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ABSTRACT. In this paper, we discuss the validity of the inequality

n n n 2
a, b (14-a+b)/2

E Z; E Ti%iqg < E x; ,

=1 1=1 i=1

wherel, a, b are the sides of a triangle and the indices are understood madile show that,
although this inequality does not hold in general, it is true whef 4. For generah, we show
that any given set of nonnegative real numbers can be arrangedas . . ., x,, such that the
inequality above is valid.
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1. MAIN STATEMENTS

Leta,b, x1,xs,...,x, be nonnegative real numbersal-b = 1 then, by the Rearrangement
inequality [1], we have

n n
(1.2) Z zfxl | < Z x;,
i=1 i=1

where throughout this paper, the indices are understood to be medulao an attempt to
generalize this inequality, we consider the following

n n n 2
(1.2) Z xi Z aial,, < (Z xf) ,
=1 =1 i=1
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2 MOHAMMAD JAVAHERI

wherec = (a + b+ 1)/2. It turns out that ifa + b # 1 then the inequality (1]2) is false far
large enough (cf. Prop. 2.2). However, we show that if

(1.3) b<a+1, a<b+1, 1 <a-+hb,

then the inequality] (I]2) is true in the casenof= 4 (cf. Prop.[2.1). Moreover, under the same
conditions oru, b as in [1.B), we show that one can always find a permutatiof{1,2, ..., n}
such that (cf. Prog. 2.4)

n n n 2
(1.4) Z ; Z Uiy < (Z xzc) :
=1 =1 =1

The conditions in (1]3) cannot be compromised in the sense that if for all nonnegative. . . , z,,
there exists a permutatignsuch that the conclusiop (1.4) holds, theh must satisfy[(1]3). To
see this, letr; = x > 0 be arbitrary and:; = 1,7 = 2,...,n. Then, for any permutation, the
inequality (I.4) reads the same as:

(1.5) (x+n—1D(* +2°4+n—-2) < (2°+n—1)>2%

If the above inequality is true for all andn, by comparing the coefficients afon both sides
of the inequality[(1.5), we should hawé + 2* + 2 — 3 < 22° — 2. Sincex > 0 is arbitrary,
1,a,b < c and conditiong[(1]3) follow.

The case of. = b = 1 of (1.2) is particularly interesting:

n

n n 2
16) S Y i < (z xf’/?) |
=1

=1 =1
There is a counterexample fo ([L.6) wher- 9, e.g. take
(17) Tl = Tg = 85, T9 = g = 9, T3 = Ty = 10,
Ty =1x6 = 11.5, x5=12,

and subsequently the inequalify (1.6) is false forralt 9 (cf. prop. [2.2)). Propositioh 3.1
shows that the inequality (1.6) is true for< 4, and there seems to be a computer-based proof
[2] for the cases = 5, 6, 7 which, if true, leaves us with the only remaining case 8.

2. PROOFsS
Applying Jensen’s inequality [1, § 3.14] to the concave funcligne gives
(2.2) u v w' < ru+ sv+ tw,

whereu, v, w, r, s, t are nonnegative real numbers ang s + ¢ = 1. If, in addition, we have
r,s,t > 0 then the equality occurs itf = v = w. However, ift = 0 andr, s,w > 0 then the
equality occurs ifiu = v. We use this inequality in the proof of the proposition below.

Proposition 2.1. Leta,b > 0 such thata +1 > b,b+ 1 > a anda + b > 1. Then for all
nonnegative real numbers vy, z, t,

(2.2) (z+y+2+0)(x% + 2 + 29" +1%2b) < (2 + y° + 2+ t9)?,
wherec = (a + b+ 1)/2. The equality occurs if and only {fz, b} = {0,1} orz =y = 2z = ¢.
Proof. We apply the inequality (2/1) to

(2.3) u=(yz)", v=(22)° w=(ay)",
1

TZl—g, s:l—é, t=1——,

& C &
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A NEW ARRANGEMENT INEQUALITY 3

and obtain:
(2.4) %’z < (1 - %) (yz)° + (1 - g) (rz)° + (1 - %) (xy)°.

