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ABSTRACT. The article presents and refines the results which were proven in [1]. We give a
condition for obtaining the optimal constant of the integral inequality for the numerical analysis
of a nonlinear system of PDEs.
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1. I NTRODUCTION

In [1] the following problem is considered and its application to nonlinear system of PDEs is
described.

Theorem A. Let a, b ∈ R, a < 0, b > 0 andf ∈ C[a, b], such that:0 < f ≤ 1 on [a, b], f is
decreasing on[a, 0] and ∫ 0

a

fdx =

∫ b

0

fdx

then

(a) If p ≥ 2, the inequality

(1.1)
∫ b

a

fpdx ≤ Ap

∫ a+b
2

a

fdx

holds for allAp ≥ 2.
(b) If 1 ≤ p < 2, the inequality

(1.2)
∫ b

a

fpdx ≤ Ap

∫ a+b
2

a

fdx

holds for allAp ≥ 4.

In this note we improve the optimalAp for the case1 < p < 2.

132-08

mailto:vera@master.grad.hr
http://www.ams.org/msc/


2 V. ČULJAK

2. RESULTS

Theorem 2.1. Let a, b ∈ R, a < 0, b > 0 andf ∈ C[a, b], such that0 < f ≤ 1 on [a, b], f is
decreasing on[a, 0] and ∫ 0

a

fdx =

∫ b

0

fdx.

(i) If a+ b ≥ 0, then for1 ≤ p, this inequality holds

(2.1)
∫ b

a

fpdx ≤ 2

∫ a+b
2

a

fdx.

(ii) If a+ b < 0 then
(a) If p ≥ 2, the inequality

(2.2)
∫ b

a

fpdx ≤ Ap

∫ a+b
2

a

fdx

holds for allAp ≥ 2.
(b) If 1 < p < 2, the inequality

(2.3)
∫ b

a

fpdx ≤ Ap

∫ a+b
2

a

fdx

holds for allAp ≥ 21+xp−1
max

1+xmax
, where0 < xmax ≤ 1 is the solution of

(2.4) xp−1(p− 2) + xp−2(p− 1)− 1 = 0.

(c) For p = 1 the inequality

(2.5)
∫ b

a

fdx ≤ 4

∫ a+b
2

a

fdx

holds.

Proof. As in the proof in [1], we consider two cases: (i)a+ b ≥ 0 and (ii)a+ b < 0.
(i) First, we suppose thata + b ≥ 0. Using the properties of the functionf, we conclude, for
p ≥ 1, that: ∫ b

a

fpdx ≤
∫ b

a

fdx = 2

∫ 0

a

fdx ≤ 2

∫ a+b
2

a

fdx.

The constantAp = 2 is the best possible. To prove sharpness, we choosef = 1.
(ii) Now we suppose thata+ b < 0. Letϕ : [a, 0]→ [0, b] be a function with the property∫ 0

x

fdt =

∫ ϕ(x)

0

fdt.

So,ϕ(x) is differentiable andϕ(a) = b, ϕ(0) = 0.
For arbitraryx ∈ [a, 0], such thatx + ϕ(x) ≥ 0, according to case (i) forp ≥ 1, we obtain

the inequality ∫ ϕ(x)

x

fpdt ≤ 2

∫ x+ϕ(x)
2

x

fdt.

In particular, forx = a, ∫ b

a

fpdt ≤ 2

∫ a+b
2

a

fdt.

If we suppose thatx+ ϕ(x) < 0 for arbitraryx ∈ [a, 0], then we define a new function
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ψ : [a, 0]→ R by

ψ(x) = Ap

∫ x+ϕ(x)
2

x

fdt−
∫ ϕ(x)

x

fpdt.

