Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 5, Article 169, 2006

WEIGHTED MULTIPLICATIVE INTEGRAL INEQUALITIES

SORINA BARZA AND EMIL C. POPA
Karlstad University
Department of Mathematics
Karlstad, S-65188, Sweden
sorina.barza@kau.se
University Lucian Blaga of Sibiu
Department of Mathematics
Street Ion Ratiu nr. 57
Sibiu, RO-, Romania
emil.popa@ulbsibiu.ro

Received 12 May, 2006; accepted 20 October, 2006
Communicated by L.-E. Persson

Abstract. We give a generalization of a one-dimensional Carlson type inequality due to G.-
S. Yang and J.-C. Fang and a generalization of a multidimensional type inequality due to L.

Larsson. We point out the strong and weak parts of each result.

Key words and phrases: Multiplicative integral inequalities, Weights, Carlson's inequality.
2000 Mathematics Subject Classification Primary: 26D15 and Secondary 28A10.

1. Introduction

Let $\left(a_{n}\right)_{n \geq 1}$ be a non-zero sequence of non-negative numbers and f be a measurable function on $[0, \infty)$. In 1934, F. Carlson [2] proved that the following inequalities

$$
\begin{gather*}
\left(\sum_{n=1}^{\infty} a_{n}\right)^{4}<\pi^{2} \sum_{n=1}^{\infty} a_{n}^{2} \sum_{n=1}^{\infty} n^{2} a_{n}^{2} \tag{1.1}\\
\left(\int_{0}^{\infty} f(x) d x\right)^{4} \leq \pi^{2} \int_{0}^{\infty} f^{2}(x) d x \int_{0}^{\infty} x^{2} f^{2}(x) d x \tag{1.2}
\end{gather*}
$$

hold and $C=\pi^{2}$ is the best constant in both cases. Several generalizations and applications in different branches of mathematics have been given during the years. For a complete survey

[^0]of the results and applications concerning the above inequalities and also interesting historical remarks see the book [5].
G.-S. Yang and J.-C. Fang in [6] proved the following generalization of inequality (1.1)
\[

$$
\begin{align*}
&\left(\sum_{n=1}^{\infty} a_{n}\right)^{2 p}<\left(\frac{\pi}{\alpha m}\right)^{2} \sum_{n=1}^{\infty} a_{n}^{p(1+2 r-r p)} g^{1-\alpha}(n) \tag{1.3}\\
& \times \sum_{n=1}^{\infty} a_{n}^{p(1+2 r-r p)} g^{1+\alpha}(n)\left(\sum_{n=1}^{\infty} a_{n}^{r p}\right)^{2(p-2)}
\end{align*}
$$
\]

when $\left(a_{n}\right)_{n \geq 1}$ is a sequence of nonnegative numbers and g is positive, continuously differentiable, $0<m=\inf _{x>0} g^{\prime}(x)<\infty, \lim _{x \rightarrow \infty} g(x)=\infty, p>2,0<\alpha \leq 1, r>0$.

They also proved in [6] the analogue generalization of the integral inequality (1.2) as follows

$$
\begin{align*}
\left(\int_{0}^{\infty} f(x) d x\right)^{2 p} \leq\left(\frac{\pi}{\alpha m}\right)^{2} & \int_{0}^{\infty} f^{p(1+2 r-r p)}(x) g^{1-\alpha}(x) d x \tag{1.4}\\
& \times \int_{0}^{\infty} f^{p(1+2 r-r p)}(x) g^{1+\alpha}(x) d x\left(\int_{0}^{\infty} f^{r p}(x) d x\right)^{2(p-2)}
\end{align*}
$$

when f is a positive measurable function, g is positive, continuously differentiable and $0<$ $m=\inf _{x>0} g^{\prime}(x)<\infty, \lim _{x \rightarrow \infty} g(x)=\infty, p>2,0<\alpha \leq 1, r>0$.

