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ABSTRACT. There are two natural metrics defined on an arbitrary convex cone: Thompson’s
part metric and Hilbert’s projective metric. For both, we establish an inequality giving informa-
tion about how far the metric is from being non-positively curved.
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1. INTRODUCTION

Let C' be a cone in a vector spate ThenC' induces a partial ordering dn given byz < y
ifand only ify —z € C. Foreach: € C\{0},y € V, defineM (y/x) := inf{\ e R: y < Az}.
Thompson's part metrion C' is defined to be

dr(z,y) = logmax (M (z/y), M (y/x))
andHilbert’s projective metrioon C' is defined to be
dp(2,y) = log (M (x/y) M (y/x)) -

Two points inC' are said to be in the same part if the distance between them is finite in the
Thompson metric. I€ is almost Archimedearithen, with respect to this metric, each partof

is a complete metric space. Hilbert’s projective metric, however, is only a pseudo-metric: it is
possible to find two distinct points which are zero distance apart. Indeed it is not difficult to see
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2 ROGERD. NUSSBAUM AND CORMAC WALSH

thatdy (z,y) = 0 if and only if x = Ay for some\ > 0. Thusdy is a metric on the space of
rays of the cone. For further details, see Chapter 1 of the monograph [23].

Suppose”' is finite dimensional and let be a cross section @, that isS := {z € C :
[(x) = 1}, wherel : V' — R is some positive linear functional with respect to the ordering on
V. Supposer,y € S are distinct. Letz andb be the points in the boundary 6fsuch that,
x, iy, andb are collinear and are arranged in this order along the line in which they lie. It can
be shown that the Hilbert distance betweeandy is then given by the logarithm of the cross
ratio of these four points:

. b |ay]
byl |az]

Indeed, this was the original definition of Hilbert. 3fis the open unit disk, the Hilbert metric
is exactly the Klein model of the hyperbolic plane.

An interesting feature of the two metrics above is that they show many signs of being non-
positively curved. For example, when endowed with the Hilbert metric, the Lorentz cone
{(t,z1,...,2,) € R" 2 > 2 + ... + 22} is isometric ton-dimensional hyperbolic space.

At the other extreme, the positive coR& := {(z1,...,2,) : ; > 0for 1 <7 < n} with ei-

ther the Thompson or the Hilbert metric is isometric to a normed space [11], which one may
think of as being flat. In between, for Hilbert geometries having a strictly-co6gxoundary

with non-vanishing Hessian, the methods of Finsler geometry [28] apply. It is known that such
geometries have constant flag curvaturfie More general Hilbert geometries were investigated

in [17] where a definition was given of a point of positive curvature. It was shown that no
Hilbert geometries have such points.

However, there are some notions of non-positive curvature which do not apply. For example,
a Hilbert geometry will only be a CAT(0) space (séé [6]) if the cone is Lorentzian. Another
notion related to negative curvature is that of Gromov hyperbolicity [15].!In [2], a condition is
given characterising those Hilbert geometries that are Gromov hyperbolic. This notion has also
been investigated in the wider context of uniform Finsler Hadamard manifolds, which includes
certain Hilbert geometries [12].

Busemann has defined non-positive curvaturecfmrd space§/]. These are metric spaces
in which there is a distinguished set of geodesics, satisfying certain axioms. In such a space,
denote bym,, the midpoint along the distinguished geodesic connecting the pair of points
andy. Then the chord space is non-positively curved if, for all points, andy in the space,

dH(xay) =lo

1
(1.2) d(Muyz, Myyy) < §d(x, Y),

whered is the metric.

In the case of the Hilbert and Thompson geometries on a part of a closed’ctimere will
not necessarily be a unique minimal geodesic connecting each pair of points. However, it is
known that, settingg := M(y/z;C) anda := 1/M (z/y; C), the curvep : [0,1] — C':

pr—o pas —ap® .
(1.2) o(s;x,y) = (ﬁ_@)y—i_(ﬁ——a)x’ if 3+#a,

afx, if 6=«

is always a minimal geodesic fromnto y with respect to both the Thompson and Hilbert metrics.

We view these as distinguished geodesics. If the comefinite dimensional, then each part of

C will be a chord space under both the Thompson and Hilbert metrics. Notice that the geodesics
above are projective straight lines. If the cone is strictly convex, these are the only geodesics that
are minimal with respect to the Hilbert metric. For Thompson’s metric, if two points are in the
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A METRIC INEQUALITY FOR THE THOMPSON ANDHILBERT GEOMETRIES 3

same part o and are linearly independent, then there are infinitely many minimal geodesics
between them.

In this paper we investigate whether inequalities similaf to] (1.1) hold for the Hilbert and
Thompson geometries with the geodesics giveq in (1.2). We prove the following two theorems.

