

NOTE ON AN INTEGRAL INEQUALITY APPLICABLE IN PDEs

V. ČULJAK DEPARTMENT OF MATHEMATICS FACULTY OF CIVIL ENGINEERING UNIVERSITY OF ZAGREB KACICEVA 26, 10 000 ZAGREB, CROATIA vera@master.grad.hr

Received 22 April, 2008; accepted 06 May, 2008 Communicated by J. Pečarić

ABSTRACT. The article presents and refines the results which were proven in [1]. We give a condition for obtaining the optimal constant of the integral inequality for the numerical analysis of a nonlinear system of PDEs.

Key words and phrases: Integral inequality, Nonlinear system of PDEs.

2000 Mathematics Subject Classification. Primary 26D15, Secondary 26D99.

1. INTRODUCTION

In [1] the following problem is considered and its application to nonlinear system of PDEs is described.

Theorem A. Let $a, b \in \mathbb{R}$, a < 0, b > 0 and $f \in C[a, b]$, such that: $0 < f \le 1$ on [a, b], f is decreasing on [a, 0] and

$$\int_{a}^{0} f dx = \int_{0}^{b} f dx$$

then

(a) If $p \ge 2$, the inequality

(1.1)
$$\int_{a}^{b} f^{p} dx \leq A_{p} \int_{a}^{\frac{a+b}{2}} f dx$$

holds for all
$$A_p \geq 2$$
.

(b) If
$$1 \le p < 2$$
, the inequality

(1.2)
$$\int_{a}^{b} f^{p} dx \leq A_{p} \int_{a}^{\frac{a+b}{2}} f dx$$

holds for all $A_p \ge 4$.

In this note we improve the optimal A_p for the case 1 .

¹³²⁻⁰⁸

2. **Results**

Theorem 2.1. Let $a, b \in \mathbb{R}$, a < 0, b > 0 and $f \in C[a, b]$, such that $0 < f \le 1$ on [a, b], f is decreasing on [a, 0] and

$$\int_{a}^{0} f dx = \int_{0}^{b} f dx$$

(i) If $a + b \ge 0$, then for $1 \le p$, this inequality holds

(2.1)
$$\int_{a}^{b} f^{p} dx \leq 2 \int_{a}^{\frac{a+b}{2}} f dx.$$

(ii) If a + b < 0 then (a) If $p \ge 2$, the inequality

(2.2)
$$\int_{a}^{b} f^{p} dx \leq A_{p} \int_{a}^{\frac{a+b}{2}} f dx$$

holds for all $A_p \ge 2$. (b) If 1 , the inequality

(2.3)
$$\int_{a}^{b} f^{p} dx \leq A_{p} \int_{a}^{\frac{a+b}{2}} f dx$$

holds for all $A_p \ge 2\frac{1+x_{\max}^{p-1}}{1+x_{\max}}$, where $0 < x_{\max} \le 1$ is the solution of

(2.4)
$$x^{p-1}(p-2) + x^{p-2}(p-1) - 1 = 0.$$

(c) For p = 1 the inequality

(2.5)
$$\int_{a}^{b} f dx \le 4 \int_{a}^{\frac{a+b}{2}} f dx$$
holds.

Proof. As in the proof in [1], we consider two cases: (i) $a + b \ge 0$ and (ii) a + b < 0. (i) First, we suppose that $a + b \ge 0$. Using the properties of the function f, we conclude, for $p \ge 1$, that:

$$\int_{a}^{b} f^{p} dx \leq \int_{a}^{b} f dx = 2 \int_{a}^{0} f dx \leq 2 \int_{a}^{\frac{a+b}{2}} f dx$$

The constant $A_p = 2$ is the best possible. To prove sharpness, we choose f = 1. (ii) Now we suppose that a + b < 0. Let $\varphi : [a, 0] \to [0, b]$ be a function with the property

$$\int_{x}^{0} f dt = \int_{0}^{\varphi(x)} f dt.$$

So, $\varphi(x)$ is differentiable and $\varphi(a) = b, \varphi(0) = 0$.

For arbitrary $x \in [a, 0]$, such that $x + \varphi(x) \ge 0$, according to case (i) for $p \ge 1$, we obtain the inequality

$$\int_{x}^{\varphi(x)} f^{p} dt \le 2 \int_{x}^{\frac{x+\varphi(x)}{2}} f dt.$$

In particular, for x = a,

$$\int_{a}^{b} f^{p} dt \le 2 \int_{a}^{\frac{a+b}{2}} f dt.$$

If we suppose that $x + \varphi(x) < 0$ for arbitrary $x \in [a, 0]$, then we define a new function

 $\psi: [a,0] \to \mathbb{R}$ by

$$\psi(x) = A_p \int_x^{\frac{x+\varphi(x)}{2}} f dt - \int_x^{\varphi(x)} f^p dt.$$

The function ψ is differentiable and

$$\psi'(x) = \frac{1}{2}A_p(1+\varphi'(x))f\left(\frac{x+\varphi(x)}{2}\right) - A_pf(x) - f^p(\varphi(x))\varphi'(x) + f^p(x)$$

and $\psi(0) = 0$.

