THE QUATERNION MATRIX-VALUED YOUNG'S INEQUALITY

RENYING ZENG
zeng@siast.sk.ca
Department of Mathematics
Saskatchewan Institute of Applied Science and Technology Moose Jaw, Saskatchewan
CANADA S6H 4R4

Received 09 December, 2002; accepted 04 June, 2005
Communicated by G.P. Styan

Abstract

In this paper, we prove Young's inequality in quaternion matrices: for any $n \times n$ quaternion matrices A and B, any $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$, there exists $n \times n$ unitary quaternion matrix U such that $U\left|A B^{*}\right| U^{*} \leq \frac{1}{p}|A|^{p}+\frac{1}{q}|B|^{q}$.

Furthermore, there exists unitary quaternion matrix U such that the equality holds if and only if $|B|=|A|^{p-1}$.

Key words and phrases: Quaternion, Matrix, Young's inequality, Real representation.
2000 Mathematics Subject Classification. 15A45, 15A42.

1. Introduction

The two most important classical inequalities probably are the triangle inequality and the arithmetic-geometric mean inequality.
The triangle inequality states that $|\alpha+\beta| \leq|\alpha|+|\beta|$ for any complex numbers α, β.
Thompson [7] extended the classical triangle inequality to $n \times n$ complex matrices: for any $n \times n$ complex matrices A and B, there are $n \times n$ unitary complex matrices U and V such that

$$
\begin{equation*}
|A+B| \leq U|A| U^{*}+V|B| V^{*} . \tag{1.1}
\end{equation*}
$$

Thompson [6] proved that, the equality in the matrix-valued triangle inequality (1.1) holds if and only if A and B have polar decompositions with a common unitary factor.

Furthermore, Thompson [5] extended the complex matrix-valued triangle inequality (1.1) to the quaternion matrices: for any $n \times n$ quaternion matrices A and B, there are $n \times n$ unitary quaternion matrices U and V such that

$$
|A+B| \leq U|A| U^{*}+V|B| V^{*} .
$$

ISSN (electronic): 1443-5756

(c) 2005 Victoria University. All rights reserved.

136-02

The arithmetic-geometric mean inequality is as follows: for any complex numbers α, β,

$$
\sqrt{|\alpha \beta|} \leq \frac{1}{2}(|\alpha|+|\beta|) ;
$$

or,

$$
|\alpha \beta| \leq \frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}\right),
$$

which is a special case of the classical Young's inequality: for any complex numbers α, β, and any $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$,

$$
|\alpha \beta| \leq \frac{1}{p}|\alpha|^{p}+\frac{1}{q}|\beta|^{q} .
$$

Bhatia and Kittaneh [2], Ando [1] extended the classical arithmetic-geometric mean inequality and Young's inequality to $n \times n$ complex matrices, respectively. This is Ando's matrix-valued Young's inequality: for any $n \times n$ complex matrices A and B, any $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$, there is unitary complex matrix U such that

$$
U\left|A B^{*}\right| U^{*} \leq \frac{1}{p}|A|^{p}+\frac{1}{q}|B|^{q} .
$$

Bhatia and Kittaneh's result is the case of $p=q=2$, i.e., Young's inequality recovers Bhatia and Kittaneh's arithmetic-geometric-mean inequality, likewise, Ando's matrix version of Young's inequality captures the Bhatia-Kittaneh matricial arithmetic-geometric-mean inequality.

We mention that Erlijman, Farenick and the author [8] proved Young's inequality for compact operators.

This paper extends the Young's inequality to $n \times n$ quaternion matrices and examines the case where equality in the inequality holds.

2. Matrix-valued Young's inequality: the Quaternion Version

We use \mathbb{R}, \mathbb{C}, and \mathbb{H} to denote the set of real numbers, the set of complex numbers, and the set of quaternions, respectively.

For any $z \in \mathbb{H}$, we have the unique representation $z=a 1+b i+c j+d k$, where $\{1, i, j, k\}$ is the basis of \mathbb{H}. It is well-known that I is the multiplicative identity of \mathbb{H}, and $1^{2}=i^{2}=j^{2}=$ $k^{2}=-1, \quad i j=k, k i=j, j k=i$, and $j i=-k, i k=-j, k j=-i$.

