (3.1)
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