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Abstract

Recently Hadamard-type inequalities for nonnegative, evenly quasiconvex func-
tions which attain their minimum have been established. We show that these
inequalities remain valid for the larger class containing all nonnegative quasi-
convex functions, and show equality of the corresponding Hadamard constants
in case of a symmetric domain.
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1. Introduction
The well-known Hadamard inequality for convex functions has been recently
generalized to include other types of functions. For instance, Pearce and Rubi-
nov [2], generalized an earlier result of Dragomir and Pearce [1] by showing that
for any nonnegative quasiconvex function defined on[0, 1] and anyu ∈ [0, 1],
the following inequality holds:

f (u) ≤ 1

min (u, 1− u)

∫ 1

0

f (x) dx.

In a subsequent paper, Rubinov and Dutta [3] extended the result to then-
dimensional space, by imposing the restriction that the nonnegative functionf
attains its minimum and is not just quasiconvex, but evenly quasiconvex. The
purpose of this note is to establish the inequality without these restrictions, and
to obtain a simpler expression of the “Hadamard constant” which appears mul-
tiplied to the integral. To be precise, given a convex subsetX of Rn, a Borel
measureµ on X and an elementu ∈ X, we show that any nonnegative qua-
siconvex function satisfies an inequality of the formf (u) ≤ γ

∫
X

fdµ where
γ is a constant. An analogous inequalityf (u) ≤ γ∗

∫
X

fdµ is obtained for all
quasiconvex nonnegative functions for whichf (0) = 0 (under the assumption
that0 ∈ X). We obtain simple expressions for the constantsγ andγ∗ and show
that they are equal, under a symmetry assumption.

In what follows,X is a convex, Borel subset ofRn, µ is a finite Borel mea-
sure onX, andλ is the Lebesgue measure. As usual,µ � λ means thatµ is
absolutely continuous with respect toλ. The open (closed) ball with centeru
and radiusr will be denoted byB (u, r) (B (u, r)). We denote byS the sphere
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{x ∈ Rn : ‖x‖ = 1} and set, for eachv ∈ S, u ∈ R,

(1.1) Xv,u = {x ∈ X : 〈v, x− u〉 > 0} .
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2. Inequality for Quasiconvex Functions
The following proposition shows that the Hadamard-type inequality for non-
negative evenly quasiconvex functions that attain their minimum, established in
[3], is true for all nonnegative quasiconvex, Borel measurable functions.

Proposition 2.1. Let f : X → R∪{+∞} be a Borel measurable, nonnegative
quasiconvex function. Then for everyu ∈ X, the following inequality holds:

(2.1) inf
v∈S

µ (Xv,u) f (u) ≤
∫

X

fdµ.

Proof. Let L = {x ∈ X : f (x) < f (u)}. ThenL is convex andu does not be-
long to the relative interior ofL. We can thus separateu andL by a hyperplane,
i.e., there existsv ∈ S such that∀x ∈ L, 〈x, v〉 ≤ 〈u, v〉. Hence, for every
x ∈ Xv,u, f (x) ≥ f (u). Consequently,

µ (Xv,u) f (u) ≤
∫

Xv,u

fdµ ≤
∫

X

fdµ

from which follows relation (2.1).

Note that ifµ = λ, then we do not have to assumef to be Borel measurable.
Indeed, any convex subset ofRn is Lebesgue measurable since it can be written
as the union of its interior and a subset of its boundary; the latter is a Lebesgue
null set, thus is Lebesgue measurable. Consequently, every quasiconvex func-
tion is Lebesgue measurable since by definition its level sets are convex.

It is possible thatinfv∈S µ (Xv,u) = 0. In this case relation (2.1) does not say
much. We can avoid this ifu ∈ int X andµ does not vanish on sets of nonzero
Lebesgue measure:

http://jipam.vu.edu.au/
mailto:nhad@aegean.gr
http://jipam.vu.edu.au/


Hadamard-type Inequalities for
Quasiconvex Functions

N. Hadjisavvas

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 6 of 14

J. Ineq. Pure and Appl. Math. 4(1) Art. 13, 2003

http://jipam.vu.edu.au

Proposition 2.2. Assumptions as in Proposition2.1.