For each $z=a 1+b i+c j+d k \in \mathbb{H}$, define the conjugate \bar{z} of z by

$$
\bar{z}=a 1-b i-c j-d k .
$$

Obviously we have $\bar{z} z=z \bar{z}=a^{2}+b^{2}+c^{2}+d^{2}$. This implies that $\bar{z} z=z \bar{z}=0$ if and only if $z=0$. So z is invertible in \mathbb{H} if $z \neq 0$.
We note that as subalgebras of \mathbb{H}, the meaning of conjugate in \mathbb{R}, or \mathbb{C} is as usual (for any $z \in \mathbb{R}$ we have $\bar{z}=z$).

We can consider \mathbb{R} and \mathbb{C} as real subalgebras of $\mathbb{H}: \mathbb{R}=\{a 1: a \in \mathbb{R}\}$, and $\mathbb{C}=\{a 1+b i$: $a, b \in \mathbb{R}\}$.

We define the real representation ρ of \mathbb{H}, i.e., $\rho: \mathbb{H} \rightarrow M_{4}(\mathbb{R})$ by

$$
\rho(z)=\rho(a 1+b i+c j+d k)=\left(\begin{array}{cccc}
a & -b & -c & -d \\
b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right)
$$

where $z=a 1+b i+c j+d k \in \mathbb{H}$.
Note that $\rho(\bar{z})$ is the transpose of $\rho(z)$.

From the real representation ρ of \mathbb{H}, we define a faithful representation by $\rho_{n}: M_{n}(\mathbb{H}) \rightarrow$ $M_{4 n}(\mathbb{R})$ as follows:

$$
\rho(A)=\rho_{n}\left(\left[q_{s t}\right]_{s, t=1}^{n}\right)=\left(\left[\rho\left(q_{s t}\right)\right]_{s, t=1}^{n}\right)
$$

for all matrices $A=\left[q_{s t}\right]_{s, t=1}^{n} \in M_{n}(\mathbb{H})$.
We note that each ρ_{n} is an injective and homomorphism; and for all $A \in M_{n}(\mathbb{H})$,

$$
\rho_{n}\left(A^{*}\right)=\rho_{n}(A)^{*} .
$$

For the set $M_{n}(\mathbb{F})$ of $n \times n$ matrices with entries from \mathbb{F}, where \mathbb{F} is \mathbb{R}, \mathbb{C}, or \mathbb{H}, we use A^{*} to denote the conjugate transpose of $A \in M_{n}(\mathbb{F})$.

We consider $M_{n}(\mathbb{R})$ and $M_{n}(\mathbb{H})$ as algebras over \mathbb{R}, but $M_{n}(\mathbb{C})$ as a complex algebra.
Definition 2.1. The spectrum $\sigma(A)$ of $A \in M_{n}(\mathbb{F})$ is a subset of \mathbb{C} that consists of all the roots of the minimal monic annihilating polynomial f of A. We note that if $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{H}$, then $f \in \mathbb{R}[x]$; but if $\mathbb{F}=\mathbb{H}$, then $f \in \mathbb{C}[x]$. If $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$, then the spectrum $\sigma(A)$ is the set of eigenvalues of A. But if $\mathbb{F}=\mathbb{H}$, then $\sigma(A)$ is the set of eigenvalues of $\rho_{n}(A) . A$ is called Hermitian if $A=A^{*}$. A is said to be nonnegative definite if A is Hermitian and $\sigma(A)$ are all non-negative real numbers. A is said to be unitary if $A^{*} A=A A^{*}=I$, where I is the identity matrix in $M_{n}(\mathbb{F})$.