Theorem 1.1. Let C' be an almost Archimedean cone. Suppose y € C are in the same
part. Also suppose théit< s < 1 andR > 0, and thatdy (u, z) < Randdy(u,y) < R. If the
linear span of{u, x,y} is 1- or 2-dimensional, thedr (¢(s; u, x), ¢(s;u,y)) < sdr(z,y). In
general

2(1 — e )
1—e R
Note that the bracketed value on the right hand side of this inequality is strictly increasing

in R. As R — 0, this value goes te, which reflects the fact that in small neighborhoods the
Thompson metric looks like a norm. Ag — oo, the bracketed value goesio- s.

(13) dr(o(s.a).olsi) < | o] drte.

Theorem 1.2. Let C' be an almost Archimedean cone. Suppose y € C are in the same
part. Also suppose théit< s < 1 andR > 0 and thatdy (u,z) < Randdy(u,y) < R. If the
linear span of{u, z, y} is 1- or 2-dimensional, thew; (¢(s; u, x), ¢(s;u,y)) < sdy(z,y). In
general

(1.4) Az (8(5:u,2), 8(s; ) < [

1 — efRs

m} d(z,y).

Again, the bracketed value on the right hand side increases strictly with incrdasinlyis
time, it ranges betweenask — 0 and1 asR — oo.

Our method of proof will be to first establish the results wiféis the positive conéR?,
with N > 3. It will be obvious from the proofs that the bounds given are the best possible in
this case. A crucial lemma will state that any finite sehalements of a Thomson or Hilbert
geometry can be isometrically embeddedR[ﬁ"’l) with, respectively, its Thompson or Hilbert
metric. This lemma will allow us to extend the same bounds to more general cones, although in
the general case the bounds may no longer be tight.

A special case of Theorem 1.2 was proved.in [29] using a simple geometrical argument. It
was shown that if two particles start at the same point and travel along distinct straight-line
geodesics at unit speed in the Hilbert metric, then the Hilbert distance between them is strictly
increasing. This is equivalent to the special case of Thepreém 1.2dvHenz) = dy(u,y) and
R approaches infinity.

A consequence of Theorems]1.1 1.2 is that both the Thompson and Hilbert geometries
are semihyperbolic in the sense of Alonso and Bridson [1]. Recall that a metric space is semi-
hyperbolic if it admits a bounded quasi-geodesic bicombing. A bicombing is a choice of path
between each pair of points. We may use the one given by

t .
1) (m,m,y) , iftel0,d(x,y)]

Y, otherwise

Gy (t) ==

for each pair of points andy in the same part of’. Hered is either the Thompson or Hilbert
metric. This bicombing is geodesic and hence quasi-geodesic. To say it is bounded means that
there exist constant®/ ande such that

d(c(%y) (t>7 C(w,Z) (t)) <M max(d(x, w)a d(y7 2)) + €
for eachz, y, w, z € C'andt € [0, ).
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4 ROGERD. NUSSBAUM AND CORMAC WALSH

Corollary 1.3. Each part ofC' is semihyperbolic when endowed with either Thompson’s part
metric or Hilbert’s projective metric.

It should be pointed out that for some cones there are other good choices of distinguished
geodesics. For example, for the cone of positive definite symmetric matriceg:yamatural
choice would bes(s; X, Y) := XV2(X~12y X~1/2)s X2 for X, Y € Sym(n) ands € [0, 1].

It can be shown that, with this choice, Sym is non-positively curved in the sense of Buse-
mann under both the Thompson and Hilbert metrics. This result has been generalized to both
symmetric cones [16] and to the cone of positive elements(¢f-algebral[10].

Although Hilbert's projective metric arose in geometry, it has also been of great interest to
analysts. This is because many naturally occurring maps in analysis, both linear and non-linear,
are either non-expansive or contractive with respect to it. Perhaps the first example of this is due
to G. Birkhoff [3,[4], who noted that matrices with strictly positive entries (or indeed integral
operators with strictly positive kernels) are strict contractions with respect to Hilbert's metric.
References to the literature connecting this metric to positive linear operators can be found
in [14,[13]. It has also been used to study the spectral radii of elements of Coxeter graups [20].
Both metrics have been applied to questions concerning the convergence of iterates of non-
linear operators 8, 16, 23, 24,125]. The two metrics have been used to solve problems involving
non-linear integral equations [27,/30], linear operator equations [8, 9], and ordinary differential
equations[B, 25, 31, 832]. Thompson’s metric has also been usefully applied|in [24, 26] to obtain
“DAD theorems”, which are scaling results concerning kernels of integral operators. Another
application of this metric is in Optimal Filtering [19], while Hilbert's metric has been used in
Ergodic Theory/[18] and Fractal Diffusions [21].

