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ABSTRACT. We give a generalization of a one-dimensional Carlson type inequality due to G.-
S. Yang and J.-C. Fang and a generalization of a multidimensional type inequality due to L.
Larsson. We point out the strong and weak parts of each result.
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1. INTRODUCTION

Let (a,),>1 be a non-zero sequence of non-negative numberg éeda measurable function
on [0, 00). In 1934, F. Carlsori|2] proved that the following inequalities

oo 4 o0 o0
(1.1) Zan < WQZaiZnQQi,

(1.2) </OOO f(x)dx>4 < 7 /OOO F(x)dx /Doo 22 f2(z)dx

hold andC' = =2 is the best constant in both cases. Several generalizations and applications
in different branches of mathematics have been given during the years. For a complete survey
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2 SORINA BARZA AND EMIL C. POPA

of the results and applications concerning the above inequalities and also interesting historical
remarks see the book![5].
G.-S. Yang and J.-C. Fang in [6] proved the following generalization of inequlit}y

oo 2p )
(1.3) (Z an> ( ) Za p(1+2r=rp) gl—e(py)
n=1 n=1 %p_m
x Zap (142r—rp) 1+a (Z a?’p) ’

when (a,),>1 IS a sequence of nonnegative numbers aisl positive, continuously differen-
tiable,0 < m = inf,~q¢'(z) < 00, lim, . g(x) =00, p>2,0<a<1,r>0.
They also proved ir [6] the analogue generalization of the integral ineq(aiyas follows

o ([Trww) < (LY [T ey

0o S 2(p—2)
< [T g e ( / ffp(x)dx) ,

when f is a positive measurable function,is positive, continuously differentiable arid <
m = inf,~ ¢'(z) < 00, lim,; 00 g(z) =00, p>2,0 < < 1,7 > 0.

On the other hand, using another technique, lin [3], the following multidimensional extension
of the inequality[(1.]4) was given

2p 1 2
(1.5) ( - f(:p)dx) <C (amn/V) 5 fp(1+2r—rp)(m)g(n—a)/v@)dx

p—2 q—2
q(1+2s—sq) (nta)/ Tp q
« [ gt ([ rwa) ([ i)

for all positive and measurable functiofisAbove,n is a positive integer;, s are real numbers,
m,y > 0,p,q > 2,0 < a <n,g:R" — (0,00) with g(x) > m|z|”, and the constanf'
does not depend om, «, . This inequality allows a more general setting of parameters and a
much larger class of functions In [3] an example of admissible functignwhich is not even
continuous was given. It is also shown that the condition . g(x) = oo of cannot be
relaxed too much, in other words thatannot be taken essentially bounded. The only weaker
point of Is that it is not given an explicit value of the constahtWe also observe that the
proof of can be carried on for the value= 1 while this value is not allowed in the proof
of in the caser = 1, which means that Carlson’s inequalify.1)) is only a limiting case
of :

In Section 2 of this paper we give two-weight generalizations of the inequa(itiés and
(L.5). In Sectior] 8 we give a generalization of the discrete inequéli§) and some remarks.

2. THE CONTINUOUS CASE

In the next theorem we prove a two-weight generalization of the inequaliy. (

Theorem 2.1.Let f : [0,00) — R be a positive measurable functiofn, and g, be positive
continuously differentiable antl< m = inf,.~¢ (g7 92— gbg1) < oo. Suppose that > 2 andr is
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an arbitrary real number. Then the following inequality holds

(2.2) (/000 f(x)dx) ’ < (%)2 /OOO FPOF2r=10) (1) 02 (1) da
< [P @) ( | pr(x)dfo .

Proof. Observe that the conditioh < m = inf,~q (g1g2-gbg1) < oo implies thatg—; is strictly
increasing. Let

A= / frOsr= () gi(z)de  and B = / FRUER=D) (@) g3 (2) der,
0 0

A > 0 andq such tha% + i = 1. By using Holder’s inequality once for the indicesaindq and
once for§ andﬁ we get

mNe ([ 1 b =
< | — P p(142r—rp) 2 ) -
- <2m (/0 f () (/\91(1’) + )\92<$)) dm) (/0 f (m)dm)
Y 1 _ .1 o0 e
= \5 A —B)pr P )
<2m (AA + 3 ) (/0 f (x)dx)
Taking now\ = \/g we get the desired inequality and this completes the proof. O

Remark 2.2. If rp = 1 the inequality(2.1) reduces to

(/OOO f($)da:)4 < (%)2/000 f2<x)g%(x)dx/0°° ()62 () de

which becomed[1.2) for ¢;(z) = z, g2(x) = 1, x > 0. The same happens if we lpt— 2

in 1b If we let gi(z) = ¢ 2" (2), g2(x) = g = (x) in we get which means
that generalizes also the inequality (4) of [1]. The same inequalities can be given if
we replace the intervdl), co) by bounded interval§:, b] or by (—oo, 00). On the other hand

we can see that it is not necessary to suppasg.,g2(x) > k£ > 0, in other words, the
weightsgs(z) = e * andgy(z) = e are allowed. An interesting case is wheriz) = 1,

g1(z) = Ap(z;a) = 2(xz 4+ na)" %, a > 0,n € N,n > 1 (Abel polynomials). The inequality
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(2.1) becomes

(/000 f(x)dx>4 < ((WWT)Q/OOO A (x)dzx /OOO F2(2) A2 (2; a)dz

To prove a multidimensional extension of the above inequality we need the following lemma
which is a special case of Theorem 2[in [4].