On the other hand, using another technique, in [3], the following multidimensional extension of the inequality (1.4) was given

$$
\begin{align*}
& \left(\int_{\mathbb{R}^{n}} f(x) d x\right)^{2 p} \leq C\left(\frac{1}{\alpha m^{n / \gamma}}\right)^{2} \int_{\mathbb{R}^{n}} f^{p(1+2 r-r p)}(x) g^{(n-\alpha) / \gamma}(x) d x \tag{1.5}\\
& \quad \times \int_{\mathbb{R}^{n}} f^{q(1+2 s-s q)}(x) g^{(n+\alpha) / \gamma}(x) d x\left(\int_{\mathbb{R}^{n}} f^{r p}(x) d x\right)^{p-2}\left(\int_{\mathbb{R}^{n}} f^{r q}(x) d x\right)^{q-2}
\end{align*}
$$

for all positive and measurable functions f. Above, n is a positive integer, r, s are real numbers, $m, \gamma>0, p, q>2,0<\alpha<n, g: \mathbb{R}^{n} \rightarrow(0, \infty)$ with $g(x) \geq m|x|^{\gamma}$, and the constant C does not depend on m, α, γ. This inequality allows a more general setting of parameters and a much larger class of functions g. In [3] an example of admissible function g which is not even continuous was given. It is also shown that the condition $\lim _{x \rightarrow \infty} g(x)=\infty$ of (1.4) cannot be relaxed too much, in other words that g cannot be taken essentially bounded. The only weaker point of $(\sqrt{1.5})$ is that it is not given an explicit value of the constant C. We also observe that the proof of (1.4) can be carried on for the value $\alpha=1$ while this value is not allowed in the proof of (1.5) in the case $n=1$, which means that Carlson's inequality (1.1) is only a limiting case of (1.5) .

In Section 2 of this paper we give two-weight generalizations of the inequalities (1.4) and (1.5). In Section 3 we give a generalization of the discrete inequality (1.3) and some remarks.

2. The Continuous Case

In the next theorem we prove a two-weight generalization of the inequality (1.4).
Theorem 2.1. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a positive measurable function, g_{1} and g_{2} be positive continuously differentiable and $0<m=\inf _{x>0}\left(g_{1}^{\prime} g_{2}-g_{2}^{\prime} g_{1}\right)<\infty$. Suppose that $p>2$ and r is
an arbitrary real number. Then the following inequality holds

$$
\begin{align*}
\left(\int_{0}^{\infty} f(x) d x\right)^{2 p} \leq\left(\frac{\pi}{m}\right)^{2} \int_{0}^{\infty} & f^{p(1+2 r-r p)}(x) g_{1}^{2}(x) d x \tag{2.1}\\
& \times \int_{0}^{\infty} f^{p(1+2 r-r p)}(x) g_{2}^{2}(x) d x\left(\int_{0}^{\infty} f^{r p}(x) d x\right)^{2(p-2)}
\end{align*}
$$

Proof. Observe that the condition $0<m=\inf _{x>0}\left(g_{1}^{\prime} g_{2-} g_{2}^{\prime} g_{1}\right)<\infty$ implies that $\frac{g_{1}}{g_{2}}$ is strictly increasing. Let

$$
A=\int_{0}^{\infty} f^{p(1+2 r-r p)}(x) g_{1}^{2}(x) d x \quad \text { and } \quad B=\int_{0}^{\infty} f^{p(1+2 r-r p)}(x) g_{2}^{2}(x) d x
$$

$\lambda>0$ and q such that $\frac{1}{q}+\frac{1}{p}=1$. By using Hölder's inequality once for the indices p and q and once for $\frac{p}{q}$ and $\frac{p}{p-q}$ we get