(i) If u ∈ int X andλ � µ, theninfv∈S µ (Xv,u) > 0.

(ii) If u /∈ int X andµ � λ, theninfv∈S µ (Xv,u) = 0.

Proof.

(i) Letε > 0 be such thatB (u, ε) ⊆ X. For eachv ∈ S andx ∈ B
(
u + ε

2
v, ε

2

)
,

the triangle inequality yields

‖x− u‖ ≤
∥∥x−

(
u + ε

2
v
)∥∥ +

∥∥ ε
2
v
∥∥ < ε

hencex ∈ X. Also,

〈v, x− u〉 =
〈
v, x−

(
u + ε

2
v
)〉

+
〈
v, ε

2
v
〉
≥ −‖v‖

∥∥x−
(
u + ε

2
v
)∥∥+ ε

2
> 0.

Consequently,x ∈ Xv,u, i.e.,B
(
u + ε

2
v, ε

2

)
⊆ Xv,u. Hence,

inf
v∈S

λ (Xv,u) ≥ λ
(
B

(
u + ε

2
v, ε

2

))
= λ

(
B

(
0, ε

2

))
> 0.

By absolute continuity,infv∈S µ (Xv,u) > 0.

(ii) Sinceu /∈ int X, we can separateu andX by a hyperplane. It follows
that for somev ∈ S, the setXv,u is a subset of this hyperplane, hence
λ (Xv,u) = 0 which entails thatµ (Xv,u) = 0.

http://jipam.vu.edu.au/
mailto:nhad@aegean.gr
http://jipam.vu.edu.au/


Hadamard-type Inequalities for
Quasiconvex Functions

N. Hadjisavvas

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 14

J. Ineq. Pure and Appl. Math. 4(1) Art. 13, 2003

http://jipam.vu.edu.au

Let us set

(2.2) γ =
1

infv∈S µ (Xv,u)
,

where we make the convention1
0

= +∞. Then we can write (2.1) in the form

(2.3) f (u) ≤ γ

∫
X

fdµ.

The following Lemma will be useful for obtaining alternative expressions of
“Hadamard constants” such asγ and showing their sharpness. In particular, it
shows thatXv,u could have been defined (see relation (1.1)) by using≥ instead
of >. Let

(2.4) Xv,u = {x ∈ X : 〈v, x− u〉 ≥ 0}

be the closure ofXv,u in X.

Lemma 2.3. If µ � λ, then

(i) µ (Xv,u) = µ
(
Xv,u

)
;

(ii) The functionv → µ (Xv,u) is continuous onS.

Proof.

(i) We know thatλ ({x ∈ Rn : 〈v, x− u〉 = 0}) = 0; consequently,
λ

(
Xv,u\Xv,u

)
= 0 and this entails thatµ

(
Xv,u\Xv,u

)
= 0.
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(ii) Suppose that(vn) is a sequence inS, converging tov. Let ε > 0 be given.
Chooser > 0 large enough so thatµ

(
X\B (u, r)

)
< ε/2. Let us show

that
lim

n→∞
λ

(
Xvn,u ∩B (u, r)

)
= λ

(
Xv,u ∩B (u, r)

)
.

For this it is sufficient to show thatlimn→∞ λ (Xn) = 0 whereXn is the
symmetric difference((Xv,u\Xvn,u) ∪ (Xvn,u\Xv,u))∩B (u, r). If x ∈ Xn

then‖x− u‖ ≤ r and

(2.5) 〈v, x− u〉 > 0 ≥ 〈vn, x− u〉

or

(2.6) 〈vn, x− u〉 > 0 ≥ 〈v, x− u〉 .

If, say, (2.6) is true, then〈v, x− u〉 ≤ 0 < 〈vn − v, x− u〉+ 〈v, x− u〉 ≤
‖vn − v‖ r + 〈v, x− u〉 thus|〈v, x− u〉| ≤ ‖vn − v‖ r. The same can be
deduced if (2.5) is true. Thus the projection ofXn on v can be arbitrarily
small; sinceXn is contained inB (u, r) this means thatlimn→∞ λ (Xn) =
0 as claimed.

By absolute continuity,limn→∞ µ
(
Xvn,u ∩B (u, r)

)
= µ

(
Xv,u ∩B (u, r)

)
.

