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ABSTRACT. In this paper we use a new approach to obtain a class of multivariable integral
inequalities of Hilbert type from which we can recover as special cases integral inequalities
obtained recently by Pachpatte and the present authors.
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1. INTRODUCTION

The integral version of Hilbert's inequalityl[7, Theorem 316] has been generalized in several
directions (se€e [1,/3, 4] 7] 8/ 9,120,/ 21] 22]). Recently, inequalities similar to those of Hilbert
were considered by Pachpatteinl[12] 13,14, 15| 16, 19]. The present autharslin [5, 6] estab-
lished a new class of related inequalities, which were further extended by Dragomir and Kim
[2]. Two and higher dimensional variants were treated by Pachpatftelin [17, 18]. In the present
paper we use a new systematic approach to these inequalities based on Theprem 3.1, which
serves as an abstract springboard to classes of concrete inequalities.

To motivate our investigation, we give a typical result/ofl[17]. In this theor&if) x .J)
denotes the class of functionse C™~1™=Y([ x J) such thatDiu(0,t) = 0,0 <i <n —1,

t e J, Du(s,0) =0,0 < j<m-—1,s e I,andD D ‘u(s,t) and D} *DJ'u(s, t) are
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2 G. D. HANDLEY, J. J. KOLIHA, AND J. FECARIC

absolutely continuous oh x J. Herel, J are intervals of the typé: = [0,¢) for some real
&> 0.

Theorem 1.1(Pachpatte [17, Theorem 1l)etu(s,t) € H(I, x I,) andv(k,r) € H(I, x I,).
Then, for0 <i<n—1,0 <j <m — 1, the following inequality holds:

Ty |Di Dju(s,t) Di Djv(k,r)|
/0 /0 (/0 /0 SQn 29— 1t2m 25—1 + an 21— 17n2m 27—1 dk dr ds dt
1 1
§[A iBij)*VTyzw (/ / x — 5)(y — t)|DF Dy u(s, t)]? dsdt)

X </° /0 (Z_k>(w_r)‘D?DQIv(k,T)Pdkdr)é,

1 1

im0 T e Dem -2 - 1)

The purpose of the present paper is to obtain a simultaneous generalization of Pachpatte’s
multivariable results [17], and of the results [5, 6] of the present authors. The single variable
results [14/ 15, 16, 19] follow as special cases of our theorems. Our treatment is based on
Theoreni 3.]1, in particular on the abstract inequality|(3.1), which yields a variety of special
cases when the functiods are specified.

where

2. NOTATION AND PRELIMINARIES

By Z (Z.) andR (R, ) we denote the sets of all (nonnegative) integers and (nonnegative) real
numbers. We will be working with functions afvariables, wherd is a fixed positive integer,
writing the variable as a vecter = (s!,...,s%) € R%. A multindexm is an elementn =
(m',...,m?) of Z1. As usual, the factorial of a multiindex is defined bym! = m!!- .- m9l.
An integerj may be regarded as the multiindgi. . . , 7) depending on the context. For vectors
in R? and multiindices we use the usual operations of vector addition and multiplication of
vectors by scalars. We write< 7 (s < 7)if s/ < 77 (s/ < 79) for1 < j < d. The same
convention will apply to multiindices. In particulag,> 0 (s > 0) will means’ > 0 (s’ > 0)
for1 <j <d.

If s =(s',...,s%) € RYands > 0, we define theell

Q(s) = [0,8"] > - x [0, 87] x - x [0, 57];
replacing the factojo, s’| by {0} in this product, we get thiaced;Q(s) of Q(s).
Lets = (s!,....sY), 7= (7},...,7) € RY, s, 7 > 0, letk = (k', ..., k%) be a multiindex
and letand: : Q(s) — R. Write D = We use the following notatlon

d

) (s
Dk () Dd ()7

[ dT_/ [t

An exponentr € R in the expression®, wheres € R?, will be regarded as a multiexponent,
that is,s® = s(@-a),
Another positive integer will be fixed throughout.

‘o
0sJ
(
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The following notation and hypotheses will be used throughout the paper:

I={1,...,n} n €N

- _ d d
mi, 1 €1 m; = (m},...m¢) € 24
x, 1 €1 ;= (x},...,2d) e RY, 2, > 0
Dis iy 1 €1 aniGRﬁp%_—i-i:l

1 n 1 1 n 1

p,q 5221‘:1;71-’5:21‘:15
ai,bi,iEI ai,bieR+,ai+bi:1
Ws, 1e1 wiER,wi>0,Z?:1wi:1.