$$
\begin{aligned}
\int_{0}^{\infty} f(x) d x \leq & \left(\int_{0}^{\infty} f^{q}(x)\left(\lambda g_{1}^{2}(x)+\frac{1}{\lambda} g_{2}^{2}(x)\right)^{\frac{q}{p}} d x\right)^{\frac{1}{q}}\left(\int_{0}^{\infty} \frac{1}{\lambda g_{1}^{2}(x)+\frac{1}{\lambda} g_{2}^{2}(x)} d x\right)^{\frac{1}{p}} \\
\leq & \frac{1}{m^{\frac{1}{p}}}\left(\int_{0}^{\infty} \frac{\left(\frac{g_{1}(x)}{g_{2}(x)}\right)^{\prime}}{\lambda\left(\frac{g_{1}(x)}{g_{2}(x)}\right)^{2}+\frac{1}{\lambda}} d x\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} f^{q}(x)\left(\lambda g_{1}^{2}(x)+\frac{1}{\lambda} g_{2}^{2}(x)\right)^{\frac{q}{p}} d x\right)^{\frac{1}{q}} \\
= & \frac{1}{m^{\frac{1}{p}}}\left(\left.\arctan \frac{g_{1}(x)}{\lambda g_{2}(x)}\right|_{0} ^{\infty}\right)^{\frac{1}{p}} \\
& \times\left(\int_{0}^{\infty} f^{q-r(p-q)}(x) f^{r(p-q)}\left(\lambda g_{1}^{2}(x)+\frac{1}{\lambda} g_{2}^{2}(x)\right)^{\frac{q}{p}} d x\right)^{\frac{1}{q}} \\
\leq & \left(\frac{\pi}{2 m}\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} f^{p(1+2 r-r p)}(x)\left(\lambda g_{1}^{2}(x)+\frac{1}{\lambda} g_{2}^{2}(x)\right) d x\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} f^{r p}(x) d x\right)^{\frac{p-2}{p}} \\
= & \left(\frac{\pi}{2 m}\right)^{\frac{1}{p}}\left(\lambda A+\frac{1}{\lambda} B\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} f^{r p}(x) d x\right)^{\frac{p-2}{p}} .
\end{aligned}
$$

Taking now $\lambda=\sqrt{\frac{B}{A}}$ we get the desired inequality and this completes the proof.
Remark 2.2. If $r p=1$ the inequality (2.1) reduces to

$$
\left(\int_{0}^{\infty} f(x) d x\right)^{4} \leq\left(\frac{\pi}{m}\right)^{2} \int_{0}^{\infty} f^{2}(x) g_{1}^{2}(x) d x \int_{0}^{\infty} f^{2}(x) g_{2}^{2}(x) d x
$$

which becomes (1.2) for $g_{1}(x)=x, g_{2}(x)=1, x>0$. The same happens if we let $p \rightarrow 2$ in 2.1). If we let $g_{1}(x)=g^{\frac{1+\alpha}{2}}(x), g_{2}(x)=g^{\frac{1-\alpha}{2}}(x)$ in 2.1 we get (1.4 which means that (2.1) generalizes also the inequality (4) of [1]. The same inequalities can be given if we replace the interval $[0, \infty)$ by bounded intervals $[a, b]$ or by $(-\infty, \infty)$. On the other hand we can see that it is not necessary to suppose $\inf _{x>0} g_{2}(x) \geq k>0$, in other words, the weights $g_{2}(x)=e^{-x}$ and $g_{2}(x)=e^{x}$ are allowed. An interesting case is when $g_{2}(x)=1$, $g_{1}(x)=A_{n}(x ; a)=x(x+n a)^{n-1}, a>0, n \in \mathbb{N}, n \geq 1$ (Abel polynomials). The inequality
(2.1) becomes

$$
\left(\int_{0}^{\infty} f(x) d x\right)^{4} \leq\left(\frac{\pi}{(n a)^{n-1}}\right)^{2} \int_{0}^{\infty} f^{2}(x) d x \int_{0}^{\infty} f^{2}(x) A_{n}^{2}(x ; a) d x
$$

To prove a multidimensional extension of the above inequality we need the following lemma which is a special case of Theorem 2 in [4].

Lemma 2.3. Let $(Z, d \zeta)$ be a measure space on which weights $\beta \geq 0, \beta_{0}>0$ and $\beta_{1}>0$ are defined. Suppose that $p_{0}, p_{1} \in(1,2)$ and $\theta \in(0,1)$. Suppose also that there is a constant C such that

$$
\begin{equation*}
\zeta\left(\left\{z: 2^{m} \leq \frac{\beta_{0}(z)}{\beta_{1}(z)}<2^{m+1}\right\}\right) \leq C, \quad m \in \mathbb{Z} \tag{2.2}
\end{equation*}
$$

and that

$$
\frac{\beta}{\beta_{0}^{\theta} \beta_{1}^{1-\theta}} \in L^{\infty}(\mathbb{Z}, d \zeta)
$$

Then there is a constant A such that

$$
\begin{equation*}
\|f \beta\|_{L^{1}(\mathbb{Z}, d \zeta)} \leq A\left\|f \beta_{0}\right\|_{L^{p_{0}}(\mathbb{Z}, d \zeta)}^{\theta}\left\|f \beta_{1}\right\|_{L^{p_{1}}(\mathbb{Z}, d \zeta)}^{1-\theta} \tag{2.3}
\end{equation*}
$$

The constant A can be chosen of the form $A=A_{0} C^{1-\theta / p_{0}-(1-\theta) / p_{1}}$, where A_{0} does not depend on C.