If A and B are Hermitian, we define $A \leq B$ or $B \geq A$ if $B-A$ is nonnegative definite.
For any Hermitian matrix $A, \lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{n}(A)$ are its eigenvalues, arranged in descending order; where the number of appearances of a particular eigenvalue λ is equal to the dimension of the kernel of $A-\lambda I$ and is known as the geometric multiplicity of λ.
Lemma 2.1 ([1] $]$. If $A, B \in M_{n}(\mathbb{C})$, and if $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$, then there is a unitary $U \in M_{n}(\mathbb{C})$ such that

$$
U\left|A B^{*}\right| U^{*} \leq \frac{1}{p}|A|^{p}+\frac{1}{q}|B|^{q},
$$

where $|A|$ denotes the nonnegative definite Hermitian matrix

$$
|A|=\left(A^{*} A\right)^{\frac{1}{2}} .
$$

Lemma $2.2([3])$. Let $Q \in M_{n}(\mathbb{H})$, then $Q^{*} Q$ is nonnegative definite. Furthermore, if $A \in$ $M_{n}(\mathbb{H})$ is nonnegative definite, then there are matrices $U, D \in M_{n}(\mathbb{H})$ such that
(i) U is unitary and D is diagonal matrix with nonnegative diagonal entries $d_{1}, d_{2}, \ldots, d_{n}$;
(ii) $U^{*} A U=D$;
(iii) $\sigma(A)=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$;
(iv) If $\mu \in \sigma(A)$ appears t_{μ} times on the diagonal of D, then the geometric multiplicity of μ as an eigenvalue of $\rho_{n}(A)$ is $4 t_{\mu}$.

Lemma 2.3. For any $A, B \in M_{n}(H)$,
(i) $\rho_{n}(|A|)=\left|\rho_{n}(A)\right|$;
(ii) $\rho_{n}\left(|A|^{p}\right)=\left|\rho_{n}(A)\right|^{p}$ for any nonnegative definite p;
(iii) $\rho_{n}(|A B|)=\left|\rho_{n}(A) \rho_{n}(B)\right|$.

The meaning of $|A|$ is similar to that in Lemma 2.1, i.e., $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$.
Proof. (i) Note that $\rho_{n}: M_{n}(\mathbb{H}) \rightarrow M_{4 n}(\mathbb{R})$ is a homomorphism, if $X \in M_{n}(\mathbb{H})$ is nonnegative definite, then there is a $Y \in M_{n}(\mathbb{H})$ such that $X=Y Y^{*}$, so

$$
\rho_{n}(X)=\rho_{n}\left(Y^{*} Y\right)=\rho_{n}\left(Y^{*}\right) \cdot \rho_{n}(Y)=\rho_{n}(Y)^{*} \cdot \rho_{n}(Y)=\left|\rho_{n}(Y)\right|^{2}
$$

which means that $\rho_{n}(X)$ is also nonnegative definite. Hence, for any $X \in M_{n}(\mathbb{H})$ we have (since ρ_{n} is a homomorphism),

$$
\left(\rho_{n}(|X|)^{\frac{1}{2}}\right)^{2}=\rho_{n}(|X|)=\rho_{n}\left(|X|^{\frac{1}{2}} \cdot|X|^{\frac{1}{2}}\right)=\left(\rho_{n}\left(|X|^{\frac{1}{2}}\right)\right)^{2} .
$$

So $\rho_{n}(|X|)^{\frac{1}{2}}=\rho_{n}\left(|X|^{\frac{1}{2}}\right)$. Therefore

$$
\rho_{n}(|A|)=\left(\rho_{n}\left(A^{*} A\right)\right)^{\frac{1}{2}}=\left(\rho_{n}\left(A^{*}\right) \rho_{n}(A)\right)^{\frac{1}{2}}=\left|\rho_{n}(A)\right| .
$$

We get (i).
(ii) For any nonnegative definite p,

$$
\rho_{n}\left(|A|^{p}\right)=\left(\rho_{n}(|A|)\right)^{p}=\left|\rho_{n}(A)\right|^{p},
$$

the first equality is because $\rho_{n}: M_{n}(\mathbb{H}) \rightarrow M_{4 n}(\mathbb{R})$ is a homomorphism, and the second equality is from (i).
(iii) Similar to (ii) we have

$$
\rho_{n}(|A B|)=\left|\rho_{n}(A B)\right|=\left|\rho_{n}(A) \rho_{n}(B)\right| .
$$