2. PROOFS

A cone is a subset of a (real) vector space that is convex, closed under multiplication by
positive scalars, and does not contain any vector subspaces of dimension one. We say that a
cone is almost Archimedean if the closure of its restriction to any two-dimensional subspace is
also a cone.

The proofs of Theorenijs 1.1 and]L.2 will involve the use of some infinitesimal arguments. We
recall that both the Thompson and Hilbert geometriesamsler spaces [22]. I{ is a closed
cone inRY with non-empty interior, therint C' can be considered to be aw-dimensional
manifold and its tangent space at each point can be identifiedRalitHf a norm

w2 = inf{a > 0: —az < v < ax}

is defined on the tangent space at each poiat int C, then the length of any piecewigg'
curvea : [a,b] — int C' can be defined to be

b
LT (a) = / o ()] ) dt.
The Thompson distance between any two points is recovered by minimizing over all paths
connecting the points:
dr(z,y) = inf{LT(a) : a € PC[z,y]},

where PC'[z, y] denotes the set of all piecewig# pathsa : [0,1] — int C with a(0) = z
anda(1) = y. A similar procedure yields the Hilbert metric when the norm above is replaced
by the semi-norm

= Mv/z) —m(v/z).
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HereM (v/x) is as before anéh(v/z) := sup{\ € R : v > Az}. The Hilbert geometry will be
Riemannian only in the case of the Lorentz cone. The Thompson geometry will be Riemannian
only in the trivial case of the one-dimensional cdhe.

Our strategy will be to first prove the theorems for the case of the positiveRPnand then
extend them to the general case. The proof in the ca& ofill involve investigation of the
mapg : int RY — int RY:

(2.1) g9(x) == ¢(s; 1, )
P (PN i,
= b—a b—a
a’1, if b= a,
whereb := b(z) := max; ; anda := a(x) := min, z;. Heres € (0, 1) is fixed and we are using
the notatiorl := (1,...,1). The derivative ofy atz € intRY is a linear map fronR" — R,

Taking| - [; as the norm on the domain and|; ,, as the norm on the range, the normytr)
is
lg' (@) = sup{|g' () (v) |y : 0]z < 1}.
If, instead, we take the appropriate infinitesimal Hilbert semi-norms on the domain and range,
then the norm of/(z) is given by

lg' (@)l = sup{lg' () (v) gfa) * vl < 1}
For each pair of distinct integefsand.J contained in{1,..., N}, let

Upy = {35 € tRY 10 <z <z <ayforallie{1,.... NN\{I, J}}.

On each sel/; 5, the mapy is C* and is given by the formula

o) = (xj — xf) - (xei — :C[xf}) "
Ty — Xy Ty — X1
Let U denote the union of the set§ ;; I,J € {1,...,N}, I # J. If z € RY\U, then there
must exist distinct integers, n € {1, ..., N} with eitherz,, = z,,, = max; z; orz,, = z,,, =
min; x;. The setr € Rﬁ with z,, = z,, has (V-dimensional) Lebesgue measure zero, so the
complement of/ in RY has Lebesgue measure zero.

We recall the following results from [22]. The first is a combination of Corollaries 1.3 and
1.5 from that paper.

Proposition 2.1. LetC' be a closed cone with non-empty interior in a finite dimensional normed
spaceV. Supposé&- is an open subset ahit C' such thaty(s; z,y) € G forall z,y € G and

€ [0,1]. Suppose also thgt : G — int C' is a locally Lipschitzian map with respect to the
norm onV. Then

inf{k > 0:dr(f(z), f(y)) < kdr(x,y) forall z,y € G} = ess sup||f'(2)||r.
zeG

Itis useful in this context to recall that every locally Lipschitzian map is Fréchet differentiable
Lebesgue almost everywhere. The next proposition is a special case of Theorem 2.5 in [22].

Proposition 2.2. Let C be a closed cone with non-empty interior in a normed sgace finite
dimensionN. Let! be a linear functional ori/ such that/(z) > 0 for all z € intC, and
defineS := {z € C : I(z) = 1}. LetG be a relatively-open convex subsetofSuppose that
f: G — int C'is a locally Lipschitzian map with respect to the normionThen

inf{k > 0:du(f(z), fy)) < kdy(x,y)forall z,y € G} = ess sup||f'(2)|| 7,
zeG
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where|| ()] 5 := sup{|f'(x) ()|}, : [v]if < 1,1(v) = 0}. Here the essential supremum is
taken with respect to th& — 1-dimensional Lebesgue measure$in

Since we wish to apply Propositions P.1 2.2 to the maye must prove that it is locally
Lipschitzian.

Lemma 2.3. The mapy : int(RY) — int(RY) defined by[(2]1) is locally Lipschitzian.

