Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 4, Issue 5, Article 84, 2003

ON A q-ANALOGUE OF SÁNDOR'S FUNCTION

C. ADIGA, T. KIM, D. D. SOMASHEKARA, AND SYEDA NOOR FATHIMA

Department of Studies in Mathematics
Manasa Gangothri, University of Mysore Mysore-570 006, INDIA.

Institute of Science Education
Kongju National University, Kongju 314-701

S. KOREA.

tkim@kongju.ac.kr

Received 19 September, 2003; accepted 29 September, 2003
Communicated by J. Sándor
Dedicated to Professor Katsumi Shiratani on the occasion of his $71^{\text {st }}$ birthday

AbSTRACT. In this paper we obtain a q-analogue of J. Sándor's theorems [6], on employing the q-analogue of Stirling's formula established by D. S. Moak [5].

Key words and phrases: q-gamma function, q-Stirling's formula, Asymptotic formula.

2000 Mathematics Subject Classification. 33D05, 40A05.

1. Introduction

F. H. Jackson defined a q-analogue of the gamma function which extends the q-factorial

$$
(n!)_{q}=1(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\ldots+q^{n-1}\right), \text { cf. [3, 4], }
$$

which becomes the ordinary factorial as $q \rightarrow 1$. He defined the q-analogue of the gamma function as

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}, \quad 0<q<1
$$

ISSN (electronic): 1443-5756
(C) 2003 Victoria University. All rights reserved.

This paper was supported by Korea Research Foundation Grant (KRF-2002-050-C00001).
132-03
and

$$
\Gamma_{q}(x)=\frac{\left(q^{-1} ; q^{-1}\right)_{\infty}}{\left(q^{-x} ; q^{-1}\right)_{\infty}}(q-1)^{1-x} q^{\binom{x}{2}}, \quad q>1
$$

where

$$
(a ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-a q^{n}\right)
$$

It is well-known that $\Gamma_{q}(x) \rightarrow \Gamma(x)$ as $q \rightarrow 1$, where $\Gamma(x)$ is the ordinary gamma function. In [2], R. Askey obtained a q-analogue of many of the classical facts about the gamma function.
In his interesting paper [6], J. Sándor defined the functions S and S_{*} by

$$
S(x)=\min \{m \in N: x \leq m!\}, \quad x \in(1, \infty)
$$

and

$$
S_{*}(x)=\max \{m \in N: m!\leq x\}, \quad x \in[1, \infty) .
$$

He has studied many important properties of S_{*} and proved the following theorems:

Theorem 1.1.

$$
S_{*}(x) \sim \frac{\log x}{\log \log x} \quad(x \rightarrow \infty)
$$

Theorem 1.2. The series

$$
\sum_{n=1}^{\infty} \frac{1}{n\left(S_{*}(n)\right)^{\alpha}}
$$

is convergent for $\alpha>1$ and divergent for $\alpha \leq 1$.
In [1], C. Adiga and T. Kim have obtained a generalization of Theorems 1.1 and 1.2 .
We now define the q-analogues of S and S_{*} as follows:

$$
S_{q}(x)=\min \left\{m \in N: x \leq \Gamma_{q}(m+1)\right\}, \quad x \in(1, \infty),
$$

and

$$
S_{q}^{*}(x)=\max \left\{m \in N: \Gamma_{q}(m+1) \leq x\right\}, \quad x \in[1, \infty),
$$

where $0<q<1$.
Clearly $S_{q}(x) \rightarrow S(x)$ and $S_{q}^{*}(x) \rightarrow S_{*}(x)$ as $q \rightarrow 1^{-}$.
In Section 2 of this paper we study some properties of S_{q} and S_{q}^{*}, which are similar to those of S and S_{*} studied by Sándor [6]. In Section 3 we prove two theorems which are the q-analogues of Theorems 1.1 and 1.2 of Sándor [6].

