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ABSTRACT. Inthis paper we present sharp estimates for the difference of general integral means
with respect to even different finite measures. This is achieved by the use of the Ostrowski and
Fink inequalities and the Geometric Moment Theory Method. The produced inequalities are
with respect to the supnorm of a derivative of the involved function.
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1. INTRODUCTION

Here our work is motivated by the works of J. Duoandikoetxea [5] and P. Cerone [4]. We
use Ostrowski’s ([8]) and Fink's[([6]) inequalities along with the Geometric Moment Theory
Method, see [7],[1],[13], to prove our results.

We compare general averages of functions with respect to various finite measures over dif-
ferent subintervals of a domain, even disjoint. Our estimates are sharp and the inequalities are
attained. They are with respect to the supnorm of a derivative of the involved furfction

To the best of our knowledge this type of work is totally new.

2. RESULTS

Part A
As motivation we give the following proposition.

Proposition 2.1. Let 1, po be finite Borel measures dn, b] C R, [¢,d], [é,9] C [a,b], f €
C'([a, b]). Denoteu, ([c, d]) = my > 0, pa([é, g] = mg > 0. Then

d g
(2.1) \mi / f(w)dul—m% / F@)dpa| < [ loolb — ).
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2 GEORGEA. ANASTASSIOU

Proof. From the mean value theorem we have
1f(@) = fW)] S N Nloo(b—a) =27, Va,y € [a,b],
that is,
_’Ygf(l‘)_f(y)éf)@ Vx,yé[a,b],
and by fixingy we get
1 d
— < —/ flx)dp — fy) <.
my c

The last statement holdg € [¢, g]. Hence

1 [ 1 (9
—y < —/ f(x)dpy — —/ fz)dpy <,
mi Je ma Je
proving the claim.
As a related result we have

Corollary 2.2. Let f € C'([a,b]), [¢,d], [¢, 9] C [a,b] € R. Then we have

—c/f dx——/f )dx

We use the following famous Ostrowski inequality, se€e [8], [2].

Theorem 2.3.Let f € Cl([a b)), x € [a,b]. Then

(2.3) ‘f(x) / flx ‘ < QW‘Z)(@ —a)’+ (z = b)’),

(2.2) ‘

< f'llse - (b= a).

and inequality[(2.B) is sharp, s¢2].
We also have

Corollary 2.4. Let f € C'([a,b]), z € [¢,d] C [a,b] C R. Then

b
ed w2, [ i@

< gz max{((e e = B (A= + @ = b))

Proof. Obvious.

We denote byP([a, b]) the power set ofa, b]. We give the following.

Theorem 2.5.Let f € C'([a,b]), 1 be a finite measure ofic, d|, P([c,d])), where[c,d] C

la,b] CRandm := pu([c,d]) > 0. Then
(1)

b

(25) @~ 5 [ Fla)da

< 2|(|£lﬂ°2) max{((c — a)’> + (¢ — b)?),((d — a)* + (d — b)*)}.

(2) Inequality [2.5) is attained whedh= b.

\ /
M Jle,d)
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Proof. 1) By (2.4) integrating againgt/m.
2) Here [2.5) collapses to

1 I y
: — - < —
(2.6) ]m LG / f(a)dz| < B2 (b —a)
We prove that[(2]6) is attained. Take
20 — (a+0b)

Thenf*(z) = 7% and|| f*'||« = 7=, along with

/ e =

Therefore[(2.6) becomes

2.7) f*(flr)du‘ <1

'ﬂl [e,b]

Finally pick £ = d;,) the Dirac measure supported{at, then [2.7) turns to equality. O
We further have

Corollary 2.6. Let f € C'([a,b]) and|[c,d] C [a,b] C R. LetM(c,d) := {u: ;1 a measure on
([e,d], P([c, d])) of finite positive mags denotedn := p([c, d]). Then
(1) The following result holds

weMlod) = /H F@)d - / e
(2.8) < %max{((c— a)? + (c = b)2), ((d — a)? + (d — b)?)}
I VA { (d—a)?*+(d—b)?, ifd+c>a+b }
2(b—a) (c—a)+(c—b?, ifd+c<a+b
(2.9) < Hf;l!oo(b_a)

Inequality [2.9) becomes equalitydf= b or ¢ = a or both.
(2) The following result holds

1 oo
(2.10) sup ( sup |— du——/ f(x ) < 17 (b—a).
all ¢,d peM(c,d) | M Je,d) 2
a<c<d<b

