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Abstract

In this paper, using Leibnitz's formula and pre-Griiss inequality we prove some
inequalities involving Taylor's remainder.
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Recently, H. Gauchmani] - [2]) derived new types of inequalities involving
Taylor’'s remainder.

In this paper, we apply Leibnitz’s formula and pre-Griss inequalifytd
create several integral inequalities involving Taylor’s remainder.

The present work may be considered as an continuation of the results ob-
tained in [.] - [Z].

Let R, ;(c,x) andr, ; (a,b) denote thexth Taylor's remainder of function
f with centerc, and the integral Taylor's remainder, respectively, i.e.

) (g
Rn’f(C,I):f(l’)—Zf '( )(x_c)ka
k=0

n.

and

rustont) = [ e

n!

Lemma 1.1. Let f be a function defined dn, b]. Assume that € C"*1([a, b]).
Then,

b b _ \n+l

(1.1) /Rn,f(a,x)dx:/ %f(nﬂ)(x)dx,
b b _ \n+l1

(1.2) (_1)n+1/ anf(b,x)dx:/ %f(n—&-l)(x)dl‘.

Proof. See 1]. O
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Lemma 1.2. Let f be a function defined dn, b]. Assume thaf € C"**([a, b]).
Then

(b—a)

(1.3)  rugla,b) = f(b) = f(a) = (b—a)fV(a) = = ———F"(a).
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We prove the following theorem based on the Leibnitz’s formula.

Theorem 2.1.Let f be a function defined dn, b]. Assume that € C™"([a, b]).

Then
» o p—1 . - (b_a)n—k—i-l
(2.1) ;H) Cy Ry s (a, ) Skzocp—l\f @ =
P = k (n—k) (b—a)"*H!
2.2) 2 Clinmrs(.2)| < 3 o |1 O Gy

k !
WhereCp = m

Proof. We apply the following Leibnitz’s formula
(Fg)(p) — FG 4+ C;F(p_l)G(l) et Og—lp(l)g(p—l) + FGW®),

provided the function#’, G € C?([a, b]).
Let F(z) = f7(z), G(z) = &2~ Then

(n+1)!
ety (0= m)”“)"” N YN CEt)
(f +1 (ZL‘) (n T 1)' = ;( 1)kO§f k+1 (ZE) (TL “k+ 1), .

Integrating both sides of the preceding equation with respeetftom a to b
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gives us

(i)

=y [ Ty,

— (n—k+1)!

r=b

The integral on the right iif R,k ¢(a,x)dz,and to evaluate the term on the
left hand side, we must again apply Leibnitz’s formula, obtaining

p—1 (b . a)n—k—i—l p b
—Z( nFCE P (a )m = Z(—l)’“C;f/ Ry s(a, x)dw.
k=0 : k=0 a
Consequently,

i( 1) C’kR a,x)| < Zl f(n ®) )| —(b_ af
i nhf = L (n—k+1)"
which proves 2.1).

To prove Q.2), setF(z) = f Pt (2), G(z) = @=a)" " and continue as

_ (D
in the proof of £.1). O
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We prove the following theorem based on the pre-Griss inequality.

Theorem 3.1.Let f(x) be a function defined dn, b] such thatf € C"*!([a, b])

andm < f+Y(z) < M for eachz € [a,b], wherem and M are constants.

Then

7o) = £(a)

(3.1) |rns(a,b) — (n+ 1)

(b—a)"

<M—m n (b—a)"t!
-2 2n+1)2 (n+1)!°

Proof. We apply the following pre-Gruss inequality][
(3.2) T(F,G)* <T(F,F)-T(G,G),

whereF', G € Ly(a,b) andT'(F, G) is the Chebyshev’s functional:

/abF(x)G(x)d:c—bia/abF(g;)dx.bia/abG(x)dx_

If there exists constants, M € R such thatn < F(z) < M on [a,b], Spe-
cially, we have f]

1

—a

T(F.G) =

(M —m)*

T(F,F) <
(’ )— 4
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In formula (3.3 replacingF(z) by f*+V(z), andG/(z) by 2" we obtain
(3.1). 0

Remark 3.1. Itis possible to define the similar expressign (a, b) by

n!

tent) = [ )

In exactly the same way as inequalif§.]) was obtained, one can obtain the
following inequality

) — fa)
(n+1)!

(3.4) T’;L’f(a, b) (b—a)”

M—-—m n

(b _ a)n+1
S T
2 (2n+1):

(n+1)!
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