Since

|µ (Xvn,u)− µ (Xv,u)| ≤
∣∣µ (

Xvn,u ∩B (u, r)
)
− µ

(
Xv,u ∩B (u, r)

)∣∣
+

∣∣µ (
Xvn,u\B (u, r)

)∣∣ +
∣∣µ (

Xv,u\B (u, r)
)∣∣

≤
∣∣µ (

Xvn,u ∩B (u, r)
)
− µ

(
Xv,u ∩B (u, r)

)∣∣ + ε,
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it follows that limn→∞ |µ (Xvn,u)− µ (Xv,u)| ≤ ε. This is true for all
ε > 0, hencelimn→∞ µ (Xvn,u) = µ (Xv,u).

We now obtain an alternative expression for the “Hadamard constant”γ,
analogous to the one in [3]. For u ∈ X define

A+
u = {(v, x0) ∈ Rn ×X : 〈v, u− x0〉 ≥ 1} .

Further, givenv ∈ Rn andx0 ∈ X set1

X+
v,x0

= {x ∈ X : 〈v, x− x0〉 > 1} .

Proposition 2.4. The following equality holds for everyu ∈ int X:

γ =
1

inf(v,x0)∈A+
u

µ
(
X+

v,x0

) .

Proof. For every(v, x0) ∈ A+
u , we setv′ = v/ ‖v‖. For eachx ∈ Xv′,u,

〈v, x− u〉 > 0 holds. Besides,(v, x0) ∈ A+
u implies that〈v, u− x0〉 ≥ 1.

Hence,〈v, x− x0〉 = 〈v, x− u〉 + 〈v, u− x0〉 > 1 thusx ∈ X+
v,x0

. It follows
thatXv′,u ⊆ X+

v,x0
; consequently,

(2.7) inf
(v,x0)∈A+

u

µ
(
X+

v,x0

)
≥ inf

v∈S
µ (Xv,u) .

1There is sometimes a change in notation with respect to [3].
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To show the reverse inequality, letv ∈ S be given. Sinceu ∈ int X, we may
find x0 ∈ X such that〈v, u− x0〉 > 0. Chooset > 0 so that forv′ = tv one
has〈v′, u− x0〉 = 1. The following equivalences hold:

x ∈ X+
v′,x0

⇔ 〈v′, x− x0〉 > 1

⇔ 〈v′, x− u〉+ 〈v′, u− x0〉 > 1

⇔ 〈v′, x− u〉 > 0

⇔ 〈v, x− u〉 > 0

⇔ x ∈ Xv,u.

Thus, for everyv ∈ S there exists(v′, x0) ∈ A+
u such thatXv,u = X+

v′,x0
. Hence

equality holds in (2.7).
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3. Inequality for Quasiconvex Functions such that
f (0) = 0.

Whenever0 ∈ X andf (0) = 0, another Hadamard-type inequality has being
obtained in [3], assuming thatf is nonnegative and evenly quasiconvex. We
generalize this result to nonnegative quasiconvex functions and compare with
the previous findings. Leth : R+ → R+ be increasing withh (c) > 0 for all
c > 0 andλh := supc>0

c
h(c)

< +∞ (we follow the notation of [3]).

Proposition 3.1. Let f : X → R ∪ {+∞} be Borel measurable, nonnegative
and quasiconvex. If0 ∈ X andf (0) = 0, then for everyu ∈ X,

(3.1) inf
v∈S,〈v,u〉≥0

µ (Xv,u) f (u) ≤ λh

∫
X

h (f (x)) dµ.

Proof. If f (u) = 0 we have nothing to prove. Suppose thatf (u) > 0. Coming
back to the proof of Proposition2.1, we know that there existsv ∈ S such that
∀x ∈ Xv,u, f (x) ≥ f (u); henceh (f (x)) ≥ h (f (u)), from which it follows
that

µ (Xv,u) h (f (u)) ≤
∫

Xv,u

h (f (x)) dµ ≤
∫

X

h (f (x)) dµ.

Note that0 /∈ Xv,u becausef (0) < f (u); thus,〈v, u〉 ≥ 0. Consequently,

inf
v∈S,〈v,u〉≥0

µ (Xv,u) h (f (u)) ≤
∫

X

h (f (x)) dµ.