Next we restrict ourselves to a subclass\éfc, d) of finite measureg with given first mo-
ment and by the use of the Geometric Moment Theory Method| seé 7], ][1], [3], we produce an
inequality sharper than (2.8). For that we need

Lemma 2.7. Letv be a probability measure ofia, b], P([a, b])) such that

(2.12) / xdv =d; € [a,]
[a,b]

is given. Then
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)
(2.12) Uy:=  sup / (x —a)’*dv = (b—a)(d; — a),
vasin@ii) /lab]
and
ii)
(2.13) Uy:=  sup / (x —b)*dv = (b—a)(b— d,).
vasin@ii) /lab

Proof. i) We observe the graph

Gi={(z,(z —a)*): a <z < b},
vxhich is a convex arc above theaxis. We form the closed convex hull 6f, and we call it
G, which has as an upper concave envelope the line segméntn (a, 0) to (b, (b — a)?). We

consider the vertical line = d; which cuts/; at the pointQ),. ThenU; is the distance from
(dq,0) to Q. By using the equal ratios property of similar triangles related here we get

dl—a_ U1

b—a (b—a)?’

which proves the claim.
i) We observe the graph
Gy = {(x,(x—b)z): a<z< b},
vxhich is a convex arc above theaxis. We form the closed convex hull 6f, and we call it
G which has as an upper concave envelope the line segiménm (b,0) to (a, (b — a)?). We
consider the vertical line = d; which intersectg, at the point)s.
ThenU; is the distance fronid;, 0) to Q2. By using the equal ratios property of the related
similar triangles we obtain
Us b—dy
(b—a)? b—a’
which proves the claim. O

Furthermore we need

Lemma 2.8. Let[c, d] C [a,b] C R and letr be a probability measure ofic, d], P([c, d])) such
that

(2.14) / rdv =d, € [c,d]
[c.d]
is given. Then
(i)
(2.15) Uy := sup / (x — a)’dv = di(c+d — 2a) — cd + a?,
v asin [2.13) [e,d]
and
(ii)
(2.16) Uy:= sup / (x —b)*dv = dy(c+d — 2b) — cd + b*.
v asin [ZI8)) [¢,d]
(i) The following also holds:
(2.17) sup / [(z —a)® + (z — b)*]dv = Uy + Us.
v asin [ZI4)) [c,d]
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Proof. (i) We see that

d d
/ (x —a)*dv = (c—a)* +2(c—a)(d; — c) + / (x — c)?dv.
Using [2.12) which is applied ofe, d], we find

sup / (x —a)’dv = (¢ —a)®> +2(c — a)(d; — ¢)

v asin[ZI%
d
+  sup / (z — c)*dv
v asin[ZI8) ¢

=(c—a)?*+2(c—a)(d, —c)+ (d—c)(d; — c)
=di(c+d—2a) —cd + a?

proving the claim.
(i) We see that

d d
/(x—b)Qdu:(b—d)2+2(b—d)(d—d1)+/ (z — d)%dv.

Using [2.18) which is applied ofe, d], we obtain

sup )/d(a: —b)*dv = (b—d)* +2(b—d)(d — dy)
v asin[ZI8)/ ¢

d
+ sup / (z — d)*dv
v asin[ZI#)/ ¢

=(b—d)?+20b—d)(d—d)+(d—c)(d—dy)
=dy(c+d—2b) — cd + b*

proving the claim.
(iii) Similar to Lemmg 2.7 and above and obvious on noting that a)> + (= — b)? is convex,
etc. O

Now we are ready to present

Theorem 2.9.Let[c,d] C [a,b] C R, f € C*([a,b]), 1 afinite measure ofic, d], P([c, d])) of
massm := yu([c,d]) > 0. Assume that

1 d
(218) E/ xdu:dl, ngl Sd,

is given.
Then

d b
(2.19) sup J%/ f(x)du—ﬁ/ f(x)dx

© as abov
/
< Il
~ (b—a)

a’® + b?

[dl((c—I—d) —(a+b)) —cd+

Proof. Denote

[/l
2(b—a)

plx) = ((z —a)* + (z = b)?),
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then by Theorerp 2|3 we have

—B(x) < f(z) -

L swan< L [ wan- - [ @i < L [ pyan,
3 ) = w )
'%/df(x)du /f dm<—/ﬂ Jdp =: 6.