Proof. We use the supremum nor||, := max; |z;| onRY. Clearly, |b(z) — b(y)| < ||z —
ylloo anda(z) — a(y)] < ||z — y||e for all z,y € int(RY). Therefore bothu andb are
Lipschitzian with Lipschitz constant 1.

Lety : [0,00) — [0, 00) be defined by

t°—1

—, fort #1,
y(t) =< t—1

s, fort =1.

Theng may be expressed as

g(@) = a* 1y (bfa)w + a*(1 = (bfa) )1,
The Binomial Theorem gives that
> S
t) = t—1F  forjt—1| <1
0= (3)e-v forle—n

and soy is C* on a neighborhood of 1. Hence it@&* on [0, oo), and thus locally Lipschitzian.
It follows thatg is also locally Lipschitzian. O

2.1. Thompson’s Metric. We have the following bound on the norm gfx) with respect to
the Thompson metric.

Lemma 2.4. Consider the Thompson metric @mtRf. Letz € Uy n. If N =10r N =2then
the norm ofy’ at = is given byi|¢'(z)||r = s. If N > 3, then

s+1 s S
on —an_1 (TN T (x5 — x)rN_1
2.2) [|g(x)|]p = TN IN-1 (—) 4
( ) ||g( )||T TN — T 1) En_q En_q

s+1
+£L'N_1—ZE18<JI1) N
TN — T1 rn) Eny

wheref(t) .= (1 —s) — t* + st and E;(z) := E; := x;(a% — o7) + vyxf — x12%.

Proof. If N = 1 andz > 0, theng(z) = z°. We leave the proof in this case to the reader and
assume thatv > 2.
Forz € U, v,

T3 — T3 TNTS — X125
g(%)z(N 1)x+(—N1 1N)11.

IN — 1 IN — T1
Let

hale) = S5 o)

Straightforward calculation gives, for eaghe {1,..., N},
hlj ([E) = 851]'
and th(x) = 55Nj'
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Here),; is the Kronecker delta function which takes the valuk: = j and the valu® if ¢ # j.
Clearly,h;;(z) =0forl <i < Nandj ¢ {1,i,N}. Forl <i <N,

—T; x xiJrl

(2:3) halr) =220 ()5 >0,
Ti—T x oyt

(2.5) hiv(z) = —Zrg (H) <o,

Inequalities [(2.B) { (2]5) rely on the fact tht) > 0 for ¢ > 0. This may be established by
observing tha#(1) = ¢'(1) = 0 and®”(t) > 0 for¢t > 0.
Let 5
B" := {v e RY : max; Jv;| < 1}.
We wish to calculate

(2.6) lg'(x)[| = sup {

Z hijv;

J

:1§i§N,U€BT}.

Fori = 1ori = N, we have| ), h;;v;| < s for any choice ofv € BT, If N = 2, then it
follows that||¢'(x)||r = sforall z € Uy y.
For the rest of the proof we shall therefore assume that 3. Forl < i < N, itis clear

rom inequalities|(2.3 t - h;:v;| is maximized when; = v; = 1 andvy = —1.
from i lities[(213) [ (2]5) thal", v, | imized wh 1 and 1

In this case

1 |zny —x; TN T; — T T
2.7 hivi| = — =) a5t + (25, — 25z + 0= ) a3t
(2.7) Z il =g [xN—x1 (x) e Bl el K0
2.8) _ C1%; —1—02’

C3T; + C4

wherecy, ¢y, c3, andcy depend one; andx but not onx;. Observe thatsz; + ¢4 # 0 for

r1 < x; < xy. Given this fact, the general form of expressipn](2.8) leads us to conclude
that it is either non-increasing or non-decreasing when regarded as a funciiprivéhen we
substituter; = x;, we get] Zj hijv;| = s. When we substitute; = xy, we get

| - 2L /)

= —s.
1 —(21/2x)

Now, writing T'(¢) := 2(1 — ¢)/(1 — t) — s, we havel”(¢t) = —2t°0(t~')/(1 — ¢)*> < 0, in

other wordsl" is decreasing 010, 1). In particular,I'(x;/zy) > lim,,; I'(f) = s. Therefore

expression[(2]7) is non-decreasingzin So, the supremum i (2.6) is attained wheis as

above and = N — 1. Recall thatzy_, is the second largest componentofThe conclusion

follows. OJ

Corollary 2.5. LetR > 0. If N = 1 or N = 2, theness sup||¢'(z)||r : € intRY} = s. If
N > 3, then

(2.9)

2(1 — —Rs
ess supll/ ()| + du(xr 1) < ) = L)
— €
Proof. Note that ifo : RY — R is some permutation of the components, theno(z) =
o o g(z) for all z € RY. Furthermoreg will be an isometry of both the Thompson and Hilbert
metrics. It follows that, given any € U; ; with I, J € {1,..., N}, I # J, we may reorder the

components of to find a pointy in U, y such that|¢'(v)||z = ||¢'(z)||7- Recall, also, that the
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complement of/ in int RY hasN-dimensional Lebesgue measure zero. From these two facts,
it follows that the essential supremum|of (z)||r over Br(1) := {z € intRY : dy(z, 1) <
R} is the same as its supremum ovex (1) N Uy y.

