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Recently a number of papers have appeared on Martins’ inequality:
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which holds forr > 0 andn ∈ N (see [2]). For example, in [1] it is proved that
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where{ai} is an increasing non-constant sequence of positive numbers satisfy-
ing (1) a`/a`+1 ≥ a`−1/a` and (2) (a`+1/a`)

` ≥ (a`/a`−1)
`−1 for ` > 1 (and

where it is agreed thatan! stands for
∏n

i=1 ai). In particular, the authors show
that the sequenceai = ci+d gives a generalization of Martins’ result whenever
c > 0 andd ≥ 0.

On a parallel path, continuous versions of the inequality have been investi-
gated, and in [4] F. Qi and B.-N. Guo ask under which conditions the following
holds:
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wheneverf is a positive, increasing and integrable function on the closed in-
terval [a, b + δ] (with b > a andδ > 0) andr > 0 is arbitrary. In a related
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result, in [3] N. Towghi and F. Qi prove that for allr > 0 and any non-negative,
integrablef we have

(4)
supx∈[a,b] f(x)

supx∈[a,b+δ] f(x)
≤

(
1
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1
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) 1
r

(note that the l.h.s. in (4) is the limit forr →∞ of the r.h.s.). In another remark,
they note that (3) itself fails without extra assumptions. The issue, then, is at
least to identify a sufficient hypothesis, and this is the aim of the present paper.
While logarithmic convexity off has been identified as sufficient in related
inequalities, our result below requires a strictly weaker hypothesis:

Theorem 1. Let f be a nondecreasing, positive, twice differentiable function
onR+ such that

(5) t(ln f(t))′′ + (ln f(t))′ ≥ 0

for all t > 0. Then

(6) F (t) :=
1

t−a

∫ t

a
f(x) dx

exp
(

1
t−a

∫ t

a
ln f(x) dx

)
is non-decreasing on[a,∞] for everya ≥ 0 and therefore inequality(3) holds
for f and every choice of0 ≤ a < b, andr, δ > 0.

Proof. It is plain that iff satisfies (5) thenf r also does (for everyr > 0), and so
the last statement is a trivial consequence of functionF being non-decreasing.
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Fix a ≥ 0 and in the following always assume thatt ≥ a. Note that condition
(5) implies

(7) (t− a)(ln f(t))′′ + (ln f(t))′ ≥ 0

for all t ≥ a (we are assuming thatf(t) is non-decreasing, and therefore
(ln f(t))′ ≥ 0). Computing the derivatives in (7) gives

(8) (t− a)
f(t)f ′′(t)− (f ′(t))2

f 2(t)
+

f ′(t)

f(t)
≥ 0

which is in turn equivalent to
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(if you apply the quotient rule to differentiate the first summand in (9), and
collect the l.h.s. over the common denominator, then the numerator is seen to
be(t− a)f(t) times the l.h.s. in (8)). Now, (9) implies
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where the second inequality is due tof ′ being non-decreasing. Next, consider-
ing the left hand side of the following inequality as a quadratic polynomial in∫ t

a
f(x)dx, (10) is seen to be equivalent to
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(inequality (11) says that
∫ t

a
f(x) dx must lie between the two solutions of the

quadratic polynomial, and the quadratic formula says that these two solutions
are the l.h.s. and the r.h.s. of (10)).

Dividing both sides of (11) by
(∫ t

a
f(x) dx

)2

and rearranging the terms we

then obtain the equivalent form
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is non-negative: the latter function oft must therefore be non-increasing. Suffi-
ciency of condition (5) is thus proved.
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