ON THE DEGREE OF STRONG APPROXIMATION OF CONTINUOUS FUNCTIONS BY SPECIAL MATRIX

BOGDAN SZAL
Faculty of Mathematics, Computer Science and Econometrics
University of Zielona Góra
65-516 Zielona Góra, ul. Szafrana 4a, Poland
B.Szal@wmie.uz.zgora.pl

Received 13 May, 2009; accepted 20 October, 2009
Communicated by I. Gavrea

Abstract

In the presented paper we will generalize the result of L. Leindler [3] to the class $M R B V S$ and extend it to the strong summability with a mediate function satisfying the standard conditions.

Key words and phrases: Strong approximation, matrix means, classes of number sequences.
2000 Mathematics Subject Classification. 40F04, 41A25, 42A10.

1. Introduction

Let f be a continuous and 2π-periodic function and let

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1.1}
\end{equation*}
$$

be its Fourier series. Denote by $S_{n}(x)=S_{n}(f, x)$ the n-th partial sum of 1.1) and by $\omega(f, \delta)$ the modulus of continuity of $f \in C_{2 \pi}$. The usual supremum norm will be denoted by $\|\cdot\|$.

Let $A:=\left(a_{n k}\right)(k, n=0,1, \ldots)$ be a lower triangular infinite matrix of real numbers satisfying the following conditions:

$$
\begin{equation*}
a_{n k} \geq 0(0 \leq k \leq n), \quad a_{n k}=0,(k>n) \quad \text { and } \quad \sum_{k=0}^{n} a_{n k}=1, \tag{1.2}
\end{equation*}
$$

where $k, n=0,1,2, \ldots$.
Let the A-transformation of $\left(S_{n}(f ; x)\right)$ be given by

$$
\begin{equation*}
t_{n}(f):=t_{n}(f ; x):=\sum_{k=0}^{n} a_{n k} S_{k}(f ; x) \quad(n=0,1, \ldots) \tag{1.3}
\end{equation*}
$$

and the strong A_{r}-transformation of $\left(S_{n}(f ; x)\right)$ for $r>0$ be given by

$$
T_{n}(f, r):=T_{n}(f, r ; x):=\left\{\sum_{k=0}^{n} a_{n k}\left|S_{k}(f ; x)-f(x)\right|^{r}\right\}^{\frac{1}{r}}(n=0,1, \ldots) .
$$

Now we define two classes of sequences.
A sequence $c:=\left(c_{n}\right)$ of nonnegative numbers tending to zero is called the Rest Bounded Variation Sequence, or briefly $c \in R B V S$, if it has the property

$$
\begin{equation*}
\sum_{n=m}^{\infty}\left|c_{n}-c_{n+1}\right| \leq K(c) c_{m} \tag{1.4}
\end{equation*}
$$

for $m=0,1,2, \ldots$, where $K(c)$ is a constant depending only on c (see [3]).
A null sequence $c:=\left(c_{n}\right)$ of positive numbers is called of Mean Rest Bounded Variation, or briefly $c \in M R B V S$, if it has the property

$$
\begin{equation*}
\sum_{n=2 m}^{\infty}\left|c_{n}-c_{n+1}\right| \leq K(c) \frac{1}{m+1} \sum_{n=m}^{2 m} c_{n} \tag{1.5}
\end{equation*}
$$

for $m=0,1,2, \ldots$ (see [5]).
Therefore we assume that the sequence $\left(K\left(\alpha_{n}\right)\right)_{n=0}^{\infty}$ is bounded, that is, there exists a constant K such that

$$
0 \leq K\left(\alpha_{n}\right) \leq K
$$

holds for all n, where $K\left(\alpha_{n}\right)$ denotes the sequence of constants appearing in the inequalities (1.4) or (1.5) for the sequence $\alpha_{n}:=\left(a_{n k}\right)_{k=0}^{\infty}$. Now we can give some conditions to be used later on. We assume that for all n

