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Recently a number of papers have appeared on Martins’ inequality:
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which holds forr > 0 andn € N (see P]). For example, in{] it is proved that
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Inequality
where{a;} is an increasing non-constant sequence of positive numbers satisfy- Vania Mascioni
ing (1) ag/ag+1 > Clgfl/ag and Q) (CLngl/ag)é > (ag/ag,l)z_l for¢ > 1 (and
where it is agreed that,! stands for[ [, a;). In particular, the authors show Tiie/Page
that the sequence = ci + d gives a generalization of Martins’ result whenever
¢ > 0andd > 0.

On a parallel path, continuous versions of the inequality have been investi- PP >
gated, and in{] F. Qi and B.-N. Guo ask under which conditions the following % N
holds:
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wheneverf is a positive, increasing and integrable function on the closed in-
terval [a,b + 6] (with b > a andd > 0) andr > 0 is arbitrary. In a related
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result, in [2] N. Towghi and F. Qi prove that for all > 0 and any non-negative,
integrablef we have
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(note that the I.h.s. i is the limit forr — oo of the r.h.s.). In another remark,
they note thatJ) itself fails without extra assumptions. The issue, then, is at
least to identify a sufficient hypothesis, and this is the aim of the present paper. A Sufficient Condition for the

. . . . . . .. . Integral Version of Martins’
While logarithmic convexity off has been identified as sufficient in related Inequality
inequalities, our result below requires a strictly weaker hypothesis:

Vania Mascioni

Theorem 1. Let f be a nondecreasing, positive, twice differentiable function
onR* such that
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tada Close
is non-decreasing ofu, co| for everya > 0 and therefore inequality3) holds Quit
for f and every choice df < a < b, andr,§ > 0. Page 3 of 7

Proof. Itis plain that if f satisfies ) thenf" also does (for every > 0), and so

the last statement is a trivial consequence of functidmeing non-decreasing.
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Fix a > 0 and in the following always assume thiat a. Note that condition
(5) implies
(7) (t —a)(In f(1))" + (In f(£)) = 0
for all t > a (we are assuming thaf(t¢) is non-decreasing, and therefore
(In f(¢)) > 0). Computing the derivatives irY) gives

fOf = )2 @

(8) t—a + >0
A0 0 —
which is in turn equivalent to g ;:g‘r‘;e{};g?o”ndg'fol\'}l;%;ze
(t _ a Inequality
(9) ( 1+ (t —a f/ / f d:L‘) > 0 Vania Mascioni
(if you apply the quotient rule to dlfferentlate the first summandd); &nd
collect the I.h.s. over the common denominator, then the numerator is seen to Title Page
be(t — a)f(t) times the L.h.s. inE()) Now, (9) implies Contents
(t —a) /
10 Ydx < (t — 44 44
(10) e f(a)dz < (t = a)f(1),
where the second inequallty is dueﬂ'obelng non-decreasing. Next, consider- < >
ing the left hand side of the following inequality as a quadratic polynomial in Go Back
[} f(x)dz, (10) is seen to be equivalent to Close
t 2 N / ;
(11) ( / f(x)dx) (1 L t= a1 (t)> S
f(t) Page 4 of 7

(/f dl’) 20 —a)f(t) + (t —a)*f'(t) + (t —a)*f2(t) <0
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(inequality (L1) says thatf(f f(z) dx must lie between the two solutions of the
guadratic polynomial, and the quadratic formula says that these two solutions

are the I.h.s. and the r.h.s. df)).

2
Dividing both sides of {1) by (f; f(z) dx) and rearranging the terms we

then obtain the equivalent form
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(since both sides vanish when= ). Finally, if we divide (L3) by (¢ — a)? we
obtain
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But this amounts to saying that the derivative of the natural logarithm of
2 Jo (@)dx
exp <ﬁ [In f(:c)d:c)

(16)
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is non-negative: the latter function bmust therefore be non-increasing. Suffi-
ciency of condition %) is thus proved. ]
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