Notice that the assumptions anb in the lemma are made exactly so that, ¢ are nonnegative.
Similarly, by replacing: with ¢ in (2.4), we have:

b 1
a, b < o E c 7 c - c
(2.5) 'yt < <1 c> (yt) + (1 c) (tz)° + (1 c) (xy)©.
Next, apply[(2.1L) to
(2.6) uw=2z% v=(y)° w=1, 7":1—[—), s:é, t=0,
C C
and get
(2.7) oyt < (1 — l—)) o+ é(xy)c.
C C
Similarly, by interchanging andb, one has
a, b+l < o g 2c g c
(2.8) T < (1 C) ¥+ C(xy) :

Adding the inequalities (2/4)], (3.5), (2.7) and (2.8) gives:

(2.9) Szt < %x% - (4 — 2) (zy)° + (1 — %) (y2)° + <1 - 9) (tx)°

C

+ (1 - %) (yt)° + (1 - g) (z2)°,

whereS = x + y + z + t. There are three more inequalities of the form above that are obtained
by replacing the paitz, y) by (v, z), (z,t) and (¢, x). By adding all four inequalities (or by
taking the cyclic sum of (2]9)) we have

1 2 2
21 T < = 2c 4— = c c c c = c c
(2.10) S _ch +< C)(x + 2)(y +t)+c{(a:z)+(yt) },
whereST stands for the left hand side of the inequalty [2.2). The right hand side of the above
inequality is equal to

(2.11) (Z xc)2 + (% — 1) {(2°+ 2% + (y° + 192 = 2(2° + 2) (y° + 1) },

which is less than or equal {0 xc)Q, sincec > 1. This concludes the proof of the inequality
@2).

Next, suppose the equality occurs|in {2.2) and so the inequalitigs (4.4)] - (2.8) are all equal-
ities. If « = 0 then we haved_z > 2" = (3. z°)° and so, by the equality case of Cauchy-
Schwarz, the two vectorgr, y, z,t) and (z°,4°, 2%, t*) have to be proportional. Then either
b=c=1orx =y = z = t. Thus suppose,b # 0. Sincec = a = b is impossible,
without loss of generality suppose that4 b. Since the inequality (2. 7) must be an equality,

x% = x°y° (cf. the discussion on the equality case[of|2.1)). Similgfly= y°z¢, 2% = z°t¢
andt? = t°z¢. Itis then not difficult to see that = y = z = t. O

Let N(a, b) denote the largest integerfor which the inequality[(1]2) holds for all nonnega-
tive x1, z, . .., z,. By the above proposition, we haw&(a, b) > 4.
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4 MOHAMMAD JAVAHERI

Proposition 2.2. Leta, b > 0 suchthatz+b # 1. ThenN(a, b) < co. Moreover, ifn < N(a, b)
then the inequality (1]2) is valid for all nonnegative, . . . , x,,.

Proof. The proof is divided into two parts. First we show that the inequd]ity] (1.2) cannot be
true for alln. Proof is by contradiction. It = b = 0 then [1.2) is false forn. = 2 (e.g. take

r; = 1,29 = 2). Thus, suppose + b > 0 and that the inequality (1.2) is true for all Let f

be a non-constant positive continuous function on the intdrvall0, 1] such thatf(0) = f(1).

Let

, — 1
(212) Ti = f (Z ) Y = (mgxi?_i_l)l/(a—i-b)’ L= 1a EENZ
n

Sincey; is a number between; andx;,; (possibly equal to one of them), by the Intermediate-
value theorem [3, Th 3.3], there exists= I; such thatf(¢;) = y;. By the definition of integral
we have:

1 n n
(2.13) /f(x)dx/f“b(:v)dx— lim —QinnyH’
I I S S
‘ 1 n n -
2

: 1 - C C ?

where we have applied the inequalify (1.2) to thé. On the other hand, by the Cauchy-
Schwarz inequality for integrals, we have

O N O ( / f%<x>f“2“<x>dx)2 = ( / fc(x)dx)Q,

with equality iff f and fo** are proportional. The statements (2.13) and (2.14) imply that the
equality indeed occurs. Sinee+ b # 1 and f is not a constant function, the two functiofis
and f*** cannot be proportional. This contradiction implies t(1.2) could not be true for all
ni.e.N(a,b) < oco.