The proof is complete.
The following Theorem 2.4 is one of our main results.
Theorem 2.4. For any $A, B \in M_{n}(\mathbb{H})$, any $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$, there is a unitary $U \in M_{n}(\mathbb{H})$, such that

$$
U\left|A B^{*}\right| U^{*} \leq \frac{1}{p}|A|^{p}+\frac{1}{q}|B|^{q}
$$

Proof. By Lemma $2.3 \rho_{n}\left(\left|A B^{*}\right|\right)=\left|\rho_{n}(A) \rho_{n}(B)^{*}\right|$, and

$$
\rho_{n}\left(\frac{1}{p}|A|^{p}+\frac{1}{q}|B|^{q}\right)=\frac{1}{p}\left|\rho_{n}(A)\right|^{p}+\frac{1}{q}\left|\rho_{n}(B)\right|^{q} .
$$

Because real $n \times n$ matrices $\left|\rho_{n}(A) \rho_{n}(B)^{*}\right|$ and $\frac{1}{p}\left|\rho_{n}(A)\right|^{p}+\frac{1}{q}\left|\rho_{n}(B)\right|^{q}$ are nonnegative definite, from Linear Algebra there are $n \times n$ unitary matrices $V, W \in M_{n}(\mathbb{C})$ such that

$$
V\left|\rho_{n}(A) \rho_{n}(B)^{*}\right| V^{*}=C \quad \text { and } \quad W\left(\frac{1}{p}\left|\rho_{n}(A)\right|^{p}+\frac{1}{q}\left|\rho_{n}(B)\right|^{q}\right) W^{*}=D
$$

where C and D are diagonal matrices in $M_{4 n}(\mathbb{R})$.
Thus from Lemma 2.2 (iv) one has

$$
C=C_{1} \oplus C_{2} \oplus \cdots \oplus C_{n} \quad \text { and } \quad D=D_{1} \oplus D_{2} \oplus \cdots \oplus D_{n}
$$

with $C_{s}=\operatorname{diag}\left\{c_{s}, c_{s}, \ldots, c_{s}\right\}$ and $D_{s}=\operatorname{diag}\left\{d_{s}, d_{s}, \ldots, d_{s}\right\}$, where c_{s} and d_{s} are nonnegative real numbers, $s=1,2, \ldots, n$. By Lemma 2.2 (iii) we have

$$
\sigma\left(\left|A B^{*}\right|\right)=\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}
$$

and

$$
\sigma\left(\frac{1}{p}\left|\rho_{n}(A)\right|^{p}+\frac{1}{q}\left|\rho_{n}(B)\right|^{q}\right)=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\} .
$$

Furthermore, Lemma 2.2 implies that

$$
C=C_{1} \oplus C_{2} \oplus \cdots \oplus C_{n} \leq D=D_{1} \oplus D_{2} \oplus \cdots \oplus D_{n}
$$

Hence the equation above and Lemma 2.3 yield that

$$
\operatorname{diag}\left\{c_{1}, c_{2}, \ldots, c_{n}\right\} \leq \operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}
$$

Thus from Lemma 2.2 (i) (ii) (iii) there are unitary matrices $U_{1}, U_{2} \in M_{n}(\mathbb{H})$ such that

$$
U_{1}\left|A B^{*}\right| U_{1}^{*} \leq U_{2}\left(\frac{1}{p}|A|^{p}+\frac{1}{q}|B|^{q}\right) U_{2}^{*}
$$

then there is a unitary matrix $U \in M_{n}(\mathbb{H})$ for which

$$
U\left|A B^{*}\right| U^{*} \leq \frac{1}{p}|A|^{p}+\frac{1}{q}|B|^{q} .
$$

The proof is complete.

3. The Case of Equality

Hirzallah and Kittaneh [4] proved a result as follows.
Lemma 3.1. Let $A, B \in M_{n}(\mathbb{C})$ be nonnegative definite. If $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$, and if there exists unitary $U \in M_{n}(\mathbb{C})$ such that

$$
U|A B| U^{*}=\frac{1}{p} A^{p}+\frac{1}{q} B^{q}
$$

then $B=A^{p-1}$.
We have the following result.
Theorem 3.2. For any $A, B \in M_{n}(\mathbb{H})$, any $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$, there is a unitary $U \in M_{n}(\mathbb{H})$ such that

$$
\begin{equation*}
U\left|A B^{*}\right| U^{*}=\frac{1}{p}|A|^{p}+\frac{1}{q}|B|^{q} \tag{3.1}
\end{equation*}
$$

if and only if $|B|=|A|^{p-1}$.
Proof. The sufficiency. In fact, if $|B|=|A|^{p-1}$ then

$$
\left|\rho_{n}(B)\right|=\rho_{n}(|B|)=\rho_{n}\left(|A|^{p-1}\right)=\left|\rho_{n}(A)\right|^{p-1}
$$