If we prove that $\psi'(x) \leq 0$ then the inequality

$$\int_{x}^{\varphi(x)} f^{p} dt \le A_{p} \int_{x}^{\frac{x+\varphi(x)}{2}} f dt$$

holds.

Using the properties of the functions f, φ and the fact that $f(\varphi(x))\varphi'(x) = -f(x)$, we consider $f(\varphi(x))\psi'(x)$ and try to conclude that $f(\varphi(x))\psi'(x) \leq 0$ as follows:

$$\begin{split} f(\varphi(x))\psi'(x) \\ &= f(\varphi(x)) \left[\frac{1}{2} A_p(1+\varphi'(x)) f\left(\frac{x+\varphi(x)}{2}\right) - A_p f(x) - f^p(\varphi(x))\varphi'(x) + f^p(x) \right] \\ &= \frac{1}{2} A_p f(\varphi(x)) f\left(\frac{x+\varphi(x)}{2}\right) + \frac{1}{2} A_p f(\varphi(x))\varphi'(x) f\left(\frac{x+\varphi(x)}{2}\right) - A_p f(x) f(\varphi(x)) \\ &\quad - f^p(\varphi(x))\varphi'(x) f(\varphi(x)) + f^p(x) f(\varphi(x)) \\ &= \frac{1}{2} A_p f(\varphi(x)) f\left(\frac{x+\varphi(x)}{2}\right) - \frac{1}{2} A_p f(x) f\left(\frac{x+\varphi(x)}{2}\right) - A_p f(x) f(\varphi(x)) \\ &\quad + f^p(\varphi(x)) f(x) + f^p(x) f(\varphi(x)) \\ &= \frac{1}{2} A_p [f(\varphi(x)) - f(x)] f\left(\frac{x+\varphi(x)}{2}\right) - A_p f(x) f(\varphi(x)) \\ &\quad + f^p(\varphi(x)) f(x) + f^p(x) f(\varphi(x)). \end{split}$$

For $p \ge 1$, if $[f(\varphi(x)) - f(x)] \le 0$, then $f(\varphi(x))\psi'(x)$

$$\leq \frac{1}{2}A_p[f(\varphi(x)) - f(x)]f\left(\frac{x + \varphi(x)}{2}\right) - A_pf(x)f(\varphi(x)) + [f(\varphi(x))f(x) + f(x)f(\varphi(x))] = \frac{1}{2}A_p[f(\varphi(x)) - f(x)]f\left(\frac{x + \varphi(x)}{2}\right) - (A_p - 2)f(x)f(\varphi(x)).$$

Then, obviously, $\psi'(x) \leq 0$ for $A_p - 2 \geq 0$.

If we suppose that
$$[f(\varphi(x)) - f(x)] > 0$$
 then using the properties of φ , we can conclude that $f\left(\frac{x+\varphi(x)}{2}\right) \le f(x)$ and we estimate $f(\varphi(x))\psi'(x)$ as follows:
 $f(\varphi(x))\psi'(x)$

$$\leq \frac{1}{2}A_p[f(\varphi(x)) - f(x)]f(x) - A_pf(x)f(\varphi(x)) + f^p(\varphi(x))f(x) + f^p(x)f(\varphi(x))$$

$$\leq \frac{1}{2}A_p[f(\varphi(x)) - f(x)]f(x) - A_pf(x)f(\varphi(x)) + f(\varphi(x))f(x) + f(x)f(\varphi(x))$$

$$= -\frac{1}{2}A_{p}f^{2}(x) + \left(2 - \frac{1}{2}A_{p}\right)f(\varphi(x))f(x)$$

$$\leq -\frac{1}{2}A_{p}f^{2}(x) + \left(2 - \frac{1}{2}A_{p}\right)f^{2}(\varphi(x))$$

$$\leq -\frac{1}{2}(A_{p} - 4)f^{2}(\varphi(x)).$$

So, $\psi'(x) \le 0$ for $A_p - 4 \ge 0$.

Now, we will consider the sign of $f(\varphi(x))\psi'(x)$ for $p = 1, p \ge 2$, and 1 . $(a) For <math>p \ge 2$, we try to improve the constant $A_p \ge 4$ for the case a + b < 0 and $[f(\varphi(x)) - f(\varphi(x))] = 0$.

f(x)] > 0. We can estimate $f(\varphi(x))\psi'(x)$ as follows:

$$\begin{split} f(\varphi(x))\psi'(x) \\ &\leq \frac{1}{2}A_p[f(\varphi(x)) - f(x)]f(x) - A_pf(x)f(\varphi(x)) + f^p(\varphi(x))f(x) + f^p(x)f(\varphi(x))) \\ &\leq \frac{1}{2}A_p[f(\varphi(x)) - f(x)]f(x) - A_pf(x)f(\varphi(x)) + f^2(\varphi(x))f(x) + f^2(x)f(\varphi(x))) \\ &\leq \frac{1}{2}f(x)[f(x) + f(\varphi(x))][2f(\varphi(x)) - A_p]. \end{split}$$

Hence, $\psi'(x) \leq 0$ for $A_p \geq 2$.