To prove our main theorems we make use of the following q-analogue of Stirling's formula established by D.S. Moak [5]:

$$
\begin{align*}
\log \Gamma_{q}(z) \sim\left(z-\frac{1}{2}\right) \log \left(\frac{q^{z}-1}{q-1}\right) & +\frac{1}{\log q} \int_{-\log q}^{-z \log ^{n} q} \frac{u d u}{e^{u}-1} \tag{1.1}\\
& +C_{q}+\sum_{k=1}^{\infty} \frac{B_{2 k}}{(2 k)!}\left(\frac{\log q}{q^{z}-1}\right)^{2 k-1} q^{z} P_{2 k-1}\left(q^{z}\right)
\end{align*}
$$

where C_{q} is a constant depending upon q, and $P_{n}(z)$ is a polynomial of degree n satisfying,

$$
P_{n}(z)=\left(z-z^{2}\right) P_{n-1}^{\prime}(z)+(n z+1) P_{n-1}(z), \quad P_{0}=1, \quad n \geq 1
$$

2. Some Properties of S_{q} and S_{q}^{*}

From the definitions of S_{q} and S_{q}^{*}, it is clear that

$$
\begin{equation*}
S_{q}(x)=m \quad \text { if } x \in\left(\Gamma_{q}(m), \Gamma_{q}(m+1)\right], \quad \text { for } m \geq 2, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{q}^{*}(x)=m \quad \text { if } x \in\left[\Gamma_{q}(m+1), \Gamma_{q}(m+2)\right), \quad \text { for } m \geq 1 \tag{2.2}
\end{equation*}
$$

(2.1) and (2.2) imply

$$
S_{q}(x)= \begin{cases}S_{q}^{*}(x)+1, & \text { if } x \in\left(\Gamma_{q}(k+1), \Gamma_{q}(k+2)\right), \\ S_{q}^{*}(x), & \text { if } x=\Gamma_{q}(k+2)\end{cases}
$$

Thus

$$
S_{q}^{*}(x) \leq S_{q}(x) \leq S_{q}^{*}(x)+1
$$

Hence it suffices to study the function S_{q}^{*}. The following are the simple properties of S_{q}^{*}.
(1) S_{q}^{*} is surjective and monotonically increasing.
(2) S_{q}^{*} is continuous for all $x \in[1, \infty) \backslash A$, where $A=\left\{\Gamma_{q}(k+1): k \geq 2\right\}$. Since

$$
\lim _{x \rightarrow \Gamma_{q}(k+1)^{+}} S_{q}^{*}(x)=k \quad \text { and } \quad \lim _{x \rightarrow \Gamma_{q}(k+1)^{-}} S_{q}^{*}(x)=(k-1),(k \geq 2),
$$

S_{q}^{*} is continuous from the right at $x=\Gamma_{q}(k+1), k \geq 2$, but it is not continuous from the left.
(3) S_{q}^{*} is differentiable on $(1, \infty) \backslash A$ and since

$$
\lim _{x \rightarrow \Gamma_{q}(k+1)^{+}} \frac{S_{q}^{*}(x)-S_{q}^{*}\left(\Gamma_{q}(k+1)\right)}{x-\Gamma_{q}(k+1)}=0
$$

for $k \geq 1$, it has a right derivative in $A \cup\{1\}$.
(4) S_{q}^{*} is Riemann integrable on $[a, b]$, where $\Gamma_{q}(k+1) \leq a<b, k \geq 1$.
(i) If $[a, b] \subset\left[\Gamma_{q}(k+1), \Gamma_{q}(k+2)\right], k \geq 1$, then

$$
\int_{a}^{b} S_{q}^{*}(x) d x=\int_{a}^{b} k d x=k(b-a) .
$$

(ii) For $n>k$, we have

$$
\begin{aligned}
\int_{\Gamma_{q}(k+1)}^{\Gamma_{q}(n+1)} S_{q}^{*}(x) d x & =\sum_{m=1}^{(n-k)} \int_{\Gamma_{q}(k+m)}^{\Gamma_{q}(k+m+1)} S_{q}^{*}(x) d x \\
& =\sum_{m=1}^{(n-k)}(k+m-1)\left[\Gamma_{q}(k+m+1)-\Gamma_{q}(k+m)\right] \\
& =\sum_{m=1}^{(n-k)}(k+m-1) \Gamma_{q}(k+m)\left[q+q^{2}+\cdots+q^{k+m-1}\right] .
\end{aligned}
$$

(iii) If $a \in\left[\Gamma_{q}(k+1), \Gamma_{q}(k+2)\right)$ and $b \in\left[\Gamma_{q}(n), \Gamma_{q}(n+1)\right)$ then

$$
\begin{aligned}
\int_{a}^{b} S_{q}^{*}(x) d x= & \int_{a}^{\Gamma_{q}(k+2)} S_{q}^{*}(x) d x+\int_{\Gamma_{q}(k+2)}^{\Gamma_{q}(n)} S_{q}^{*}(x) d x+\int_{\Gamma_{q}(n)}^{b} S_{q}^{*}(x) d x \\
= & k\left[\Gamma_{q}(k+2)-a\right]+\sum_{m=1}^{n-k-2}(k+m) \Gamma_{q}(k+m+1) \\
& \times\left(q+q^{2}+\ldots+q^{k+m}\right)+(n-1)\left[b-\Gamma_{q}(n)\right]
\end{aligned}
$$

by (ii).