Next, we show thaf (1]2) is valid for all < N. It is sufficient to show that if the inequality
(1.2) is true for all ordered sets 6+ 1 nonnegative real numbers, then it is true for all ordered
sets ofk nonnegative real numbers.

Letyy,...,yr be nonnegative real numbers and set
k k k
(2.15) S=>"y, A=y, P=>
=1 =1 =1

Without loss of generality we can assufie= 1. For eachl < i < k, define an ordered set of
k 4+ 1 nonnegative real numbers by setting:

yi-1 1 +2<j3<k+1
Applying the inequality[(1]2) ta, . .., zx41 gives
(2.16) (S +y)(A+y"") < (P+y)” =1+ + 2u5.
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Adding these inequalities far=1, . . . , k, yields:
(2.17) ESA+SY it + AS <k +2.

On the other hand, by the Rearrangement inequality [1] we have

k
(2.18) Dyl < Z Yt
=1

and the lemma follows by putting together the |nequaI|2.17) (2.18). O

The inequality[(1.1L) translates f6(a, b) = co whena+b = 1. We expect thal (a, b) — oo
asa + b — 1. The following proposition supports this conjecture. We define

" 2
(2.19) An(a,b) = sup leZwl T — (fo) max x; = 1
i=1 ==

This number roughly measures the validity of the inequdity] (1.2). Also let

1 n
2.20 = - .
(2.20) o n;x

By the Hdolder inequality [1], itv, 5 > 0 anda + 5 = 1 then for anys, ¢ > 0 we have:
(2.21) a?atﬁ > Opstpt-

Proposition 2.3. N(u, u) is a non-increasing function aof > 1/2. Moreover, for alln and
a,b>0
(2.22) a}}glAn(a, b) = 0.
Proof. Suppose: > v > 1/2. We show thatV (u, u) < N(v,v). Without loss of generality we
can assume:

1

2.23 — —.
(2.23) u—v<g

By the definition of N = N(v,v), there must existV + 1 nonnegative integers,, ..., xy41
such that the inequality (1.2) is false and so

N+1  N+1 N+1 2
(2.24) Z T Z x> (Z azf+1/2> .
i=1 =1 i=1

We show that the nonnegative numbegyrs= x?/”, i=1,...,N + 1 give a counterexample to
(1.2) whena = b = u. In light of (2.24), one just needs to show

N+1 N+1 N+1 N+1
(225) (Z u+l/2v> qu/v > (Z u+l/2> /le

=1 =1
To prove this, first let

Cu+1/(2v) —u/v o ufv—1
(2.26) Cou+1/(20) -1 B_u+1/(2v)—1’
s =1, t—u+i
2v
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The numbers above are simply chosen suchdhat = 1 andas+ Gt = u/v. We briefly check
thata, 5 > 0. The denominator of fractions above is positive, sined /(2v) > (v+1/v)/2 >
1. This impliesg > 0. Now the positivity ofa: > 0 is equivalent ta:s(1 —v) < 1/2. If v > 1
thenu(1 — v) <0 < 1/2. So suppose < 1. By using [2.2B), we have:

4 4 2
for all v > 0. Now we can safely plug, 3, s, ¢ in (2.21) and get

(2.28) 0'?05+1/2v > Oy

Next, leta/ = (1 — «)/2 andf’ = 1 — (/2. Sinced’ + ' = 1 andd/, 3 > 0, we can use
Holder’s inequality |(2.21) withy/, 5’ instead of« and 3 (and the same, ¢t as before) and get
(thistimed’s + 't = u + 1/2):

(2.29) o e < o

Now we square the above inequality and multiply it wjth (2.28) to obtain:

(2.27) u(l—v)ﬁ<v+%)(1_v):_v2+§v+1<17

(2.30) Ulafﬂ/% < Uu/v03+1/2a

which is equivalent to the inequality (2]25). So far we have shown the existence of a counterex-
ample to[(1.R) forw = b = w whenn = N + 1. Then Prop| 2]2 gived/(u,u) < N = N (v, v)
and this concludes the proof of the monotonicity\of