(b) For $1 , we can improve the constant <math>A_p \ge 4$ for the case a + b < 0 and $[f(\varphi(x)) - \varphi(x)] = 0$.

f(x)] > 0. We can estimate $f(\varphi(x))\psi'(x)$ (for $0 < f(x) = y < f(\varphi(x)) = z \le 1$), as follows: $f(\varphi(x))\psi'(x)$

$$\leq \frac{1}{2} A_p[f(\varphi(x)) - f(x)]f(x) - A_pf(x)f(\varphi(x)) + f^p(\varphi(x))f(x) + f^p(x)f(\varphi(x))$$

$$\leq y \left[-\frac{1}{2} A_p z - \frac{1}{2} A_p y + z^p + y^{p-1} z \right]$$

$$= y \left[-\frac{1}{2} A_p z \left(1 + \frac{y}{z} \right) + z^p \left(1 + \left(\frac{y}{z} \right)^{p-1} \right) \right]$$

$$\leq y z \left[-\frac{1}{2} A_p \left(1 + \frac{y}{z} \right) + 1 + \left(\frac{y}{z} \right)^{p-1} \right].$$

So, we conclude that $\psi'(x) \leq 0$ if

$$\left[-\frac{1}{2}A_p(1+t) + 1 + t^{p-1})\right] < 0,$$

for $0 < t = \frac{y}{z} \le 1$.

Therefore, for $1 the constant <math>A_p \ge 2 \max_{0 < t \le 1} \frac{1+t^{p-1}}{1+t}$.

The function $\frac{1+t^{p-1}}{1+t}$ is concave on (0,1] and the point t_{\max} where the maximum is achieved is a root of the equation

$$t^{p-1}(p-2) + t^{p-2}(p-1) - 1 = 0.$$

Numerically we get the following values of A_p :

 $\begin{array}{ll} \mbox{for } p = 1.01, & \mbox{the constant } A_p \geq 3.8774, \\ \mbox{for } p = 1.99, & \mbox{the constant } A_p \geq 2.0056, \\ \mbox{for } p = 1.9999, & \mbox{the constant } A_p \geq 2.0001. \end{array}$

If we consider the sequence $p_n = 2 - \frac{1}{n}$, then the $\lim_{n \to \infty} \frac{1+t^{p_n-1}}{1+t} = 1$, but we find that the point t_{\max} where the function $\frac{1+t^{p_n-1}}{1+t}$ achieves the maximum is a fixed point of the function $g(x) = (1 - \frac{1+x}{n})^n$.

We use fixed point iteration to find the fixed point for the function $g(x) = (1 - \frac{1+x}{100})^{100}$, by starting with $t_0 = 0.2$ and iterating $t_k = g(t_{k-1}), k = 1, 2, ...7$:

$$\begin{split} t_0 &= 0.20000000000000,\\ t_1 &= 0.299016021496423,\\ t_2 &= 0.270488141422931,\\ t_3 &= 0.278419068898826,\\ t_4 &= 0.276191402436672,\\ t_5 &= 0.276815328895026,\\ t_6 &= 0.276640438571483,\\ t_7 &= 0.276689450339917. \end{split}$$

When $n \to \infty$, i.e. $p_n \to 2$, the point t_{\max} where the function $\frac{1+t^{p_n-1}}{1+t}$ achieves the maximum is a fixed point of the function $g(x) = e^{-(1+x)}$.

We use fixed point iteration to find the fixed point for the function $g(x) = e^{-(1+x)}$, by starting with $t_0 = 0.2$ and iterating $t_k = g(t_{k-1}), k = 1, 2, ...7$:

$$\begin{split} t_0 &= 0.20000000000000,\\ t_1 &= 0.301194211912202,\\ t_2 &= 0.272206526577512,\\ t_3 &= 0.280212642489384,\\ t_4 &= 0.277978184195021,\\ t_5 &= 0.278600009316777,\\ t_6 &= 0.278426822683543,\\ t_7 &= 0.278475046663319 \end{split}$$

If we consider the sequence $p_n = 1 + \frac{1}{n}$ then $\lim_{n\to\infty} \frac{1+t^{p_n-1}}{1+t} = \frac{2}{1+t}$, and $\sup_{t\in(0,1]} \frac{2}{1+t} = 2$ for $t\to 0+$. (c) For p=1,

- if $[f(\varphi(x)) f(x)] \le 0$ then $\psi'(x) \le 0$ for $A_1 2 \ge 0$;
- if $[f(\varphi(x)) f(x)] > 0$ then $\psi'(x) \le 0$ for $A_1 4 \ge 0$,

so, the best constant is $A_1 = 4$.

REFERENCES

^[1] V. JOVANOVIĆ, On an inequality in nonlinear thermoelasticity, J. Inequal. Pure Appl. Math., 8(4) (2007), Art. 105. [ONLINE: http://jipam.vu.edu.au/article.php?sid=916].