The functionψ is differentiable and

ψ′(x) =
1

2
Ap(1 + ϕ′(x))f

(
x+ ϕ(x)

2

)
− Apf(x)− fp(ϕ(x))ϕ′(x) + fp(x)

andψ(0) = 0.
If we prove thatψ′(x) ≤ 0 then the inequality∫ ϕ(x)

x

fpdt ≤ Ap

∫ x+ϕ(x)
2

x

fdt

holds.
Using the properties of the functionsf , ϕ and the fact thatf(ϕ(x))ϕ′(x) = −f(x), we

considerf(ϕ(x))ψ′(x) and try to conclude thatf(ϕ(x))ψ′(x) ≤ 0 as follows:

f(ϕ(x))ψ′(x)

= f(ϕ(x))

[
1

2
Ap(1 + ϕ′(x))f

(
x+ ϕ(x)

2

)
− Apf(x)− fp(ϕ(x))ϕ′(x) + fp(x)

]
=

1

2
Apf(ϕ(x))f

(
x+ ϕ(x)

2

)
+

1

2
Apf(ϕ(x))ϕ′(x)f

(
x+ ϕ(x)

2

)
− Apf(x)f(ϕ(x))

− fp(ϕ(x))ϕ′(x)f(ϕ(x)) + fp(x)f(ϕ(x))

=
1

2
Apf(ϕ(x))f

(
x+ ϕ(x)

2

)
− 1

2
Apf(x)f

(
x+ ϕ(x)

2

)
− Apf(x)f(ϕ(x))

+ fp(ϕ(x))f(x) + fp(x)f(ϕ(x))

=
1

2
Ap[f(ϕ(x))− f(x)]f

(
x+ ϕ(x)

2

)
− Apf(x)f(ϕ(x))

+ fp(ϕ(x))f(x) + fp(x)f(ϕ(x)).

Forp ≥ 1, if [f(ϕ(x))− f(x)] ≤ 0, then

f(ϕ(x))ψ′(x)

≤ 1

2
Ap[f(ϕ(x))− f(x)]f

(
x+ ϕ(x)

2

)
− Apf(x)f(ϕ(x))

+ [f(ϕ(x))f(x) + f(x)f(ϕ(x))]

=
1

2
Ap[f(ϕ(x))− f(x)]f

(
x+ ϕ(x)

2

)
− (Ap − 2)f(x)f(ϕ(x)).

Then, obviously,ψ′(x) ≤ 0 for Ap − 2 ≥ 0.
If we suppose that[f(ϕ(x))− f(x)] > 0 then using the properties ofϕ, we can conclude that

f
(

x+ϕ(x)
2

)
≤ f(x) and we estimatef(ϕ(x))ψ′(x) as follows:

f(ϕ(x))ψ′(x)

≤ 1

2
Ap[f(ϕ(x))− f(x)]f(x)− Apf(x)f(ϕ(x)) + fp(ϕ(x))f(x) + fp(x)f(ϕ(x))

≤ 1

2
Ap[f(ϕ(x))− f(x)]f(x)− Apf(x)f(ϕ(x)) + f(ϕ(x))f(x) + f(x)f(ϕ(x))
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= −1

2
Apf

2(x) +

(
2− 1

2
Ap

)
f(ϕ(x))f(x)

≤ −1

2
Apf

2(x) +

(
2− 1

2
Ap

)
f 2(ϕ(x))

≤ −1

2
(Ap − 4)f 2(ϕ(x)).

So,ψ′(x) ≤ 0 for Ap − 4 ≥ 0.
Now, we will consider the sign off(ϕ(x))ψ′(x) for p = 1, p ≥ 2, and1 < p < 2.

(a) Forp ≥ 2, we try to improve the constantAp ≥ 4 for the casea + b < 0 and[f(ϕ(x)) −

f(x)] > 0. We can estimatef(ϕ(x))ψ′(x) as follows:

f(ϕ(x))ψ′(x)

≤ 1

2
Ap[f(ϕ(x))− f(x)]f(x)− Apf(x)f(ϕ(x)) + fp(ϕ(x))f(x) + fp(x)f(ϕ(x))

≤ 1

2
Ap[f(ϕ(x))− f(x)]f(x)− Apf(x)f(ϕ(x)) + f 2(ϕ(x))f(x) + f 2(x)f(ϕ(x))

≤ 1

2
f(x)[f(x) + f(ϕ(x))][2f(ϕ(x))− Ap].