Finally, note that by definition ofλh, f (u) ≤ λhh (f (u)) from which fol-
lows (3.1).
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Note that relation (3.1) is only interesting ifu 6= 0 since otherwise it is
trivially true. Let us defineγ∗ by

(3.2) γ∗ =


1

infv∈S,〈v,u〉≥0 µ (Xv,u)
if u 6= 0

0 if u = 0.

We obtain an alternative expression forγ∗, similar to that in [3]. Given
u ∈ X\ {0}, setBu = {v ∈ Rn : 〈v, u〉 ≥ 1}, and for anyv ∈ Rn, setX+

v =
{x ∈ X : 〈v, x〉 > 1}.

Proposition 3.2. The following equality holds for everyu ∈ X\ {0}:

inf
v∈Bu

µ
(
X+

v

)
= inf

v∈S,〈v,u〉>0
µ (Xv,u) .

Proof. For everyv ∈ Bu we setv′ = v/ ‖v‖ and show thatXv′,u ⊆ X+
v . Indeed,

if x ∈ Xv′,u, then we have〈v, x− u〉 > 0 hence〈v, x〉 = 〈v, u〉+ 〈v, x− u〉 >
1, i.e.,x ∈ X+

v . Since〈v′, u〉 > 0, it follows that

(3.3) inf
v∈Bu

µ
(
X+

v

)
≥ inf

v∈S,〈v,u〉>0
µ (Xv,u) .

To show equality, letv ∈ S be such that〈v, u〉 > 0. Chooset > 0 such that
t 〈v, u〉 = 1 and setv′ = tv. For everyx ∈ X+

v′ one has〈v′, x〉 > 1, hence,

〈v′, x− u〉 = 〈v′, x〉 − 〈v′, u〉 > 0.

It follows that〈v, x− u〉 > 0, i.e.,x ∈ Xv,u. Thus,X+
v′ ⊆ Xv,u andv′ ∈ Bu.

This shows that in (3.3) equality holds.
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Proposition 3.3. If µ � λ then we also have the equalities

γ∗ =
1

infv∈S,〈v,u〉>0 µ (Xv,u)
=

1

minv∈S,〈v,u〉≥0 µ
(
Xv,u

) (if u 6= 0)

γ =
1

minv∈S µ
(
Xv,u

) .(3.4)

Proof. We first observe that, according to Lemma2.3, µ
(
Xv,u

)
= µ (Xv,u).

The same lemma entails thatinfv∈S,〈v,u〉>0 µ (Xv,u) = infv∈S,〈v,u〉≥0 µ (Xv,u)
and that this infimum is attained, since the set{v ∈ S : 〈v, u〉 ≥ 0} is compact.
In the same way, the infimum in (2.2) is attained.

Wheneverµ � λ, the constantγ is sharp, in the sense that givenu ∈ X,
there exists a nonnegative quasiconvex functionf such thatf (u) = γ

∫
X

fdµ.
Indeed, since the minimum in (3.4) is attained for somev0 ∈ S, it is sufficient
to takef to be the characteristic function ofXv0,u (see Corollary 2 of [3]).
Analogous considerations can be made forγ∗ (see Corollary 4 of [3]).

We now show the equality ofγ andγ∗ under a symmetry assumption:

Corollary 3.4. Suppose thatX has0 as center of symmetry,u ∈ int X\ {0}
andµ � λ. If µ (A) = µ (−A) for every BorelA ⊆ X, thenγ = γ∗.

Proof. For everyv ∈ S such that〈v, u〉 < 0, setv′ = −v andY = {x ∈
X : 〈v, x + u〉 > 0}. Since0 is a center of symmetry, one can check that
Y = −Xv′,u.

If x ∈ Y then 〈v, x− u〉 = 〈v, x + u〉 − 2 〈v, u〉 > 0. Thus,Y ⊆ Xv,u

andµ (Xv,u) ≥ µ (Y ) = µ (Xv′,u). It follows that the minimum in (3.4) can be
restricted tov ∈ S such that〈v, u〉 ≥ 0. Thus,γ = γ∗.
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