In the case whetV = 1 or N = 2, the conclusion follows immediately.

For N = 3, we must maximize expressidn (R.2) under the constraints zy_; < zy and
x1/xy > exp(—R). First, we maximize over y_;, keepingr; andxy fixed. In the proof of
the previous lemma, we showed that expresgior) (2.2) is non-decreasirg,inand so it will
be maximized when _; approaches . Here it will attain the value

2(1 ~ (@ /xN)S>
= (/2] —s=1I(x1/xp).

We also showed thdf is decreasing orf0,1). Therefore[(2.10) will be maximized when
x1/xn = exp(—R), where it takes the value
2(1 —e )
1—e R

(2.10)

— S.

OJ

Lemma 2.6. Let C' be an almost Archimedean cone and{et : i € I} be a finite collection
of elements of” of cardinalityn, all lying in the same part. Denote BY the linear span of
{z; : i € I} and writeCy, := C N W. Denote byint Cy the interior of Cy, as a subset
of W, using onWW the unique Hausdorff linear topology. Then each of the points € [

is contained inint Cy,. Furthermore, there exists a linear mdp : W — R~V such that

F(int Cy) C int Ri(n_l) and
(2.11) M (2; /25, C) = M(F(2;)/F(x;); R1" )
for eachi, j € I.

Proof. Since the point$z; : i € I} all lie in the same part af’, they also all lie in the same part
of Cy,. Therefore there exist positive constaatssuch thatr; — a;;z; € Cy forall i, j € I.
If we definea := min{a;; : 7,5 € I} it follows thatz; + dz; € Cyw wheneverd| < a and
i,j € I. Now selectiy, ..., € I suchthat{z;, : 1 < k < m} form a linear basis folV.
For eachy € W, we defing||y|| := max{|by| : 1 < k < m}, wherey = " | byx;, is the
unique representation gfin terms of this basis. The topology &% generated by this norm is
the same as the one we have been usingy|Iif < a/m andj € I, thenz; + mbyz;, € Cy for
1 < k < m. It follows that
1 m

T;+y= E ;(33‘] + mbkxzk) e Cw
whenevet|y|| < a/m. This proves that,; € int Cy, forall j € 1.

It is easy to see that;; := M(z;/x;;C) = M(x;/z;;Cw) foralli,j € 1,7 # j. Observe
that3;,2; — z; € 0Cy . Sinceint Cyy is a non-empty open convex set which does not contain
Bijx; — z;, the geometric version of the Hahn-Banach Theorem implies that there exists a linear
functional f;; : W — R and a real number;; such thatf;;(5;x; — z;) < ri; < fi;(2) for all
z € int Cy. Becausd is in the closure ofint Cy and f;;(0) = 0, we haver;; < 0. On the
other hand, iff;;(z) < 0 for somez € int Cyy, then considering;;(¢z) we see thaff;; would
not be bounded below ot Cyy. It follows thatr;; = 0. Sinceg;;xz; — x; is in the closure of
int C'y,, we must havg‘ij(ﬁijwj — l’z) = 0.

Now, define

F:W =R 2 (fi(2))iger, iz
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so thatf;;(z);¢,j € I,i # j are the components @f(z). Clearly, F' is linear and mapsnt Cy,
n=1 Also, foralli, j € I, # §,

into int R
M(F(z;)/F(z;); RI™ D) = inf{A > 0 : f(\z; — ;) > 0forallk,l € I,k #1}.

For XA > 3;;, we have\z; — z; € clCy and sofy(Az; — ;) > 0forall k,l € I,k # 1. On
the other hand, foA < 3;;, we havef;;(A\z; — z;) < 0 sincef;;(z;) > 0. We conclude that

M (F(x:)/F(z;); R V) = 3. O
Lemma 2.7. Theorenj 1]1 holds in the special case wher: RY with N > 3.

Proof. Each part ofRY consists of elements @&’ all having the same components equal to
zero. Thus each part can be naturally identified withR";, wheren is the number of strictly
positive components of its elements. We may therefore assume initialljuthatu} C int RY.