Herev := £ is a probability measure subject fo (2.18)(@n d], P([¢, d])) and
Pl Codp [t
G_Q(b—a)(/c(x )m+/c< b)m>
/ d d
Q‘gJO;) (/C (x — a)’dv —i—/c (x — b)2du> :

Using [2.14),[(2.15)[(2.16) and (2]17) we get

x), Vax € lcd].

Thus

and

6 < %{(dl(c—i— d—2a) — cd+ a®) + (di(c+ d — 2b) — cd + b%)}
= —Jgfj‘:) {dl((C—F d)—(a+10b)) —cd+ ales bQ] ,
proving the claim. O

We make the following remark.
Remark 2.10(Remark on Theorem 3.9) (1) Case of:+d > a+b, usingd; < d we obtain

(2.20) dl((c—i-d)—(a—!—b)) —cd + az—;bQ < (d_a>2;‘(d_b)2.

(2) Case ot + d < a + b, usingd; > c we find that

(2.21) dy((c+d) — (a+b)) —cd + a2;b2 - (c—a)2_2|r(c—b)2'

Hence undef (2.18) inequality (2]19) is sharper thar] (2.8).
We also give

Corollary 2.11. Let all the assumptions in Theorém|2.9 hold. Then

(2.22) ‘%/Cdf( d,u——/f )da

s Tt — (o)) — o
s(b_a)[dl((wl) (a+0)) —cd+

By Remark 2.0, inequality (2]22) is sharper than|(2.5).

a’® + b?

Part B
Here we follow Fink’s work([6]. We require the following theorem.
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Theorem 2.12([6]). Letf: [a,b] — R, f("~V is absolutely continuous dn, b], » > 1. Then

(2.23) f(x
n— JSED®) (@ = b)F — [ D (a)(z — a)*
+;;(k!)( b—a )
1 ’ _ p\n—1 T (n)
+ (n =116 —a) /a (x — )" k(t,x) f™(t)dt

where

t—a, a<t<ax<b,
(2.24) k(t,x) = {

t—b a<z<t<b

For n = 1 the sum in[(2.23) is taken as zero.
We also need Fink’s inequality

Theorem 2.13([6]). Let £~ be absolutely continuous da, b) and f™ € L. (a,b), n > 1.
Then

n—1 b
(2.25) |% (f<x>+ZFk<x>> e R

£ o
n(n+ 1)I(b — a)

[(b—2)""" + (z —a)"™'], Vz € la,b],

where

226 o) o (n]; k:> ( FED(a) (@ — a);”_— C{w—n(b)(:c - b)‘“) |

Inequality (2.25) is sharp, in the sense that it is attained by an optjfhfat anyz € [a, b).
We give

Corollary 2.14. Let f~1 be absolutely continuous dm, b] and f™ € L., (a,b),n > 1. Then
Vz € [c,d] C [a,b] we have

! (f(fv) + im:c)) ot [ s

(AR Lyl (g gy
< ( )(b—a)[(b ) +( ) ]

1f oo,
= (n—f—)(b )"

(2.27)

Also we have

Proposition 2.15. Let f(*~Y) be absolutely continuous dn, b and f™ € L. (a,b), n > 1.
Let . be a finite measure of mass > 0 on

(le,d], P(le,d])), [e,d) < [a,b] S R.
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Then
K::%(l @ du+z /cd]Fk d,u)——/f
e y ;7;)"(’;:’_ " [% /[ d}(b — )" dp + % » (z — a)”“du}
(228) < H({HHU (b—a)".
Proof. By (2.27). 0

Similarly, based on Theorem A of|[6] we also conclude

Proposition 2.16. Let "~ be absolutely continuous da, b] and f™ € L,(a,b), wherel <
p < oo,n > 1. Lety be afinite measure of mass > 0 on([c, d], P([c, ])) [c, ] C [a,b] CR.

Herep’ > 1 such that + L = 1. Then

11 Gty | 1P
L d = dy | — —— d
n (m [C,d]f<x) 'u_’_;m/[c,d] Fi(@) M) b—a/a flw)dx

< (B((n Y+ L+ 1))1/p’||f<n>||p>
= n!(b— a)

1 np’+1 _ np'+1\1/p
'(;Ad]((x—a) g (b— ) dﬂ)
B((n—1)p+1,p' + 1))1/1”(() _ a)n—1+§ )
o : ( 7 1,

We make the following remark.
Remark 2.17. Clearly we have the following for
(2.30) g@):=0b—2)"" +(x —a)" < (b—a)", a<ax<b,
wheren > 1. Herex = “T“’ is the only critical number of and