Write $X=\rho_{n}(A), Y=\rho_{n}(B)$.
Suppose $X=V|X|, Y=W|Y|$ are the polar decomposition of X, Y respectively, where V, W are $4 n \times 4 n$ unitary complex matrices. Then from (3.1) we have

$$
\left|X Y^{*}\right|=W| | X| | Y| | W^{*}=W|X|^{p} W^{*} .
$$

Simply computation yields

$$
\frac{1}{p}|X|^{p}+\frac{1}{q}|Y|^{q}=|X|^{p}
$$

So

$$
W^{*}\left|X Y^{*}\right| W=\frac{1}{p}|X|^{p}+\frac{1}{q}|Y|^{q} .
$$

Since W is a unitary, using the notations in Theorem 2.4, this implies

$$
C=C_{1} \oplus C_{2} \oplus \cdots \oplus C_{n}=D=D_{1} \oplus D_{2} \oplus \cdots \oplus D_{n}
$$

Hence Lemma 2.2 yields that

$$
\operatorname{diag}\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}
$$

Again, by Lemma 2.2, there is a unitary $U \in M_{n}(\mathbb{H})$ such that

$$
U\left|A B^{*}\right| U^{*}=\frac{1}{p}|A|^{p}+\frac{1}{q}|B|^{q} .
$$

The necessity. Assume there exists unitary $U \in M_{n}(\mathbb{H})$ such that (3.1) holds, i.e.

$$
U\left|A B^{*}\right| U^{*}=\frac{1}{p}|A|^{p}+\frac{1}{q}|B|^{q} .
$$

Then

$$
\rho_{n}\left(U\left|A B^{*}\right| U^{*}\right)=\rho_{n}\left(\frac{1}{p}|A|^{p}+\frac{1}{q}|B|^{q}\right) .
$$

Writing $X=\rho_{n}(A), Y=\rho_{n}(B)$, and $T=\rho_{n}(U)$, one gets

$$
T\left|X Y^{*}\right| T^{*}=\frac{1}{p}|X|^{p}+\frac{1}{q}|Y|^{q}
$$

This and Lemma 3.1 imply that

$$
|Y|=\left(|X|^{p}\right)^{\frac{1}{q}}=|X|
$$

which means

$$
\rho_{n}(|B|)=\rho_{n}(|A|)^{p-1}=\rho_{n}\left(|A|^{p-1}\right) .
$$

Therefore (note that $\rho_{n}: M_{n}(\mathbb{H}) \rightarrow M_{4 n}(\mathbb{R})$ is a faithful representation)

$$
|B|=|A|^{p-1}
$$

This completes the proof.

References

[1] T. ANDO, Matrix Young's inequality, Oper. Theory Adv. Appl., 75 (1995), 33-38.
[2] R. BHATIA AND F. KITTANEH, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl., 11 (1990), 272-277.
[3] J.L. BRENNER, Matrices of quaternion, Pacific J. Math., 1 (1951), 329-335.
[4] O. HIRZALLAH and F. KITTANEH, Matrix Young inequalities for the Hilbert-Schmidt norm, Linear Algebra and Application, 308 (2000), 77-84.
[5] R.C. THOMPSON, Matrix-valued triangle inequality: quaternion version, Linear and Multilinear Algebra, 25 (1989), 85-91
[6] R.C. THOMPSON, The case of equality in the matrix-valued triangle inequality, Pacific J. of Math., 82 (1979), 279-280.
[7] R.C. THOMPSON, Convex and concave functions of singular values of matrix sums, Pacific J. Math., 66 (1976), 285-290.
[8] J. ERLIJMAN, D.R. FARENICK AND R. ZENG, Young's inequality in compact operators, Oper. Theory. Adv. and Appl., 130 (2001), 171-184.