DefineL : RY — RN by L(z2) := (u121,...,unzy). Its inverse is given by.1(z) :=
(ui'z1,...,uy'zy). Both L and L~! are linear maps which leav®? invariant. It follows
that L and L~ are isometries oR’ with respect to both the Thompson and Hilbert metrics.
Therefore, foru, z € int RY,

L7H@(s;u,2)) = ¢(s; L7 (u), L7H(2)).
Thus, we may as well assume that 1.

We now wish to apply Propositign 2.1 with := g andG := Bgi(1) = {z € R} :
du(z,1) < R+¢}. Itwas shown in[[23] thar is a convex cone, in other words that it is closed
under multiplication by positive scalars and under addition of its elements. @iace, z) is
a positive combination oy andz, it follows that¢(s; w, z) is in G if w andz are. If we now
apply Lemmd 23, Propositign 2.1, and Corollary| 2.5, and kgpproach zero, we obtain the
desired result. O

Lemma 2.8. Theorenj 1]1 holds in the special case when the linear spén,af «} is one- or
two-dimensional.

Proof. Let W denote the linear span f, y, u}, in other words the smallest linear subspace
containing these points. By Lemma:6y, andu are in the interior o N W in . It is easy

to see that/ (z/w; C') = M (z/w; CNW) for all w, z € int(C'NW). Therefore, we can work
in the coneC'N W.

It is not difficult to show [14] that ifm := dim W is either one or two, then there is a
linear isomorphism¥ from IV to R™ taking int(C' N W) to int R". It follows that 7' is an
isometry of both the Thompson and Hilbert metrics d@d(s; z, w)) = ¢(s; F(z), F(w)) for
all z,w € int(C'NW). We may thus assume that= R’ andu, z,y € int C.

As in the proof of Lemma 2|7, we may assume that 1.

To obtain the required result, we apply Lemimg 2.3, Corollary 2.5, and Propdsition 2.1 with
f:=gandG := int RT". O

of Theorenj T]1Let IV denote the linear span éf:, y, u}. Lemmd 2.8 handles the case when
these three points are not linearly independent; we will therefore assume that they are. Thus
the five pointse, y, u, ¢(s; u, z), and¢(s; u, y) are distinct. We apply Lemnja 2.6 and obtain a
linear mapf” : W — R2° with the specified properties. Fro.ll), itis clear thatz, w) =
dr'(F(z), F(w)) for eachz,w € {z,y,u,¢(s;u,x),(s;u,y)}. Here we are using;’ to

denote the Thompson metric @&:t’. Note that¢(s; u, x) is a positive combination of and

x and that the coefficients of andxz depend only ors, M (u/xz;C), and M (z/u; C'). The

latter two quantities are equal to/ (F(u)/F(z); R%) and M (F(z)/F(u); R?°) respectively.

We conclude that'(¢(s; u, z)) = ¢(s; F(u), F(x)). A similar argument give$'(¢(s; u,y)) =
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¢(s; F(u), F(y)). Inequality [1.B) follows by applying Lemnja 2.7 to the poittér), F(y),
andF'(u) in the coneR?’. O

2.2. Hilbert's Metric. We shall continue to use the same notation. Thus, for a ghven N
ands € (0, 1), we usey to denote the function irj (2.1) arid to denote the union of set§ ;
with I, J € {1,...,N}, I # J. We also use the functiorgt) := (1 — s) — t* + st and
Ei(z) == E; = z;(x — x7) + anyz] — x12%, and writeh,j(x) = (z;/g:(x))0g;/0z;(x). As
was noted earlief(t) > 0if t > 0 andt # 1. Also,~(t) := (1—¢°)/(1—t),v(1) := sis strictly
decreasing ofD, co). We shall also use the simple but useful observation that if;, c3, and
c4 are constants such that + ¢, # 0for a <t < b, then the functiont — (cit+c2)/(cst+c4)
is either increasing ofu, b] (if cicy — coc3 > 0) or decreasing ofu, b] (if cicy — cocs < 0).
Either way, the function attains is maximum ovVeyb| ata or b.
Recall that ifg is Fréchet differentiable at € int RY then||¢'(z)||s denotes the norm of

g'(x) as alinear map frorR", || -|/) to (RY, ||- ||/ ), although, of course}- ||/ and|| - ||
are semi-norms rather than norms.

Lemma 2.9. Consider the Hilbert metric orint Rﬂf with N > 2. Letz € Uy y. If N = 2 then
the norm ofy’ at = is given by|¢'(x)|| gz = s. If N > 3, then

s+1 s s

TN —In-1. (TN T (x5 — 25)xN_1
2.12 "(z = —0 (—) LI L .
@212) I (@)l = g () Ly TR
Proof. The norm ofy'(x) as a map fromR"Y, || - ||;/) to (RY, || - [|{,,) is given by

19" (@)l = sup max Y ~(hij — hiy)vj,
veBH b j

where

B .= {U e RV : max; v; — min; v; < 1}.

