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ABSTRACT. A generalized form of the Hermite-Hadamard inequality for convex Lebesgue in-
tegrable functions are obtained.
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The classical Hermite-Hadamard inequality gives us an estimate, from below and from above,
of the mean value of a convex functionf : [a, b] → R :

(HH) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
.

See [2, pp. 50-51], for details. This result can be easily improved by applying (HH) on each of
the subintervals[a, (a + b)/2] and[(a + b)/2, b]; summing up side by side we get
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)]
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b− a

∫ b

a

f (x) dx(SLHH)

≤ 1

2

[
f

(
a + b

2

)
+

f (a) + f (b)

2

]
.(SRHH)

Usually, the precision in the (HH) inequalities is estimated via Ostrowski’s and Iyengar’s
inequalities. See [2], p. 63 and respectively p. 191, for details. Based on previous work done
by S.S. Dragomir and A.McAndrew [1], we shall prove here several better results, that apply to
a slightly larger class of functions.

We start by estimating the deviation of the support line of a convex function from the mean
value. The main ingredient is the existence of the subdifferential.

The authors thank to Constantin P. Niculescu and Josip Pečaríc for many valuable suggestions.
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Theorem 1. Assume thatf is Lebesgue integrable and convex on(a, b). Then

1

b− a

∫ b

a

f(y)dy + ϕ(x)

(
x− a + b

2

)
− f(x)

≥
∣∣∣∣ 1

b− a

∫ b

a

|f(y)− f(x)| dy − |ϕ(x)| (x− a)2 + (b− x)2

2(b− a)

∣∣∣∣
for all x ∈ (a, b).

Hereϕ : (a, b) → R is any function such thatϕ(x) ∈ [f ′
−(x), f ′

+(x)] for all x ∈ (a, b).

Proof. In fact,
f(y) ≥ f(x) + (y − x)ϕ(x)

for all x, y ∈ (a, b), which yields

f(y)− f(x)− (y − x)ϕ(x) = |f(y)− f(x)− (y − x)ϕ(x)|(Sd)

≥ ||f(y)− f(x)| − |y − x| |ϕ(x)|| .
By integrating side by side we get∫ b

a

f(y)dy − (b− a)f(x) + (b− a)

(
x− a + b

2

)
ϕ(x)

≥
∫ b

a

||f(y)− f(x)| − |y − x| |ϕ(x)|| dy

≥
∣∣∣∣∫ b

a

|f(y)− f(x)| dy − |ϕ(x)|
∫ b

a

|y − x| dy

∣∣∣∣
=

∣∣∣∣∫ b

a

|f(y)− f(x)| dy − |ϕ(x)| (x− a)2 + (b− x)2

2

∣∣∣∣
and it remains to simplify both sides byb− a. �

Theorem 1 applies for example to convex functions not necessarily defined on compact in-
tervals, for example, tof(x) = (1− x2)

−α
, x ∈ (−1, 1), for α ≥ 0.

Theorem 2. Assume thatf : [a, b] → R is a convex function. Then

1

2

[
f(x) +

f(b)(b− x) + f(a)(x− a)

b− a

]
− 1

b− a

∫ b

a

f(y)dy

≥ 1

2

∣∣∣∣ 1

b− a

∫ b

a

|f(x)− f(y)| dy − 1

b− a

∫ b

a

|x− y| |f ′(y)| dy

∣∣∣∣
for all x ∈ (a, b).

Proof. Without loss of generality we may assume thatf is also continuous. See [2, p. 22]
(where it is proved thatf admits finite limits at the endpoints).

In this casef is absolutely continuous and thus it can be recovered from its derivative. The
functionf is differentiable except for countably many points, and lettingE denote this excep-
tional set, we have

f(x) ≥ f(y) + (x− y)f ′(y)

for all x ∈ [a, b] and ally ∈ [a, b]\E .This yields

f(x)− f(y)− (x− y)f ′(y) = |f(x)− f(y)− (x− y)f ′(y)|
≥ ||f(x)− f(y)| − |x− y| · |f ′(y)|| ,
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so that by integrating side by side with respect toy we get

(b− a)f(x)− 2

∫ b

a

f(y)dy + f(b)(b− x) + f(a)(x− a)