S <a+b) :n(nJrl)M >0,

2 2n—2
giving thatg (“T“’) = “"ZZLM > ( is the global minimum of over|a, b]. Also g is convex over
la, b]. Therefore folc, d] C [a, b] we have

M = max {(z — a)""" + (b—z)"'}

c<z<d

(2.31) = max{(c—a)""" + (b — )", (d—a)"™ + (b— )"},
We get further that

(d—a)"™ + (b—d)"*, ifc+d>a+0
(2.32) M =

(c—a)™™ + (b —c)"*, ifc+d<a-+b.
If d =borc=aorboththen
(2.33) M= (b—a)"*.
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Based on Remaik 2.]L7 we give

Theorem 2.18.Let all assumptions, terms and notations be as in Propoditior] 2.15. Then

(1)

||f(n)||00 n+1 n+1
2+ (b —a) max{(c — a)""" + (b—¢)"*,
(2.34) (d—a)"™ + (b—d)""'}
||f(n)|| (d—a)”“+(b—d}”“, |fC+dZ a+b,
n(n+ 1)1(b — a) (c— a)"™ + (b— )", ifctd<a-tb
£ o
2. ———=(b—a)"
(2.35) - n(n—i—l)!(b )",
WhereK is as in [2.28). Ifd = b or ¢ = a or both, then[(2.35) becomes equality. When
d=0b, £ =dp and f(z) = = ) ,a <z <b, then |nequaI|ty4) is attained, i.e. it

becomes equality, proving th-34) is a sharp inequality.
(2) We also have

(2:36) sup K < R.H.S[2.34)
neM (c,d)
and
(2.37) sup sup K | < R.H.S[[2.3b)
St \neM(ed)

Proof. It remains to prove only the sharpness, via attainability of (2.34) whenb. In that
case[(2.34) collapses to

1/(1
(2.38) |- <— flz du+z / Fi(z d,u) ——/ fla
M Jicd [c,b]
< 1™l
n(n+1)! <b )"
The optimal measure here will B = ¢;,; and then|(2.38) becomes
! o 1™
2. — F —a)”.
239) | (f(b)+; k(b)) [ ) < Ul
The optimal function here will be
py = <<
n:
Then we see that
n—k+1
*(k—1) _ (z—a) 1 _
f (I>_—(n—k‘—|—1)!’ k—1=0,1,...,n—2,

andf**1(q) =0fork—1=0,1,...,n—2. Clearly hereF},(b) =0,k =1,...,n— 1. Also

we have ,
. ~_(b—a)"
= [ = g and =

J. Inequal. Pure and Appl. Math?(5) Art. 185, 2006 http://jipam.vu.edu.au/
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Putting all these elements in (2]39) we have
b—a) (b-an_ (b-a

nn! (n+D!  nlm+1)’
proving the claim. O

Next, we again restrict ourselves to the subclass/ot, d) of finite measureg with given
first moment and by the use of the Geometric Moment Theory Method| 5eé&[[7],][1], [3], we
produce an inequality sharper than (2.36). For that we need the follwing result.

Lemma 2.19. Let|c,d] C [a,b] C R andv be a probability measure ofic, d], P([c,d])) such
that

(2.40) /d rdv =d, € [c,d]
is given,n > 1. Then !
(2.41) Wy = sup / (z —a)"dv
v as in @.40) J [c.d]
(2.42) = (Zn:(d —a)"*(c— a)k> (dy —d) + (d —a)".
k=0

Proof. We observe the graph

Gy ={(z,(x —a)"™): c <z < d},
which is a convex arc above theaxis. We form the closed convex hull 6f; and we call
it G1, which has as an upper concave envelope the line segfédrim (c, (c — a)"*') to

(d, (d — a)™*1). Call ¢, the line through?,. The line/; intersects thes-axis at(t,0), where
a <t < c. We need to determinge the slope of; is

(d—a)" — (c—a)"! -

p— => (d—a)"F(c—a)

k=0

m =

The equation of liné; is
y=m-z+(d—a)"" —md.
Hencemt + (d — a)"** — md = 0 and
- n+1
t—=d— & _
Next we consider the moment right triangle with verti¢es)), (d,0) and(d, (d — a)"™).
Clearly(d;,0) is betweerit, 0) and(d, 0). Consider the vertical line = d,, it intersectd; atQ.