To calculate||¢’(z)||z we will need to determine the sign @&f; — h;; for eachi,j k €
{1,..., N}. We introduce the notation

(2.13) Liy := sup Z(hij — hi;)v;.
J

veBH

Note thatg is homogeneous of degregin other wordsy(A\z) = Xg(z) for all z € RY and
A > 0. Therefore,
9gi
D iy @) = 56

J

foreachi € {1,..., N}. Thus}_; h;; = s foreachi € {1,..., N}, afact that could also have
been obtained by straightforward calculation. It follows that

(2.14) > (his = hig)v; = (hij = hig) (v + €)
J J
for any constant € R.

Itis clear that an optimal choice ofin (2.13) would be to take; := 1 for each component
such that;; — hy; > 0 andv; := 0 for each component such thiat — h,; < 0. Alternatively,
we may choose; := 0 whenh;; — h;; > 0 andv; := —1 whenh;; — hy; < 0. That the optimal
value is the same in both cases follows frgm (2.14). Also, it is easy to seé that Ly,.

Fixi,k € {1,..., N} sothat < k. There are four cases to consider.
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e Case 1.1 <i < k < N. Recall thath,;(z) = sé; andhy;(z) = sdn;. A calculation
using equations (2.3) £ (2.5) gives

Ei(@) E(x) (haa (x) = haa (2)) = oy (g — me(i—fj) >0
and
(2.15) Ei(2) En(z) (hin (z) — han (7)) = 2325 (), — xi)e(j—;) > 0.

We also have that;;(x) — hyi(z) = hi;(x) > 0 andh;g(z) — hge(z) = —hge(z) < 0.
So an optimal choice of € B in equation|(2.13) is given by; := —4;;,. We conclude
that L,;, = hy in this case.

e Case 2.1 =i < k < N. We will show thathy;(z) < hj;(z) = s. Considerz;
andxy as fixed andr;, as varying in the range; < z;, < zy. From equation[(2]3),
hia(z) = (c1xp+co)/(csxp+cy), Wherecy, o, c3, ande, depend orxy andxy, and both
cs andc, are positive. A simple calculation shows that,—coc3 = —0(xy /)25 2y,
which is negative. Hencg,; is decreasing i, and takes its maximum value when
r, = x1. Here it achieves the value

1 0<37_N> _, mey el
IN — 1 € IN — T1
Thus we conclude that,;(z) — hg1(x) > 0. We also have that,,(x) — hgi(x) =
—hge(z) < 0 andhyy(z) — hgn(z) = —hey(z) > 0. Thus the optimal choice of
v € B is given byv, := —§;,. We conclude that in this cada(z) = hix(x).

e Case3.1 <i< k= N.Hereh;; > hy; =0, hy; > hy; =0, andh;xy < hyy = 5. SO
the optimak € B is given byv; := §;; + d;,. We conclude that;y = h; + hi;.

e Case 4.i = 1 andk = N. Heres = hy; > hyr = 0and0 = hyy < hyy = s. Thus
the optimalk € B is given byv; := 01;. We conclude that,y = s.

If N = 2then Case 4 is the only one possible, and|§dx)||yz = s. So, for the rest of the
proof, we will assume tha¥ > 3.

We know thath; (z) + h;;(x) = s — hyn(x) > s so Case 3 dominates Case 4, that is to say
Lin(z) > Liy(z) fori > 1. Sinceh;; () > 0fori € {1,..., N}, Case 3 also dominates Cases
1 and 2, meaning thdt;x (z) > L (z) for k < N,i < k.

The final step is to maximize;y (x) = hi;(z)+h;;(x) = s—h;n(x) overi € {2,..., N—1}.
From (2.15),h,n(z) > hyn(z) for m < n. Thus the maximum occurs when= N — 1.
Recall that we have ordered the components of such a way thaty_; is the second largest
component ofc. We conclude that

Hg’(x)HH = Zlilixk Ly = hn—1g + hn_iv—1
By substituting the expressions |n (2.3) ahd|2.4), we obtain the required formula. O

Corollary 2.10. Let R > 0 and N > 2. Let! be a linear functional ofiR” such that(z) > 0
forall z € int RY and defineS := {z € RY : [(z) = 1}. If N = 2, theness su||¢'(z)||x :

x €S} =s.If N >3, then

1— e—Rs

1—e 7

In both cases, the essential supremum is taken with respect 16 thé-dimensional Lebesgue
measure orp.

ess sup||g' (z)||g : du(x,1) < R,z € S} =

J. Inequal. Pure and Appl. Math5(3) Art. 54, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

12 ROGERD. NussBAaUM AND CORMAC WALSH

Proof. Note that the complement 6fN S in S hasN — 1-dimensional Lebesgue measure zero.
Using the reordering argument in the proof of Corollary| 2.5, we deduce the result in the case
whenN = 2.