Throughout the papet,;, v;, ¢ will denote functions fromo0, z;] to R of sufficient smoothness.
If m is a multiindex andr € R?, z > 0, thenC™[0, 2] will denote the set of all functions
u : [0, z] — R which possess continuous derivativie$u, where0 < k < m.

The coefficients;, ¢; are conjugate Holder exponents used in applications of Holder’s in-
equality, and the coefficients, b; are used in exponents to factorize integrands. The coeffi-
cientsw; act as weights in applications of the geometric-arithmetic mean inequality; this enables
us to pass from products to sums of terms.

3. THE MAIN RESULT

First we present a theorem that can be regarded as a template for concrete inequalities ob-
tained by selecting suitable functiofs in (3.1). A special case of this theorem is givenlinh [6,
Theorem 3.1].

Theorem 3.1.Letv;, &, € C(Q(z;)) and lete; be multiindices foi € 1. If

(31) |UZ(SZ)| S ASi(Si — Ti)ciq)i(ﬂ‘) dTi, S; € Q(ZEZ), 1 € ],

(3.2) / [z vi(si)] ds, - ds,
o >

(i +1)/(qiws)
0 i=1 'LUiSi

WherEaZ- = (ai + biqi)ci, 51 = a;C;, and
1
[T [(ow + Ve (3, + 1)Vee]

Remark 3.2. Remembering our conventions, we observe that, for example,

U:

n n d

IR COCCINNCOUCI | (R VR | | (R ORED

i=1 i=1 j=1
Proof. Factorize the integrand on the right side[of [3.1) as

(Si _ Ti)(az‘/qz'-i-bi)ci . (Si _ Ti)(ai/pi)ci(bi(Ti)
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and apply Hoélder’s inequality [10, p. 106] and Fubini’'s theorem. Then

1

lvi(s:)| < (/ (s; — 7;)lerthias)es de’) "
0
si L
X (/ (Si — Ti)aiciq)i(Ti)pi d7'1> '
0

S(OAiJrl)/qz' Si 5 p%,
= i — 1) () dr |
o ([, (e

Using the inequality of means [10, p. 15]

n

H s (vi+1)/qs < Zwl az+1)/(qzwz)7

=1 =1
we get

H o(s:)] < WZw syt H ([ = rptutran) "

where
1

[T (e + 1)Va
In the following estimate we apply Holder’s inequality, Fubini’s theorem, and, at the end,
change the order of integration:

| \’Uz( i)
/ / Ty @D G dsy---dsy
S WH / Z (/ (Si — TZ)BZCI)Z(TZ)Z)Z dTZ) " dSZ'
i=1 |70 0
S WH.CE,Ll/ql (/ Z (/ Z(Si — 7'1)61(1)1(7})% d7'1> dSZ) "
i=1 0 0

H ﬁz + 1 1/p: H 1/% H (/ — 7— ﬁr&-lq) (Tl)pz dTl) Py .

This proves the theorem. O

W =

If d = 1 andv; are replaced by the derivativaék), the preceding theorem reduces|to [6,
Theorem 3.1].

Corollary 3.3. Under the assumptions of Theorem|3.1,

[Timy Jvi(si)]
(3.3) / / s (D) (@) dsy - --ds,
1

< pl/pUHxl/Qz (Z / ﬁﬁ-lq)( )P dsl> ’
Di

whereU is given by(3.2).
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Proof. By the inequality of means, for any; > 0,

1
ﬁA;/pz‘ < pl/P (i 1A1> ’
i=1 i P

The corollary then follows from the preceding theorem. OJ
The preceding corollary reduces to [6, Corollary 3.2] in the special case whkeih andv;
are replaced by!" .
4. APPLICATIONS TO DERIVATIVES

Convention 1. In this section we shall assume that, k; are multiindices satisfying < k; <
m; — 1, and write

Recall that according to our conventions; — k; — 1 = (m} — k! —1,...,m¢ — k¢ —1).