≥
∣∣∣∣∫ b

a

|f(x)− f(y)| dy −
∫ b

a

|x− y| |f ′(y)| dy

∣∣∣∣
equivalently,

f(x) +
f(b)(b− x) + f(a)(x− a)

b− a
− 2

b− a

∫ b

a

f(y)dy

≥ 1

b− a

∣∣∣∣∫ b

a

|f(x)− f(y)| dy −
∫ b

a

|x− y| |f ′(y)| dy

∣∣∣∣
and the result follows. �

A variant of Theorem 2, in the case wheref is convex only on(a, b), is as follows:

Theorem 3. Assume thatf : [a, b] → R is monotone on[a, b] and convex on(a, b). Then

1

2

[
f(x) +

(x− a)f(a) + (b− x)f(b)

b− a

]
− 1

b− a

∫ b

a

f(y)dy

≥
∣∣∣∣ 1

b− a

∫ b

a

sgn(x− y)f(y)dy

+
1

2(b− a)
[f(x)(a + b− 2x) + (x− a)f(a) + (b− x)f(b)]

∣∣∣∣
for all x ∈ (a, b).

Proof. Consider for example the case wheref is nondecreasing on[a, b]. Then∫ b

a

|f(x)− f(y)| dy =

∫ x

a

|f(x)− f(y)| dy +

∫ b

x

|f(x)− f(y)| dy

= (x− a)f(x)−
∫ x

a

f(y)dy +

∫ b

x

f(y)dy − (b− x)f(x)

= (2x− a− b)f(x)−
∫ x

a

f(y)dy +

∫ b

x

f(y)dy.

As in the proof of Theorem 2, we may restrict ourselves to the case wheref is absolutely
continuous, which yields∫ b

a

|x− y| |f ′(y)| dy =

∫ x

a

(x− y)f ′(y)dy +

∫ b

x

(y − x)f ′(y)dy

= (a− x)f(a) + (b− x)f(b) +

∫ x

a

f(y)dy −
∫ b

x

f(y)dy.

By Theorem 2, we conclude that

1

2

[
f(y) +

f(b)(b− y) + f(a)(y − a)

b− a

]
− 1

b− a

∫ b

a

f(x)dx
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≥ 1

2

∣∣∣∣ 2

b− a

[∫ b

x

f(y)dy −
∫ x

a

f(y)dy

]
+

f(x)(2x− a− b)

b− a
− (x− a)f(a) + (b− x)f(b)

b− a

∣∣∣∣ .

The case wheref is nonincreasing can be treated in a similar way. �

Forx = (a + b)/2, Theorem 3 gives us

(UE)
1

2

[
f

(
a + b

2

)
+

f(a) + f(b)

2

]
− 1

b− a

∫ b

a

f(y)dy

≥
∣∣∣∣ 1

b− a

∫ b

a

sgn

(
a + b

2
− y

)
f(y)dy +

f(a) + f(b)

4

∣∣∣∣ ,

which in the case of the exponential function means

1

2

[
exp

a + b

2
+

exp a + exp b

2

]
− exp b− exp a

b− a

≥
∣∣∣∣ 1

b− a

∫ b

a

sgn

(
a + b

2
− y

)
exp y dy +

exp a + exp b

4

∣∣∣∣
for all a, b ∈ R, a < b, equivalently,

1

2

[√
ab +

a + b

2

]
− b− a

ln b− ln a
≥

∣∣∣∣∣a + b

4
− a + b− 2

√
ab

ln b− ln a

∣∣∣∣∣
for all 0 < a < b.

This represents an improvement onPolya’s inequality,

(Po)
2

3
·
√

ab +
1

3
· a + b

2
>

b− a

ln b− ln a

since

2

3
·
√

ab +
1

3
· a + b

2
>

1

2

√
ab +

a + b− 2
√

ab

ln b− ln a
.

In fact, the last inequality can be restated as

(x + 1)2 ln x > 3 (x− 1)2

for all x > 1, a fact that can be easily checked using calculus.
As Professor Niculescu has informed us, we can embed Polya’s inequality into a long se-

quence of interpolating inequalities involving the geometric, the arithmetic, the logarithmic and
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the identric means:
√

ab <
(√

ab
)2/3

(
a + b

2

)1/3

<
b− a

ln b− ln a
<

1

e

(
bb

aa

)1/(b−a)

<
2

3
·
√

ab +
1

3
· a + b

2

<

√
a + b

2

√
ab

<
1

2

(
a + b

2
+
√

ab

)
<

a + b

2

for all 0 < a < b.

Remark 4. The extension of Theorems 1 – 3 above to the context of weighted measures is
straightforward and we shall omit the details. However, the problem of estimating the Hermite-
Hadamard inequality in the case of several variables is left open.
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