The case wherv > 3 reduces to maximizing the right hand side [of (2.12) subject to the
constraintss; < zy_; < zy andx;/zy > exp(—R). We can write the expression |n (212) in
the forms + (c;zn_1 + c2)/(csxn_1 + c4), Wherecy, ¢, c3, andey depend only on:; andzx y
andc; > 0,¢5 <0,c3 >0, ¢y > 0. It follows that, if we viewz; andzy as fixed andry_; as
variable, the expression is maximized when ; = z. The value obtained there will be

1-— (IEl/ZL‘N)S
—_— = 1/ .
ey = 1@/a)
If we recall thaty is decreasing of?), 1) andz,/xy > exp(—R), we see that
1 —e fis

/
' (@)[|a < 1R

If z1/xn = exp(—R), then, by choosing € U, y with x_; close tozy, we can arrange that
||’ (x)||z is as close as desired to this value. O

Lemma 2.11. Theorenj 1]2 holds in the special case wiier: RY with N > 3.

Proof. As in the proof of Lemm?, we may assume that € int RY andu = 1. Definel :
RY — Rbyl(z) := 3N, z//N andletS := {x € RY : I(z) = 1}. Thenl is a linear functional
andi(z) > Oforall z € int RY. Itis easy to check thaf(s; Az, pw) = A\ =% ¢(s; z, w) for all
A, p>0andz,w € int RY. Thus

in (0 (s 3050105 ) 0 (s 31y ) ) = dmtolss ). (s ),

We also have thaty (z/l(z),y/l(y)) = du(z,y). Therefore we may assume thaty € S. Let
e > 0 and defined := {z € S : dy(2,1) < R+ €}. It was shown in[[23] tha{7 is convex.
Also, Lemmg 2.3 states thatis locally Lipschitzian. We may therefore apply Proposifior] 2.2
with f := ¢. Sinceg is homogeneous of degregwe have that/(z)(z) = sg(x) forall z € G.
This, combined with the fact th@(mﬂﬁm) = 0, implies that||¢'()|| 5 = ||¢'(z)||z. Using
Corollary[2.10, and letting approach zero, we deduce the required result. O

Lemma 2.12. Theorenj 12 holds in the special case when the linear spgn,af, y} is 1- or
2-dimensional.

Proof. If the linear span of u, z, y} is one-dimensional, then all Hilbert metric distances are
zero, so assume that it is two-dimensional. The same argument as was used ifLegmma 2.8 shows
that it suffices to prove the result f6t = R, u = 1, andz, y € int R7. As shown in the proof

of Lemmg 2.1[L, we may assume that) = {(y) = 1 wherel((z1, z2)) := (21 + 22)/2. We now

apply Propositioz withf :== gandG := S := {z € int R% : I(z) = 1}. Again,||¢'(z)|| 5 =

||¢'(x)||u for all z € G. The result follows from the first part of Corollgry 2]10. O

of Theorenj 1]2The proof uses Lemmas 2|11 gnd 2.12 and is exactly analogous to the proof of
Theoren LI1. O

of Corollary[1.3. We first prove the result for the case of Thompson’s metric. We will use the al-
ternative characterization of semihyperbolicity given in Lemma 1.2/of [1]. Suppase’,y’ €

C' are all in the same part and are such that neith€r, z') nor dr(y, ') is greater thar.

Lett € [0,00) and writez := () (t) andw = ¢(dr(z, z)/dr(x,y); 2, y’). Observe that
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dr(y,y') < limplies|dr(z,y) —dr(x,y’)| < 1. Sincedr(x,w) = dr(x,y )dr(z, 2) /dr(z, y),
we have

|dT(‘T7 w) - dT(I7 Z>| < dT(ZL’, Z)/dT(x7 y) <1
Similar reasoning allows us to conclude that
|dp(x,w") — dp(2, 2")| <1,
wherez' := () (t) andw’ := ¢(dp(2', 2") /dr (2’ y'); 2, y'). Fromdyr(z, 2) = min(t, dr(x,y))
anddr(2’,2") = min(t, dr(2',y')), we have that
dr(z, 2) — dp(2', 2")] < |dp(z,y) — dp(2',y')] < 2.
So
dr(w,w") = |dr(z, w) — dp(z,w")| < 4.

By Theoren] 1.lLdr(z,w) < 2dr(y,y') < 2 anddy(2,w’) < 2dp(z,2') < 2. The triangle
inequality givesir(z, ') < dr(z,w) + dr(w,w") + dp(w', 2’) < 8. This is the uniform bound
required by the characterization of semihyperbolicity we are using.

The proof that”' is semihyperbolic when endowed with Hilbert's metric is similar. [
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