$$
\begin{equation*}
\sum_{k=m}^{\infty}\left|a_{n k}-a_{n k+1}\right| \leq K a_{n m} \quad(0 \leq m \leq n) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=2 m}^{\infty}\left|a_{n k}-a_{n k+1}\right| \leq K \frac{1}{m+1} \sum_{k=m}^{2 m} a_{n k} \quad(0 \leq 2 m \leq n) \tag{1.7}
\end{equation*}
$$

hold if $\alpha_{n}:=\left(a_{n k}\right)_{k=0}^{\infty}$ belongs to $R B V S$ or $M R B V S$, respectively.
In [1] and [2] P. Chandra obtained some results on the degree of approximation for the means (1.3) with a mediate function H such that:

$$
\begin{equation*}
\int_{u}^{\pi} \frac{\omega(f ; t)}{t^{2}} d t=O(H(u)) \quad\left(u \rightarrow 0_{+}\right), H(t) \geq 0 \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t} H(u) d u=O(t H(t)) \quad\left(t \rightarrow O_{+}\right) \tag{1.9}
\end{equation*}
$$

In [3], L. Leindler generalized this result to the class $R B V S$. Namely, he proved the following theorem:

Theorem 1.1. Let (1.2), (1.6), (1.8) and (1.9) hold. Then for $f \in C_{2 \pi}$

$$
\left\|t_{n}(f)-f\right\|=O\left(a_{n 0} H\left(a_{n 0}\right)\right)
$$

It is clear that

$$
\begin{equation*}
R B V S \subseteq M R B V S \tag{1.10}
\end{equation*}
$$

In [7], we proved that $R B V S \neq M R B V S$. Namely, we showed that the sequence

$$
d_{n}:= \begin{cases}1 & \text { if } n=1, \\ \frac{1+m+(-1)^{n} m}{\left(2^{\mu_{m}}\right)^{2} m} & \text { if } \mu_{m} \leq n<\mu_{m+1},\end{cases}
$$

where $\mu_{m}=2^{m}$ for $m=1,2,3, \ldots$, belongs to the class $M R B V S$ but it does not belong to the class $R B V S$.

In the present paper we will generalize the mentioned result of L. Leindler [3] to the class $M R B V S$ and extend it to strong summability with a mediate function H defined by the following conditions:

$$
\begin{equation*}
\int_{u}^{\pi} \frac{\omega^{r}(f ; t)}{t^{2}} d t=O(H(r ; u)) \quad\left(u \rightarrow 0_{+}\right), H(t) \geq 0 \text { and } r>0 \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t} H(r ; u) d u=O(t H(r ; t)) \quad\left(t \rightarrow O_{+}\right) . \tag{1.12}
\end{equation*}
$$

By K_{1}, K_{2}, \ldots we shall denote either an absolute constant or a constant depending on the indicated parameters, not necessarily the same in each occurrence.

2. Main Results

Our main results are the following.
Theorem 2.1. Let (1.2), (1.7) and (1.11) hold. Then for $f \in C_{2 \pi}$ and $r>0$

$$
\begin{equation*}
\left\|T_{n}(f, r)\right\|=O\left(\left\{a_{n 0} H\left(r ; \frac{\pi}{n}\right)\right\}^{\frac{1}{r}}\right) . \tag{2.1}
\end{equation*}
$$

If, in addition (1.12) holds, then

$$
\begin{equation*}
\left\|T_{n}(f, r)\right\|=O\left(\left\{a_{n 0} H\left(r ; a_{n 0}\right)\right\}^{\frac{1}{r}}\right) \tag{2.2}
\end{equation*}
$$

Using the inequality

$$
\left\|t_{n}(f)-f\right\| \leq\left\|T_{n}(f, 1)\right\|,
$$

we can formulate the following corollary.
Corollary 2.2. Let (1.2), (1.7) and (1.11) hold. Then for $f \in C_{2 \pi}$

$$
\left\|t_{n}(f)-f\right\|=O\left(a_{n 0} H\left(1 ; \frac{\pi}{n}\right)\right)
$$

If, in addition (1.12) holds, then

$$
\left\|t_{n}(f)-f\right\|=O\left(a_{n 0} H\left(1 ; a_{n 0}\right)\right)
$$

Remark 1. By the embedding relation (1.7) we can observe that Theorem 1.1 follows from Corollary 2.2 .