Hence,ψ′(x) ≤ 0 for Ap ≥ 2.
(b) For1 < p < 2, we can improve the constantAp ≥ 4 for the casea+ b < 0 and[f(ϕ(x))−

f(x)] > 0. We can estimatef(ϕ(x))ψ′(x) (for 0 < f(x) = y < f(ϕ(x)) = z ≤ 1), as follows:

f(ϕ(x))ψ′(x)

≤ 1

2
Ap[f(ϕ(x))− f(x)]f(x)− Apf(x)f(ϕ(x)) + fp(ϕ(x))f(x) + fp(x)f(ϕ(x))

≤ y

[
−1

2
Apz −

1

2
Apy + zp + yp−1z

]
= y

[
−1

2
Apz

(
1 +

y

z

)
+ zp

(
1 +

(y
z

)p−1
)]

≤ yz

[
−1

2
Ap

(
1 +

y

z

)
+ 1 +

(y
z

)p−1
]
.

So, we conclude thatψ′(x) ≤ 0 if[
−1

2
Ap(1 + t) + 1 + tp−1)

]
< 0,

for 0 < t = y
z
≤ 1.

Therefore, for1 < p < 2 the constantAp ≥ 2 max0<t≤1
1+tp−1

1+t
.

The function1+tp−1

1+t
is concave on(0, 1] and the pointtmax where the maximum is achieved

is a root of the equation
tp−1(p− 2) + tp−2(p− 1)− 1 = 0.

Numerically we get the following values ofAp :

for p = 1.01, the constantAp ≥ 3.8774,
for p = 1.99, the constantAp ≥ 2.0056,
for p = 1.9999, the constantAp ≥ 2.0001.
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If we consider the sequencepn = 2 − 1
n
, then thelimn→∞

1+tpn−1

1+t
= 1, but we find that the

point tmax where the function1+tpn−1

1+t
achieves the maximum is a fixed point of the function

g(x) = (1− 1+x
n

)n.

We use fixed point iteration to find the fixed point for the functiong(x) = (1 − 1+x
100

)100, by
starting witht0 = 0.2 and iteratingtk = g(tk−1), k = 1, 2, ...7 :

t0 = 0.200000000000000,

t1 = 0.299016021496423,

t2 = 0.270488141422931,

t3 = 0.278419068898826,

t4 = 0.276191402436672,

t5 = 0.276815328895026,

t6 = 0.276640438571483,

t7 = 0.276689450339917.

Whenn→∞, i.e. pn → 2, the pointtmax where the function1+tpn−1

1+t
achieves the maximum

is a fixed point of the functiong(x) = e−(1+x).
We use fixed point iteration to find the fixed point for the functiong(x) = e−(1+x), by starting

with t0 = 0.2 and iteratingtk = g(tk−1), k = 1, 2, ...7 :

t0 = 0.200000000000000,

t1 = 0.301194211912202,

t2 = 0.272206526577512,

t3 = 0.280212642489384,

t4 = 0.277978184195021,

t5 = 0.278600009316777,

t6 = 0.278426822683543,

t7 = 0.278475046663319

If we consider the sequencepn = 1 + 1
n

thenlimn→∞
1+tpn−1

1+t
= 2

1+t
, andsupt∈(0,1]

2
1+t

= 2
for t→ 0 + .
(c) Forp = 1,

• if [f(ϕ(x))− f(x)] ≤ 0 thenψ′(x) ≤ 0 for A1 − 2 ≥ 0;
• if [f(ϕ(x))− f(x)] > 0 thenψ′(x) ≤ 0 for A1 − 4 ≥ 0,

so, the best constant isA1 = 4. �
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