Lemma 2.3. Let(Z, d() be a measure space on which weights 0, 3, > 0 and; > 0 are
defined. Suppose thag, p; € (1,2) andd € (0,1). Suppose also that there is a constant
such that

(2.2) c({z:2m§%<2m+l}> <C, m € Z
and that
% € L>™(Z,dc¢).
Then there is a constant such that o
(2.3) 18 1 zac) < AllFBoll oo zac) 1Bl pon z.ac) -

The constantl can be chosen of the form = A,C'~%/Po—(1-0)/r1 whereA, does not depend
onC.

We are now ready to prove our next multidimensional result which is also a generalization
of Theorem 2 of([3]. The technique is similar to that used in the last mentioned theorem. We
suppose for simplicity thaf is a nonnegative function.

Theorem 2.4.Letn be a positive integer angd, ¢ > 2,a < 1 andr,s € R. Suppose that for
some positive constants, &, the functionsy;, g : R” — (0, co) satisfy

(2.4) go(x) = mla| PP and  gi(x) > ket
Then there is a constai? independent ofn, k, a such that

p+q B
@) ([ o) <t [ g

< [ g ([ ) ([ 1)

Proof. In Lemm putZ = R"™, d((x) = B ‘n, wheredz is the Lebesgue measure litt,
o=pip=d iy =Lt = LLeth) = |af, o) = " andy(z) =

" = Jo" " whered = 2
We observe that
75 51 ~=1¢€ L™(Z,d().
Also, easy computations give
Let
c_rl-dpte

q
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Thus 22 ¢ [2m 2m+1) if and only if 2-(*1/7 < |z| < 2-™/7. Using polar coordinates we

Bi(z)
get
Bo(x) 1 }) /TWT dr  w,log?2
E 2m72m - n - = Y
C({ﬂl( ) [ ) W 9—(mt1)/r T T

wherew,, denotes the surface area of the unit spheﬂéﬁri—lence. holds withC' = «» 1T°g2.
Since the conditions of Lemna 2.3 are satisfied, ugg) we get

[ Hayia = [ f@piice

<a( [ v@mer i) g ([ vwne)r aw)

p—1 q—1

:A( |x’7’lap/ fp/(x)d;(;) p+q ( |x| p+q ap o fq( ) )p+q .
R R

o ) = (Jal ™ 020 @) ) 2 ),

np+q ap o/ fq( ) (’.Tlanrq “Lq’ fq '(142s— SQ( )) fpls(q72)<.’l;')

and apply Holder’s inequality witfp — 1) and(p — 1)/ (p — 2) in the first integral andg — 1)
and(q — 1)/ (¢ — 2) in the second integral we get

1—-6

P1

If we write

]

p+q
( f($)d$> < APt ‘x|na:ﬂ fp(1+2r—7‘p) (l’)dl’ ym‘n(erqfap) fq(H_Qs_sq)(x)
R"

R Rn

([ o) ([ o)

By Lemm we can choosé = A, (%)2/(%(1) Qe AP = (fa)Q, where B does not

depend om. Using (2.4) in estimating the integrals we get the inequaliy)) and the proof is
complete. O

Corollary 2.5. Letn be a positive integer angl ¢ > 2,0 < a < n andr, s € R. Suppose that
for some positive constants, v, the functiong : R™ — (0, co) satisfies

(2.6) g(w) > mlal".
Then there is a constaiit independent ofn, v, a such that

p+q C Lo
( A f(l’)d:(]) < W/R fp( + r—rp)(x)g(n—a)/7<x)dx

—2 q—2
% 5 fQ(lJrQrfrp)(x)g(nJra)/’Y(l.)dx (/ frp(x)dl)p </Rn frq(l')dl') )

Proof. The condltlon. 2.4) of Theoren.4 |mplle. )if a =12 gi(x) = gt/ (),
ga(x) = g~/ (). [

Remark 2.6. The above corollary is just Theorem 2 bf [3]. On the other hand, our Thegorém 2.4
is more general than Theorem 2 of [3] since the value 0 is allowed. This means that can

be taken equivalent with a constant. Thus our inequality can be considered a generalization of
Carlson’s inequality. In the same way aslin [3] one can proveghednnot be taken essentially

J. Inequal. Pure and Appl. Math?(5) Art. 169, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 SORINA BARZA AND EMIL C. POPA

bounded. Itis also obvious that the conditin]) is to some extent weaker thgn 1)) although
g> has to be bounded from below.

3. THE DISCRETE CASE
For completeness we also formulate the discrete case which is a generalizafic) .of

Theorem 3.1. Let (a,),>1 be a sequence of nonnegative numbers @ndnd g, be positive,
continuously differentiable functions such that m = inf,~( (¢} 92-g591) < 00, and suppose
that g, is an increasing function

m\?2 r—r r—r r
e (Na) < () Sarrin S ar o (Sa)
n=1 n=1 n=1 n=1

Proof. The proof carries on in the same manner as Theprem 2.1. We also use the fact that in the
conditions of the hypothesis the functignzlf2 A > 0 is decreasing and in this case the

sumd_>, (Agi(n) + %gg(n))_ can be estimated by the integrgl” de' O

Remark 3.2. Observe the fact that is an increasing function implies thatis also increasing.
If rp = 1 then the inequality3.1]) reduces to

(fj ) < (%)Qiaigﬂn)iaig%(n)

which becomed].1) for ¢;(n) = n,
(3.1). fwe letgy(x) = g 2" (2), ga(a

generalizes inequality (6) of [6]

g2(n )_1 n € N. The same is true if we lgt — 2 in
):

9" () in (3.1) we get(1.4) which means thaf2. 1)
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