Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 4, Issue 5, Article 86, 2003

SOME ESTIMATIONS FOR THE INTEGRAL TAYLOR'S REMAINDER

LAZHAR BOUGOFFA

King Khalid University
Faculty of Science
Department of Mathematics
P. O. Box 9004
Abha Saudi Arabia.
abogafah@kku.edu.sa

Received 19 June, 2003; accepted 1 October, 2003
Communicated by S. Saitoh

AbSTRACT. In this paper, using Leibnitz's formula and pre-Grüss inequality we prove some inequalities involving Taylor's remainder.

Key words and phrases: Taylor's remainder, Leibnitz's formula, Pre-Grüss inequality.
2000 Mathematics Subject Classification. 26D15.

1. Introduction

Recently, H. Gauchman ([1] - [2]) derived new types of inequalities involving Taylor's remainder.

In this paper, we apply Leibnitz's formula and pre-Grüss inequality [3] to create several integral inequalities involving Taylor's remainder.

The present work may be considered as an continuation of the results obtained in [1] - [2].
Let $R_{n, f}(c, x)$ and $r_{n, f}(a, b)$ denote the nth Taylor's remainder of function f with center c, and the integral Taylor's remainder, respectively, i.e.

$$
R_{n, f}(c, x)=f(x)-\sum_{k=0}^{n} \frac{f^{(n)}(c)}{n!}(x-c)^{k}
$$

and

$$
r_{n, f}(a, b)=\int_{a}^{b} \frac{(b-x)^{n}}{n!} f^{(n+1)}(x) d x
$$

[^0]Lemma 1.1. Let f be a function defined on $[a, b]$. Assume that $f \in C^{n+1}([a, b])$. Then,

$$
\begin{align*}
\int_{a}^{b} R_{n, f}(a, x) d x & =\int_{a}^{b} \frac{(b-x)^{n+1}}{(n+1)!} f^{(n+1)}(x) d x \tag{1.1}\\
(-1)^{n+1} \int_{a}^{b} R_{n, f}(b, x) d x & =\int_{a}^{b} \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(x) d x . \tag{1.2}
\end{align*}
$$

Proof. See [1].
Lemma 1.2. Let f be a function defined on $[a, b]$. Assume that $f \in C^{n+1}([a, b])$. Then

$$
\begin{equation*}
r_{n, f}(a, b)=f(b)-f(a)-(b-a) f^{(1)}(a)-\cdots-\frac{(b-a)^{n}}{n!} f^{(n)}(a) \tag{1.3}
\end{equation*}
$$

2. Results Based on the Leibnitz's Formula

We prove the following theorem based on the Leibnitz's formula.
Theorem 2.1. Let f be a function defined on $[a, b]$. Assume that $f \in C^{n+1}([a, b])$.
Then

$$
\begin{align*}
\left|\sum_{k=0}^{p}(-1)^{k} C_{p}^{k} R_{n-k, f}(a, x)\right| & \leq \sum_{k=0}^{p-1} C_{p-1}^{k}\left|f^{(n-k)}(a)\right| \frac{(b-a)^{n-k+1}}{(n-k+1)!} \tag{2.1}\\
\left|\sum_{k=0}^{p} C_{p}^{k} R_{n-k, f}(b, x)\right| & \leq \sum_{k=0}^{p-1} C_{p-1}^{k}\left|f^{(n-k)}(b)\right| \frac{(b-a)^{n-k+1}}{(n-k+1)!} \tag{2.2}
\end{align*}
$$

where $C_{p}^{k}=\frac{p!}{(p-k)!k!}$.
Proof. We apply the following Leibnitz's formula

$$
(F G)^{(p)}=F^{(p)} G+C_{p}^{1} F^{(p-1)} G^{(1)}+\cdots+C_{p}^{p-1} F^{(1)} G^{(p-1)}+F G^{(p)},
$$

provided the functions $F, G \in C^{p}([a, b])$.
Let $F(x)=f^{(n-p+1)}(x), G(x)=\frac{(b-x)^{n+1}}{(n+1)!}$. Then

$$
\left(f^{(n-p+1)}(x) \frac{(b-x)^{n+1}}{(n+1)!}\right)^{(p)}=\sum_{k=0}^{p}(-1)^{k} C_{p}^{k} f^{(n-k+1)}(x) \frac{(b-x)^{n-k+1}}{(n-k+1)!} .
$$

Integrating both sides of the preceding equation with respect to x from a to b gives us

$$
\left[\left(f^{(n-p+1)}(x) \frac{(b-x)^{n+1}}{(n+1)!}\right)^{(p-1)}\right]_{x=a}^{x=b}=\sum_{k=0}^{p}(-1)^{k} C_{p}^{k} \int_{a}^{b} f^{(n-k+1)}(x) \frac{(b-x)^{n-k+1}}{(n-k+1)!} d x .
$$

The integral on the right is $\int_{a}^{b} R_{n-k, f}(a, x) d x$, and to evaluate the term on the left hand side, we must again apply Leibnitz's formula, obtaining

$$
-\sum_{k=0}^{p-1}(-1)^{k} C_{p-1}^{k} f^{(n-k)}(a) \frac{(b-a)^{n-k+1}}{(n-k+1)!}=\sum_{k=0}^{p}(-1)^{k} C_{p}^{k} \int_{a}^{b} R_{n-k, f}(a, x) d x
$$

Consequently,

$$
\left|\sum_{k=0}^{p}(-1)^{k} C_{p}^{k} R_{n-k, f}(a, x)\right| \leq \sum_{k=0}^{p-1} C_{p-1}^{k}\left|f^{(n-k)}(a)\right| \frac{(b-a)^{n-k+1}}{(n-k+1)!},
$$

which proves (2.1).