For special cases, putting

$$
H(r ; t)= \begin{cases}t^{r \alpha-1} & \text { if } \alpha r<1 \\ \ln \frac{\pi}{t} & \text { if } \alpha r=1 \\ K_{1} & \text { if } \alpha r>1\end{cases}
$$

where $r>0$ and $0<\alpha \leq 1$, we can derive from Theorem 2.1 the next corollary.
Corollary 2.3. Under the conditions (1.2) and (1.7) we have, for $f \in C_{2 \pi}$ and $r>0$,

$$
\left\|T_{n}(f, r)\right\|= \begin{cases}O\left(\left\{a_{n 0}\right\}^{\alpha}\right) & \text { if } \alpha r<1 \\ O\left(\left\{\ln \left(\frac{\pi}{a_{n 0}}\right) a_{n 0}\right\}^{\alpha}\right) & \text { if } \alpha r=1 \\ O\left(\left\{a_{n 0}\right\}^{\frac{1}{r}}\right) & \text { if } \alpha r>1\end{cases}
$$

3. Lemmas

To prove our main result we need the following lemmas.
Lemma 3.1 ([6]). If (1.11) and (1.12) hold, then for $r>0$

$$
\int_{0}^{s} \frac{\omega^{r}(f ; t)}{t} d t=O(s H(r ; s)) \quad\left(s \rightarrow 0_{+}\right)
$$

Lemma 3.2. If (I.2) and (I.7) hold, then for $f \in C_{2 \pi}$ and $r>0$

$$
\begin{equation*}
\left\|T_{n}(f, r)\right\|_{C} \leq O\left(\left\{\sum_{k=0}^{n} a_{n k} E_{k}^{r}(f)\right\}^{\frac{1}{r}}\right) \tag{3.1}
\end{equation*}
$$

where $E_{n}(f)$ denotes the best approximation of the function f by trigonometric polynomials of order at most n.

Proof. It is clear that (3.1) holds for $n=0,1, \ldots, 5$. Namely, by the well known inequality [8]

$$
\begin{equation*}
\left\|\sigma_{n, m}-f\right\| \leq 2 \frac{n+1}{m+1} E_{n}(f) \quad(0 \leq m \leq n) \tag{3.2}
\end{equation*}
$$

where

$$
\sigma_{n, m}(f ; x)=\frac{1}{m+1} \sum_{k=n-m}^{n} S_{k}(f ; x),
$$

for $m=0$, we obtain

$$
\left\{T_{n}(f, r ; x)\right\}^{r} \leq 12^{r} \sum_{k=0}^{n} a_{n k} E_{k}^{r}(f)
$$

and (3.1) is obviously valid, for $n \leq 5$.
Let $n \geq 6$ and let $m=m_{n}$ be such that

$$
2^{m+1}+4 \leq n<2^{m+2}+4
$$

Hence

$$
\begin{aligned}
\left\{T_{n}(f, r ; x)\right\}^{r} \leq & \sum_{k=0}^{3} a_{n k}\left|S_{k}(f ; x)-f(x)\right|^{r} \\
& +\sum_{k=1}^{m-1} \sum_{i=2^{k}+2}^{2^{k+1}+4} a_{n i}\left|S_{i}(f ; x)-f(x)\right|^{r}+\sum_{k=2^{m}+5}^{n} a_{n k}\left|S_{k}(f ; x)-f(x)\right|^{r}
\end{aligned}
$$