3. MAIN Theorems

We now prove our main theorems.
Theorem 3.1. If $0<q<1$, then

$$
S_{q}^{*}(x) \sim \frac{\log x}{\log \left(\frac{1}{1-q}\right)}
$$

Proof. If $\Gamma_{q}(n+1) \leq x<\Gamma_{q}(n+2)$, then

$$
\begin{equation*}
\log \Gamma_{q}(n+1) \leq \log x<\log \Gamma_{q}(n+2) \tag{3.1}
\end{equation*}
$$

By (1.1) we have

$$
\begin{align*}
\log \Gamma_{q}(n+1) & \sim\left(n+\frac{1}{2}\right) \tag{3.2}\\
\log \left(\frac{q^{n+1}-1}{q-1}\right) & \sim n \log \left(\frac{1}{1-q}\right)
\end{align*}
$$

Dividing 3.1 throughout by $n \log \left(\frac{1}{1-q}\right)$, we obtain

$$
\begin{equation*}
\frac{\log \Gamma_{q}(n+1)}{n \log \left(\frac{1}{1-q}\right)} \leq \frac{\log x}{S_{q}^{*}(x) \log \left(\frac{1}{1-q}\right)}<\frac{\log \Gamma_{q}(n+2)}{n \log \left(\frac{1}{1-q}\right)} \tag{3.3}
\end{equation*}
$$

Using (3.2) in (3.3) we deduce

$$
\lim _{n \rightarrow \infty} \frac{\log x}{S_{q}^{*}(x) \log \left(\frac{1}{1-q}\right)}=1
$$

This completes the proof.
Theorem 3.2. The series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n\left(S_{q}^{*}(n)\right)^{\alpha}} \tag{3.4}
\end{equation*}
$$

is convergent for $\alpha>1$ and divergent for $\alpha \leq 1$.

Proof. Since

$$
S_{q}^{*}(x) \sim \frac{\log x}{\log \left(\frac{1}{1-q}\right)},
$$

we have

$$
A \frac{\log n}{\log \left(\frac{1}{1-q}\right)}<S_{q}^{*}(n)<B \frac{\log n}{\log \left(\frac{1}{1-q}\right)}
$$

for all $n \geq N>1, A, B>0$. Therefore to examine the convergence or divergence of the series (3.4) it suffices to study the series

$$
\log \left(\frac{1}{1-q}\right) \sum_{n=1}^{\infty} \frac{1}{n(\log n)^{\alpha}}
$$

By the integral test, $\sum \frac{1}{n(\log n)^{\alpha}}$ converges for $\alpha>1$ and diverges for $0 \leq \alpha \leq 1$. If $\alpha<0$, then $\frac{1}{n(\log n)^{\alpha}}>\frac{1}{n}$ for $n \geq 3$. Hence $\sum \frac{1}{(n \log n)^{\alpha}}$ diverges by the comparison test.

References

[1] C. ADIGA and T. KIM, On a generalization of Sándor's function, Proc. Jangjeon Math. Soc., 5 (2002), 121-124.
[2] R. ASKEY, The q-gamma and q-beta functions, Applicable Analysis, 8 (1978), 125-141.
[3] T. KIM, Non-archimedean q-integrals associated with multiple Changhee q-Bernoulli polynomials, Russian J. Math. Phys., 10 (2003), 91-98.
[4] T. KIM, An another p-adic q-L-functions and sums of powers, Proc. Jangjeon Math. Soc., 2 (2001), 35-43.
[5] D.S. MOAK, The q-analogue of Stirlings formula, Rocky Mountain J. Math., 14 (1984), 403-413.
[6] J. SÁNDOR, On an additive analogue of the function S, Notes Numb. Th. Discr. Math., 7 (2001), 91-95.