To prove 2.2, set $F(x)=f^{(n-p+1)}(x), G(x)=\frac{(x-a)^{n+1}}{(n+1)!}$, and continue as in the proof of (2.1).

3. Results based on the Grüss Type inequality

We prove the following theorem based on the pre-Grüss inequality.
Theorem 3.1. Let $f(x)$ be a function defined on $[a, b]$ such that $f \in C^{n+1}([a, b])$ and $m \leq$ $f^{(n+1)}(x) \leq M$ for each $x \in[a, b]$, where m and M are constants. Then

$$
\begin{equation*}
\left|r_{n, f}(a, b)-\frac{f^{(n)}(b)-f^{(n)}(a)}{(n+1)!}(b-a)^{n}\right| \leq \frac{M-m}{2} \cdot \frac{n}{(2 n+1)^{\frac{1}{2}}} \cdot \frac{(b-a)^{n+1}}{(n+1)!} . \tag{3.1}
\end{equation*}
$$

Proof. We apply the following pre-Grüss inequality [3]

$$
\begin{equation*}
T(F, G)^{2} \leq T(F, F) \cdot T(G, G) \tag{3.2}
\end{equation*}
$$

where $F, G \in L_{2}(a, b)$ and $T(F, G)$ is the Chebyshev's functional:

$$
T(F, G)=\frac{1}{b-a} \int_{a}^{b} F(x) G(x) d x-\frac{1}{b-a} \int_{a}^{b} F(x) d x \cdot \frac{1}{b-a} \int_{a}^{b} G(x) d x
$$

If there exists constants $m, M \in \mathbb{R}$ such that $m \leq F(x) \leq M$ on [a, b], specially, we have [3]

$$
T(F, F) \leq \frac{(M-m)^{2}}{4}
$$

and

$$
\begin{align*}
\left\lvert\, \frac{1}{b-a} \int_{a}^{b} F(x) G(x)\right. & \left.d x-\frac{1}{b-a} \int_{a}^{b} F(x) d x \cdot \frac{1}{b-a} \int_{a}^{b} G(x) d x \right\rvert\, \tag{3.3}\\
& \leq \frac{1}{2}(M-m)\left[\frac{1}{b-a} \int_{a}^{b} G^{2}(x) d x-\left(\frac{1}{b-a} \int_{a}^{b} G(x) d x\right)^{2}\right]^{\frac{1}{2}}
\end{align*}
$$

In formula 3.3) replacing $F(x)$ by $f^{(n+1)}(x)$, and $G(x)$ by $\frac{(b-x)^{n}}{n!}$, we obtain 3.1).
Remark 3.2. It is possible to define the similar expression $r_{n, f}^{\prime}(a, b)$ by

$$
r_{n, f}^{\prime}(a, b)=\int_{a}^{b} \frac{(x-a)^{n}}{n!} f^{(n+1)}(x) d x .
$$

In exactly the same way as inequality (3.1) was obtained, one can obtain the following inequality

$$
\begin{equation*}
\left|r_{n, f}^{\prime}(a, b)-\frac{f^{(n)}(b)-f^{(n)}(a)}{(n+1)!}(b-a)^{n}\right| \leq \frac{M-m}{2} \cdot \frac{n}{(2 n+1)^{\frac{1}{2}}} \cdot \frac{(b-a)^{n+1}}{(n+1)!} . \tag{3.4}
\end{equation*}
$$

References

[1] H. GAUCHMAN, Some integral inequalities involving Taylor's remainder. II, J. Inequal. Pure and Appl. Math., 4(1) (2003), Art. 1. [ONLINE: http://jipam.vu.edu.au/v4n1/011_02. html.
[2] H. GAUCHMAN, Some integral inequalities involving Taylor's remainder, J. Inequal. Pure and Appl. Math., 3(2) (2002), Art. 26. [ONLINE: http://jipam.vu.edu.au/v3n2/068_01. html.
[3] N. UJEVIĆ, A Generalization of the pre-Grüss inequality and applications to some quadrature formulae, J. Inequal. Pure and Appl. Math., 3(1) (2002), Art. 13. [ONLINE: http://jipam.vu. edu.au/v3n1/038_01.html].

[^0]: ISSN (electronic): 1443-5756
 (c) 2003 Victoria University. All rights reserved.

 133-03