It remains to prove tha#l,,(a,b) converges td asa + b — 1. To the contrary, assume
there exists > 0 and a sequende;, b;) such thatd,,(a;,b;) > € anda; + b; — 1. Then by
definition, for eacly, there exists an-tuple X, = (zy;, ..., z,;) such thainax z;; = 1 and

(2.31) lej ZCEZ] Z+1J (Zx ) %

wherec; = (a;+b,;+1)/2. SinceX; is a bounded sequence, it follows that, along a subsequence
Jk, the X, ’s converge to som& = (zy,...,z,). On the other hand, along a subsequence of
Jir (denoted again byy), a;, — a andb;, — b for somea,b > 0. Sincea; + b; — 1, we have

a+ b = 1. By taking the limits of the inequality (2.B81) along this subsequence, we should have

" 2
(2.32) le le T — (Z xz) > % > 0,

=1

which contradicts the inequalltm.l). This contradiction establishes the eqyatioh (2.22).

The next proposition shows that the inequaljty [(1.2) holds if one mixes up the order of the
z;'s. The proof is simple and makes use of the monotonicityof'/* whereo, is defined by
the equation| (2.20). It is well-known thét;)'/* is a non-decreasing function ofl], Th. 16].

Proposition 2.4. Leta, b, c be as in Proposition 2]1. Then for any given set.afonnegative
real numbers there exists an arrangement of themas. ., z,, such that the inequality (1].2)
holds.

Proof. Equivalently, we show that if, -, . . ., z,, are nonnegative then there exists a permu-
tationy of the set{1,2, ..., n} such that the inequality (1.4) holds. Let

(2.33) S = ix T = i > gl
i=1

i=1 j#i
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Then ST = noy(n?c,0p — NOayy) = n3010,0, — no1044,. Now by the Cauchy-Schwarz
inequality [4], 02 < 01044. On the other hand by the monotonicity mt]f/t, we haves; <

ol g, < 0¥ o, < 0¥/, and sooy a0 < a2. It follows from these inequalities that
(2.34) ST < n*(n—1)o?

Now for a permutatiom of 1,2, ... n, let:
(2.35) A, = Zx#( b iaD)-

We would like to show that A4, < (nac)2 for some permutatiop. It is sufficient to show
that the average o A, over all permutationg is less than or equal too.). To show this,
observe that the average 84, is equal toST/(n — 1) and so the claim follows from the

inequality (2.34). O
The symmetric group,, acts onR™ in the usual way, namely fqr € S,, and(xy,...,z,) €

R™ let

(2.36) po (21, xn) = (Tpys - Tum))-

Let R be aregion irR” that is invariant under the action of permutations (ke C R for all
). define:

(2.37) AMR) =< (zq,.. JER le le ri, < (Zm >

By Proposition) 2.4:

(2.38) RC |J n-AMR).
HESn
In particular, by taking the Lebesgue measure of the sides of the inclusion above, we get
1
(2.39) Vol A(R) > 2 'R .

We prove a better lower bound fenl \(R) whenn is a prime number (similar but weaker
results can be proved in general).

Proposition 2.5. Leta, b be as in Proposition 2|1 and be a prime number. Le® C R’} be a
Lebesgue-measurable bounded set that is invariant under the action of permutatiohgR) et
denote the set of all1, ..., z,,) € R for which the inequality{ (1]2) holds. Then

1R
(2.40) volA(R) > 22
n—1
Proof. Form € {1,2,...,n — 1} letu,, € S, and denote the permutation
(2.41) i (i) = i,

where all the numbers are understood to be moduyia particulary,,(n) = n for all m). Now
recall the definition of4,, from the equatior{ (2.35) and observe that:

n—1 n n—1 n

n—1
(242) Z A,um Z Z xmz mz+m Z Z JJ] J+m
m=1

m=1 i=1 m=1 j=1

n

— n
_ E a E b _ E a E : b
j=1 m=1

J=1 i
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Then, the same argument in the proof of Piop| 2.4 implies that, for sorae{1,...,n — 1},
we haved,,, < (no.)?. We conclude that

n—1
(2.43) RC | m - A(R),
m=1
which in turn implies the inequality (2.40). O
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