We are now ready to prove our next multidimensional result which is also a generalization of Theorem 2 of [3]. The technique is similar to that used in the last mentioned theorem. We suppose for simplicity that f is a nonnegative function.
Theorem 2.4. Let n be a positive integer and $p, q>2, a<1$ and $r, s \in \mathbb{R}$. Suppose that for some positive constants m, k, the functions $g_{1}, g_{2}: \mathbb{R}^{n} \rightarrow(0, \infty)$ satisfy

$$
\begin{equation*}
g_{2}(x) \geq m|x|^{(n a p) / 2} \quad \text { and } \quad g_{1}(x) \geq k|x|^{n(p+q-a p) / 2} \tag{2.4}
\end{equation*}
$$

Then there is a constant B independent of m, k, a such that

$$
\begin{align*}
&\left(\int_{\mathbb{R}^{n}} f(x) d x\right)^{p+q} \leq \frac{B}{(1-a)^{2} m^{2} k^{2}} \int_{\mathbb{R}^{n}} f^{p(1+2 r-r p)}(x) g_{2}^{2}(x) d x \tag{2.5}\\
& \times \int_{\mathbb{R}^{n}} f^{q(1+2 r-r p)}(x) g_{1}^{2}(x) d x\left(\int_{\mathbb{R}^{n}} f^{r p}(x) d x\right)^{p-2}\left(\int_{\mathbb{R}^{n}} f^{r q}(x) d x\right)^{q-2}
\end{align*}
$$

Proof. In Lemma 2.3 put $Z=\mathbb{R}^{n}, d \zeta(x)=\frac{d x}{\mid x n^{n}}$, where $d x$ is the Lebesgue measure in \mathbb{R}^{n}, $p_{0}=p^{\prime}, p_{1}=q^{\prime}, \frac{1}{p}+\frac{1}{p^{\prime}}=1, \frac{1}{q}+\frac{1}{q^{\prime}}=1$. Let $\beta(x)=|x|^{n}, \beta_{0}(x)=|x|^{n a}$ and $\beta_{1}(x)=$ $|x|^{n \frac{1-a \theta}{1-\theta}}=|x|^{n \frac{p+q-a p}{q}}$, where $\theta=\frac{p}{p+q}$.

We observe that

$$
\frac{\beta}{\beta_{0}^{\theta} \beta_{1}^{1-\theta}} \equiv 1 \in L^{\infty}(\mathbb{Z}, d \zeta)
$$

Also, easy computations give

$$
\frac{\beta_{0}(x)}{\beta_{1}(x)}=|x|^{\frac{n(a-1)}{1-\theta}}=|x|^{\frac{n(a-1)(p+q)}{q}}
$$

Let

$$
\tau=\frac{n(1-a)(p+q)}{q}>0
$$

Thus $\frac{\beta_{0}(x)}{\beta_{1}(x)} \in\left[2^{m}, 2^{m+1}\right)$ if and only if $2^{-(m+1) / \tau} \leq|x| \leq 2^{-m / \tau}$. Using polar coordinates we get

$$
\zeta\left(\left\{\frac{\beta_{0}(x)}{\beta_{1}(x)} \in\left[2^{m}, 2^{m+1}\right)\right\}\right)=\omega_{n} \int_{2^{-(m+1) / \tau}}^{2^{-m / \tau}} \frac{d r}{r}=\frac{\omega_{n} \log 2}{\tau}
$$

where ω_{n} denotes the surface area of the unit sphere in \mathbb{R}^{n}. Hence 2.2 holds with $C=\frac{\omega_{n} \log 2}{\tau}$. Since the conditions of Lemma 2.3 are satisfied, using (2.3) we get