Clearly theni?; = length((dy, 0), @), the line segment of which length we find by the formed
two similar right triangles with vertice§(t, 0), (di,0), Q} and{(¢,0), (d,0), (d, (d — a)"*')}.
We have the equal ratios

dy—t 4%}

d—t (d—a) 1’

di —t
_ _ n+1 1

We also need

J. Inequal. Pure and Appl. Math?(5) Art. 185, 2006 http://jipam.vu.edu.au/
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Lemma 2.20. Let|[c, d] C [a,b] € R andv be a probability measure ofic, d], P([c,d])) such
that

(2.43) / rdv =d, € [c,d]
[c,d]

is given,n > 1. Then

1)

Wy:=  sup / (b—2)"dv
v as in@as) /led
(2.44) = (Z(b — )" % - d)k> (c—di)+ (b—c)"th
k=0

(2) The following result holds

(2.45) sup / [(z—a)"t + (b— )" dv = W) + W,
v as in@as) /led

whereW; is as in [2.41).
Proof. (1) We observe the graph
Gy ={(z,(b—2)"""): c <z <d},

which is a convex arc above theaxis. We form the closed convex hull 6f, and we
call it G, which has as an upper concave envelope the line segiémm (c, (b —
c)"Y to (d, (b — d)"*1). Call 4, the line throughl,. The lined, intersects the-axis at
(t*,0), whered < t* < b. We need to determingé: The slope ot is

m = (b — C)n+l : Elb - d>n+ — (Z(b o C)nfk<b o d)k) .

k=0

The equation of liné is
y=mz+ (b—c)"" —mc
Hence
m*t* 4 (b — )"t —mfe =0
and
(b _ C)n+1
m* '
Next we consider the moment right triangle with verticegb — ¢)"*1), (c,0), (t*,0).
Clearly (dy,0) is between(c,0) and(t*,0). Consider the vertical line = d,, it inter-
sects/, atQ*. Clearly then

W, = length((d,0), Q*),

t* =c—

the line segment of which length we find by the formed two similar right triangles with

vertices{Q*, (d,0), (t*,0)} and{(c, (b — ¢)"™), (¢, 0), (¢t*,0)}. We have the equal

ratios
t* —d; W,

t*—c  (b—c)ntl’

Wy = (b—c)"* (ﬂ) .

t* —c

J. Inequal. Pure and Appl. Math?(5) Art. 185, 2006 http://jipam.vu.edu.au/
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(2) Similar to that above and obvious.

We make the following useful remark.

Remark 2.21. By Lemmag 2.19, 2.20 we obtain

= <Z(d —a)" *(c - a)k> (dy — d)

k=0

k=0
n > 1.

We present the following important result.

Theorem 2.22.Let £~ be absolutely continuous dn, b) and ™ € L. (a,b), n > 1. Let
w be a finite measure of mass > 0 on ([c, d], P([c, d])), [¢,d] C [a,b] C R. Furthermore we
assume that

1
(2.47) — rdp =d; € [c,d]

M Jled)
is given. Then
(2.48) sup K < 17 s

nasabove  n(n+Dlb—a)”

and
(2.49) K < R.H.S[(24B),
whereK is as in [2.28) and\ is as in [2.46).
Proof. By Propositionf 2.15 and Lemmfs 2,19 &nd 2.20. O

We make the following remark.

Remark 2.23. We compareV/ as in [2.3]) and (2.32) andas in [2.46). We easily obtain that
(2.50) A< M.

As a result we have thdt (Z}49) is sharper than (2.34) [and]|(2.48) is sharp€r than (2.36). That is
reasonable since we restricted ourselves to a subclasg afd) of measureg: by assuming
the moment condition (2.47).

We finish with the following comment.

Remark 2.24.
) Whenc = a andd = b thend; plays no role in the best upper bounds we found
with the Geometric Moment Theory Method. That is, the restriction on meaguries
the first momentl; has no effect in producing sharper estimates as it happens when
a < ¢ < d < b. More precisely we notice that:

(a)
(2.51) R.H.S(2.19) = %(b —a) = R.H.S,

J. Inequal. Pure and Appl. Math?(5) Art. 185, 2006 http://jipam.vu.edu.au/
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(b) by (2.46) here\ = (b — a)"*! and
_ 1™l n_
(2.52) R.H.S(2.48) = Y 1)!(b a)” = R.H.S(2.35)).
Il) Further differences of general means over @anyd;| and|c,, d2| subsets ofa, b] (even

disjoint) with respect tq:; and ., respectively, can be found by straightforward appli-
cation of the above results and the triangle inequality.
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