Applying the Abel transformation and (3.2) to the first sum we obtain

$$
\begin{aligned}
& \left\{T_{n}(f, r ; x)\right\}^{r} \\
& \begin{aligned}
\leq 8^{r} \sum_{k=0}^{3} & a_{n k} E_{k}^{r}(f)+\sum_{k=1}^{m-1}\left(\sum_{i=2^{k}+2}^{2^{k+1}+3}\left(a_{n i}-a_{n, i+1}\right) \sum_{l=2^{k}+2}^{i}\left|S_{l}(f ; x)-f(x)\right|^{r}\right. \\
& \left.+a_{n, 2^{k+1}+4} \sum_{i=2^{k}+2}^{2^{k+1}+4}\left|S_{i}(f ; x)-f(x)\right|^{r}\right) \\
& +\sum_{k=2^{m}+2}^{n-1}\left(a_{n k}-a_{n, k+1}\right) \sum_{l=2^{m-1}}^{k}\left|S_{l}(f ; x)-f(x)\right|^{r} \\
& +a_{n n} \sum_{k=2^{m}+2}^{n}\left|S_{k}(f ; x)-f(x)\right|^{r} \\
\leq 8^{r} \sum_{k=0}^{3} & a_{n k} E_{k}^{r}(f)+\sum_{k=1}^{m-1}\left(\sum_{i=2^{k}+2}^{2^{k+1}+3}\left|a_{n i}-a_{n, i+1}\right| \sum_{l=2^{k}+2}^{2^{k+1}+3}\left|S_{l}(f ; x)-f(x)\right|^{r}\right. \\
& \left.+a_{n, 2^{k+1}+4}^{2^{k+1}+4} \sum_{i=2^{k}+2}\left|S_{i}(f ; x)-f(x)\right|^{r}\right) \\
& +\sum_{k=2^{m}+2}^{n-1}\left|a_{n k}-a_{n, k+1}\right| \sum_{l=2^{m}+2}^{2^{m+2}+3}\left|S_{l}(f ; x)-f(x)\right|^{r} \\
& +a_{n n}^{2^{m+2}+4} \sum_{k=2^{m}+2}\left|S_{k}(f ; x)-f(x)\right|^{r} .
\end{aligned}
\end{aligned}
$$

Using the well-known Leindler's inequality [4]

$$
\left\{\frac{1}{m+1} \sum_{k=n-m}^{n}\left|S_{k}(f ; x)-f(x)\right|^{s}\right\}^{\frac{1}{s}} \leq K_{1} E_{n-m}(f)
$$

for $0 \leq m \leq n, m=O(n)$ and $s>0$, we obtain

$$
\begin{aligned}
& \left\{T_{n}(f, r ; x)\right\}^{r} \leq 8^{r} \sum_{k=0}^{3} a_{n k} E_{k}^{r}(f) \\
& +K_{2}\left\{\sum_{k=1}^{m-1}\left(\left(2^{k}+3\right) E_{2^{k}+2}^{r}(f)\left(\sum_{i=2^{k}+2}^{2^{k+1}+3}\left|a_{n i}-a_{n, i+1}\right|+a_{n, 2^{k+1}+4}\right)\right)\right. \\
& \\
& \left.\quad 3\left(2^{m}+1\right) E_{2^{m}+2}^{r}\left(\sum_{k=2^{m}+2}^{n-1}\left|a_{n k}-a_{n, k+1}\right|+a_{n n}\right)\right\}
\end{aligned}
$$

Using (1.7) we get

$$
\begin{aligned}
& \left\{T_{n}(f, r ; x)\right\}^{r} \leq 8^{r} \sum_{k=0}^{3} a_{n k} E_{k}^{r}(f) \\
& +K_{2}\left\{\sum_{k=1}^{m-1}\left(\left(2^{k}+3\right) E_{2^{k}+2}^{r}(f)\left(K \frac{1}{2^{k-1}+2} \sum_{i=2^{k-1}+1}^{2^{k}+2} a_{n i}+a_{n, 2^{k+1}+4}\right)\right)\right. \\
& \left.\quad 3\left(2^{m}+1\right) E_{2^{m}+2}^{r}(f)\left(K \frac{1}{2^{m-1}+2} \sum_{i=2^{m-1}+1}^{2^{m}+2} a_{n i}+a_{n n}\right)\right\}
\end{aligned}
$$