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} f(x) d x & =\int_{Z} f(x) \beta(x) d \zeta(x) \\
& \leq A\left(\int_{Z}\left(f(x) \beta_{0}(x)\right)^{p_{0}} d \zeta(x)\right)^{\frac{\theta}{p_{0}}}\left(\int_{Z}\left(f(x) \beta_{1}(x)\right)^{p_{1}} d \zeta(x)\right)^{\frac{1-\theta}{p_{1}}} \\
& =A\left(\int_{\mathbb{R}^{n}}|x|^{n a p^{\prime}} f^{p^{\prime}}(x) d x\right)^{\frac{p-1}{p+q}}\left(\int_{\mathbb{R}^{n}}|x|^{\frac{p+q-a p}{q} q^{\prime}} f^{q^{\prime}}(x) d x\right)^{\frac{q-1}{p+q}}
\end{aligned}
$$

If we write

$$
\begin{gathered}
|x|^{n a p^{\prime}} f^{p^{\prime}}(x)=\left(|x|^{n a p^{\prime}} f^{p^{\prime}(1+2 r-r p)}(x)\right) f^{p^{\prime} r(p-2)}(x), \\
|x|^{n^{\frac{p+q-a p}{q} q^{\prime}} f^{q^{\prime}}(x)=\left(|x|^{n \frac{p+q-a p}{q} q^{\prime}} f^{q^{\prime}(1+2 s-s q)}(x)\right) f^{p^{\prime} s(q-2)}(x)} .
\end{gathered}
$$

and apply Hölder's inequality with $(p-1)$ and $(p-1) /(p-2)$ in the first integral and $(q-1)$ and $(q-1) /(q-2)$ in the second integral we get

$$
\begin{aligned}
&\left(\int_{\mathbb{R}^{n}} f(x) d x\right)^{p+q} \leq A^{p+q} \int_{\mathbb{R}^{n}}|x|^{n a p} f^{p(1+2 r-r p)}(x) d x \int_{\mathbb{R}^{n}}|x|^{n(p+q-a p)} f^{q(1+2 s-s q)}(x) \\
& \times\left(\int_{\mathbb{R}^{n}} f^{r p}(x) d x\right)^{p-2}\left(\int_{\mathbb{R}^{n}} f^{s q}(x) d x\right)^{q-2}
\end{aligned}
$$

By Lemma 2.3 we can choose $A=A_{0}\left(\frac{\omega_{n} \log 2}{\tau}\right)^{2 /(p+q)}$, i.e. $A^{p+q}=\frac{B}{(1-a)^{2}}$, where B does not depend on a. Using (2.4) in estimating the integrals we get the inequality (2.5) and the proof is complete.

Corollary 2.5. Let n be a positive integer and $p, q>2,0<\alpha<n$ and $r, s \in \mathbb{R}$. Suppose that for some positive constants m, γ, the function $g: \mathbb{R}^{n} \rightarrow(0, \infty)$ satisfies

$$
\begin{equation*}
g(x) \geq m|x|^{\gamma} . \tag{2.6}
\end{equation*}
$$

Then there is a constant C independent of m, γ, α such that

$$
\begin{aligned}
&\left(\int_{\mathbb{R}^{n}} f(x) d x\right)^{p+q} \leq \frac{C}{\alpha^{2} m^{2 n / \gamma}} \int_{\mathbb{R}^{n}} f^{p(1+2 r-r p)}(x) g^{(n-\alpha) / \gamma}(x) d x \\
& \times \int_{\mathbb{R}^{n}} f^{q(1+2 r-r p)}(x) g^{(n+\alpha) / \gamma}(x) d x\left(\int_{\mathbb{R}^{n}} f^{r p}(x) d x\right)^{p-2}\left(\int_{\mathbb{R}^{n}} f^{r q}(x) d x\right)^{q-2}
\end{aligned}
$$

Proof. The condition 2.4 of Theorem 2.4 implies 2.6) if $a=1-\frac{\alpha}{n p}, g_{1}(x)=g^{(n+\alpha) / 2 \gamma}(x)$, $g_{2}(x)=g^{(n-\alpha) / 2 \gamma}(x)$.
Remark 2.6. The above corollary is just Theorem 2 of [3]. On the other hand, our Theorem 2.4 is more general than Theorem 2 of [3] since the value $a=0$ is allowed. This means that g_{2} can be taken equivalent with a constant. Thus our inequality can be considered a generalization of Carlson's inequality. In the same way as in [3] one can prove that g_{1} cannot be taken essentially
bounded. It is also obvious that the condition (2.4) is to some extent weaker than (2.1) although g_{2} has to be bounded from below.