Theorem 4.1. Letw; € C"™(Q(z;)) be such thatDju;(s;) = 0 for s; € 9;Q(w;), 0 < r
m! —1,1<j<d,iel Then

l_L 1 [DMui(si)|
@2 / / et D/aon 0517 dsn

IN

—1 Wi5;
n n . 1
< U, sz'l/qi H (/xl (ml _ Si)6i+1’Dmiui(Si) Di dsz-) P; ’
i=1 i=1 \/0
where
(4.3) U, = L

TT e — s = Dlew + )75+ 177

Proof. Under the hypotheses of the theorem we have the following multivariable identities es-
tablished in[11],

1 8
DkLUZ(S) = m/o (Si — Ti)mi_ki_leiui(Ti) d’TZ’, 1€ 1.
Inequality [4.2) is proved when we s&ts;) = D*iu,(s;), c; = m; — k; — 1, and
[ D™iu(sg)|
(44) q)z(sz) - (mz _ kz _ 1)|
in Theoreni 3.11. O

Corollary 4.2. Under the hypotheses of Theorem 4.1,

Hz 1 ‘Dk ui(si)|
(4.5) / / S w) dsy -~ dsn

<p1/pU le/qz (Z / i — Si) BZH‘DmZu( Bl

i—1 PiJo

whereU, is given by(4.3).

Proof. The result follows by applying the inequality of means to the preceding theoreml
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Single variable analogues of the preceding two results were obtairied in [6, Theorem 4.1] and
[6, Corollary 4.2].
We discuss a number of special cases of Thegrem 4.1 with similar examples applying also to

Corollary[4.2.
Example 4.1.1f a; = 0 andb;, = 1 for i € I, then [4.2) becomes

k;
z 1|D ()]
(4.6) / / WS qzmz qiki—q;+1)/(qiwi) dsy -~ dsy,
2 1
U H Z'/ql H (/ _ SZ |szu1(sl) Pi dsl) Pi ’
=1 =1
where
_ 1

[T [(ms — ki — D) (@imi — qiks — i + 1)Va]
Example 4.2.1f a; = 0,b; =1, ¢; = n, w; = 1, p; = -2, m; = mandk; = k for i € I, then

Tn Dkul i
(48) / / Z ‘.S ’nm nk( n)—i-ll dsl'”ds”
nxl"'xn
_n[(m E—Dl*"(nim—k—-1)+1)

« ﬁ </O(x o) DMus(s) | dsi) o

Ford = 2 andgq = p = n = 2 this is Pachpatte’s theorem |17, Theorem 1] cited in the
Introduction; ifd = 1 andq = p = n = 2, we obtain[[14, Theorem 1].

Example 4.3.Leta;, = 1 andb; = 0 fori € I. Then [4.2) becomes

ki
2 1 ‘D ul( l)
(4.9) / / oGy 18177 Ao

<O (] e

ui(s;)

1
] Py
Pi
dsi) )

where
~ 1
(4.10) U, = -
b IS [Ome = ke = DY mi — k)]
Example 4.4.Seta; = 0,b; = 1, ¢; = n, w; = ;, Di =
Then [4.2) becomes

n Dk (A Z
(4.11) / / Hl 1’ i )’ ds, - - ds,
2 1 z

< i L (o)

=1
In the following theorem we establish another inequality similar to the integral analogue of
Hilbert’s inequality.

m; = mandk; = kfori € I.

n—1"7
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Theorem 4.3.Letu; € C™*H(Q(z;)) be such thaD™iu,(s;) = 0fors; € 9;,Q(s;), 1 < j < d,
1€ 1. Then

o Hz 1 | D™u(s;)|
(4.12) / / 1/(q7w1) dsy - - ds,

7, le
< H:Uil/qi H (/ (x; — si)|Dmi+1ui(5i) b dsl-) )
0

=1 =1

Proof. Under the hypotheses of the theorem we have the following multivariable identities es-
tablished in[[11] form; = (0, ...,0):

(413) DmZUZ(SZ) = / Dm”lui(n) dTi, 1€ I.
0
In Theorem 3.L set;(s;) = D™u;(s;), ¢; = 0, ®;(s;) = | D™+ lu,(s;)|, and the result follows.
[l

In the special case that= 2, m; = (0,0),p = ¢ = n = 2, andw; = % the preceding
theorem reduces to [17, Theorem 2].

When we apply the inequality of means to the preceding theorem, we get the following
corollary which generalizes the inequality obtained.in [17, Remark 3].

Corollary 4.4. Under the hypotheses of Theorem 4.3,
S 1|Dm ui(si)|
(4.14) / / STy @1 s

z 1w7f

RS

n

< pl/pH 1/q; ( > / . 87;)‘Dmi+1ui(si)
i=1

=1
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