In view of (1.7), we also obtain for $1 \leq k \leq m-1$,

$$
\begin{aligned}
a_{n, 2^{k+1}+4} & =\sum_{i=2^{k+1}+4}^{\infty}\left(a_{n i}-a_{n i+1}\right) \leq \sum_{i=2^{k+1}+4}^{\infty}\left|a_{n i}-a_{n i+1}\right| \\
& \leq \sum_{i=2^{k}+2}^{\infty}\left|a_{n i}-a_{n i+1}\right| \leq K \frac{1}{2^{k-1}+2} \sum_{i=2^{k-1}+1}^{2^{k}+2} a_{n i}
\end{aligned}
$$

and

$$
\begin{aligned}
a_{n n} & =\sum_{i=n}^{\infty}\left(a_{n i}-a_{n i+1}\right) \leq \sum_{i=n}^{\infty}\left|a_{n i}-a_{n i+1}\right| \\
& \leq \sum_{i=2^{m}+2}^{\infty}\left|a_{n i}-a_{n i+1}\right| \leq K \frac{1}{2^{m-1}+2} \sum_{i=2^{m-1}+1}^{2^{m}+2} a_{n i}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\{T_{n}(f, r ; x)\right\}^{r} \leq & 8^{r} \sum_{k=0}^{3} a_{n k} E_{k}^{r}(f) \\
& +K_{3}\left\{\sum_{k=1}^{m-1} E_{2^{k}+2}^{r}(f) \sum_{i=2^{k-1}+1}^{2^{k}+2} a_{n i}+E_{2^{m}+2}^{r}(f) \sum_{i=2^{m-1}+1}^{2^{m}+2} a_{n i}\right\} \\
\leq & 8^{r} \sum_{k=0}^{3} a_{n k} E_{k}^{r}(f)+2 K_{3} \sum_{k=3}^{2^{m}+2} a_{n k} E_{k}^{r}(f) \\
\leq & K_{4} \sum_{k=0}^{n} a_{n k} E_{k}^{r}(f) .
\end{aligned}
$$

This ends our proof.

4. Proof of Theorem 2.1

Using Lemma 3.2 we have
(4.1) $\quad\left|T_{n}(f, r ; x)\right| \leq K_{1}\left\{\sum_{k=0}^{n} a_{n k} E_{k}^{r}(f)\right\}^{\frac{1}{r}} \leq K_{2}\left\{\sum_{k=0}^{n} a_{n k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right)\right\}^{\frac{1}{r}}$.

If (1.7) holds, then, for any $m=1,2, \ldots, n$,

$$
\begin{aligned}
a_{n m}-a_{n 0} & \leq\left|a_{n m}-a_{n 0}\right|=\left|a_{n 0}-a_{n m}\right|=\left|\sum_{k=0}^{m-1}\left(a_{n k}-a_{n k+1}\right)\right| \\
& \leq \sum_{k=0}^{m-1}\left|a_{n k}-a_{n k+1}\right| \leq \sum_{k=0}^{\infty}\left|a_{n k}-a_{n k+1}\right| \leq K a_{n 0}
\end{aligned}
$$

whence

$$
\begin{equation*}
a_{n m} \leq(K+1) a_{n 0} \tag{4.2}
\end{equation*}
$$

Therefore, by (1.2),

$$
\begin{equation*}
(K+1)(n+1) a_{n 0} \geq \sum_{k=0}^{n} a_{n k}=1 . \tag{4.3}
\end{equation*}
$$