3. The Discrete Case

For completeness we also formulate the discrete case which is a generalization of (1.3).
Theorem 3.1. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of nonnegative numbers and g_{1} and g_{2} be positive, continuously differentiable functions such that $0<m=\inf _{x>0}\left(g_{1}^{\prime} g_{2-} g_{2}^{\prime} g_{1}\right)<\infty$, and suppose that g_{2} is an increasing function

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} a_{n}\right)^{2 p}<\left(\frac{\pi}{m}\right)^{2} \sum_{n=1}^{\infty} a_{n}^{p(1+2 r-r p)} g_{1}^{2}(n) \sum_{n=1}^{\infty} a_{n}^{p(1+2 r-r p)} g_{2}^{2}(n)\left(\sum_{n=1}^{\infty} a_{n}^{r p}\right)^{2(p-2)} \tag{3.1}
\end{equation*}
$$

Proof. The proof carries on in the same manner as Theorem 2.1. We also use the fact that in the conditions of the hypothesis the function $\frac{1}{\lambda g_{1}^{2}(\cdot)+\frac{1}{\lambda} g_{2}^{2}(\cdot)}, \lambda>0$ is decreasing and in this case the $\operatorname{sum} \sum_{n=1}^{\infty}\left(\lambda g_{1}^{2}(n)+\frac{1}{\lambda} g_{2}^{2}(n)\right)^{-1}$ can be estimated by the integral $\int_{0}^{\infty} \frac{1}{\lambda g_{1}^{2}(x)+\frac{1}{\lambda} g_{2}^{2}(x)} d x$.
Remark 3.2. Observe the fact that g_{2} is an increasing function implies that g_{1} is also increasing. If $r p=1$ then the inequality (3.1) reduces to

$$
\left(\sum_{n=1}^{\infty} a_{n}\right)^{4} \leq\left(\frac{\pi}{m}\right)^{2} \sum_{n=1}^{\infty} a_{n}^{2} g_{1}^{2}(n) \sum_{n=1}^{\infty} a_{n}^{2} g_{2}^{2}(n)
$$

which becomes (1.1) for $g_{1}(n)=n, g_{2}(n)=1, n \in \mathbb{N}$. The same is true if we let $p \rightarrow 2$ in (3.1). If we let $g_{1}(x)=g^{\frac{1-\alpha}{2}}(x), g_{2}(x)=g^{\frac{1+\alpha}{2}}(x)$ in (3.1) we get (1.4) which means that 2.1) generalizes inequality (6) of [6].

References

[1] S. BARZA And E.C. POPA, Inequalities related with Carlson's inequality, Tamkang J. Math., 29(1) (1998), 59-64.
[2] F. CARLSON, Une inégalité, Ark. Mat. Astr. Fysik, 26B, 1 (1934).
[3] L. LARSSON, A multidimensional extension of a Carlson type inequality, Indian J. Pure Appl. Math., 34(6) (2003), 941-946.
[4] L. LARSSON, A new Carlson type inequality, Math. Inequal. Appl., 6(1) (2003), 55-79.
[5] L. LARSSON, L. MALIGRANDA, J. PEČARIĆ AND L.-E. PERSSON, Multiplicative Inequalities of Carlson Type and Interpolation, World Scientific Publishing Co. Pty. Ltd. Hackensack, NJ, 2006.
[6] G.-S YANG and J.-C. FANG, Some generalizations of Carlson's inequalities, Indian J. Pure Appl. Math., 30(10) (1999), 1031-1041.

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 The research of the second named author was partially supported by a grant of University of Karlstad, Sweden.
 We would like to thank to Prof. Lars-Erik Persson and the referee for some generous and useful remarks and comments which have improved the final version of the paper.

 134-06