First we prove (2.1). Using (4.2), we get

$$
\begin{aligned}
\sum_{k=0}^{n} a_{n k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) & \leq(K+1) a_{n 0} \sum_{k=0}^{n} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) \\
& \leq K_{3} a_{n 0} \int_{1}^{n+1} \omega^{r}\left(f ; \frac{\pi}{t}\right) d t \\
& =\pi K_{3} a_{n 0} \int_{\frac{\pi}{n+1}}^{\pi} \frac{\omega^{r}(f ; u)}{u^{2}} d u
\end{aligned}
$$

and by (4.1), (1.11) we obtain that (2.1) holds.
Now, we prove (2.2). From (4.3) we obtain

$$
\begin{aligned}
\sum_{k=0}^{n} a_{n k} \omega^{r}(f ; & \left.\frac{\pi}{k+1}\right) \\
& \leq \sum_{k=0}^{\left[\frac{1}{(K+1) a_{n 0}}\right]-1} a_{n k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right)+\sum_{k=\left[\frac{1}{(K+1) a_{n 0}}\right]-1}^{n} a_{n k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) .
\end{aligned}
$$

Again using (1.2), (4.2) and the monotonicity of the modulus of continuity, we get

$$
\begin{aligned}
\sum_{k=0}^{n} a_{n k} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) \leq & (K+1) a_{n 0} \sum_{k=0}^{\left[\frac{1}{(K+1) a_{n 0}}\right]-1} \omega^{r}\left(f ; \frac{\pi}{k+1}\right) \\
& +K_{4} \omega^{r}\left(f ; \pi(K+1) a_{n o}\right) \sum_{k=\left[\frac{1}{(K+1) a_{n 0}}\right]-1}^{n} a_{n k} \\
\leq & K_{5} a_{n 0} \int_{1}^{\frac{1}{(K+1) a_{n 0}}} \omega^{r}\left(f ; \frac{\pi}{t}\right) d t+K_{4} \omega^{r}\left(f ; \pi(K+1) a_{n o}\right) \\
\leq & K_{6}\left(a_{n 0} \int_{a_{n 0}}^{\pi} \frac{\omega^{r}(f ; u)}{u^{2}} d u+\omega^{r}\left(f ; a_{n 0}\right)\right)
\end{aligned}
$$

Moreover

$$
\begin{align*}
\omega^{r}\left(f ; a_{n 0}\right) & \leq 4^{r} \omega^{r}\left(f ; \frac{a_{n 0}}{2}\right) \tag{4.5}\\
& \leq 2 \cdot 4^{r} \int_{\frac{a_{n 0}}{2}}^{a_{n 0}} \frac{\omega^{r}(f ; t)}{t} d t \\
& \leq 2 \cdot 4^{r} \int_{0}^{a_{n 0}} \frac{\omega^{r}(f ; t)}{t} d t
\end{align*}
$$

Thus collecting our partial results (4.1), (4.4), (4.5) and using (1.11) and Lemma 3.1 we can see that (2.2) holds. This completes our proof.

References

[1] P. CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. Hungar., 52 (1988), 199-205.
[2] P. CHANDRA, A note on the degree of approximation of continuous function, Acta Math. Hungar., 62 (1993), 21-23.
[3] L. LEINDLER, On the degree of approximation of continuous functions, Acta Math. Hungar, 104 (1-2), (2004), 105-113.
[4] L. LEINDLER, Strong Approximation by Fourier Series, Akadèmiai Kiadò, Budapest (1985).
[5] L. LEINDLER, Integrability conditions pertaining to Orlicz space, J. Inequal. Pure and Appl. Math., 8(2) (2007), Art. 38.
[6] B. SZAL, On the rate of strong summability by matrix means in the generalized Hölder metric, J. Inequal. Pure and Appl. Math., 9(1) (2008), Art. 28.
[7] B. SZAL, A note on the uniform convergence and boundedness a generalized class of sine series, Comment. Math., 48(1) (2008), 85-94.
[8] Ch. J. DE LA VALLÉE - POUSSIN, Leçons sur L'Approximation des Fonctions d'une Variable Réelle, Paris (1919).

