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Abstract

In [8] the notion of “projected differential equation” has been introduced and
the stability of solutions has been studied by means of Stampacchia type vari-
ational inequalities. More recently, in [20], Minty variational inequalities have
been involved in the study of properties of the trajectories of such a projected
differential equation.
We consider classical generalizations of both problems, namely projected dif-
ferential inclusions and variational inequalities with point to set operators, and
we extend results stated in [20] to this setting. Moreover, we also apply the
results to describe the convergence of the trajectories of a generalized gradient
inclusion method.

2000 Mathematics Subject Classification: 34A60, 47J20, 49J52
Key words: Minty variational inequalities, differential inclusions, monotone trajecto-

ries, slow solutions.
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1. Introduction
The relations of Minty and Stampacchia Variational Inequalities [21] with dif-
ferentiable optimization problems have been widely studied. Basically, it has
been proved that the Stampacchia Variational Inequality (for short, SVI) is a
necessary condition for optimality (see e.g. [14]), while the Minty Variational
Inequality (for short, MVI) is a sufficient one (see e.g. [7, 11, 15]). General-
izations of SVI and MVI to point to set maps have been introduced (see e.g.
[4, 9]) and the previous results have been proved also for non differentiable
optimization problems (see e.g. [5]).

On the other hand, Dynamical Systems (for short, DS) are a classical tool for
dealing with a wide range both of real and mathematical problems. Recently, the
existence and stability of equilibria of a (projected) DS have been characterized
by means of variational inequalities. In this context it has been proved that
existence of a solution of SVI is equivalent to existence of an equilibrium, while
MVI ensures the stability of equilibria (see [8, 20]).

The latter results proved to be useful in deriving a wide variety of applica-
tions and a deeper insight on the dynamic of the adjustment towards an equi-
librium. Basically, variational inequalities are used to model static equilibria
of several economies, such as Cournot oligopoly, spatial oligopoly, general
economic equilibrium and so on [18], while dynamical systems (or more re-
alistically differential inclusions) are used to describe the path to equilibrium,
starting from a given state of the world (see e.g. [10]). Therefore, the appli-
cation of variational inequalities to dynamical systems allows us to unify static
and dynamic aspects in the study of economic phenomena ([8, 19]). Since both
variational inequalities and dynamical systems have been generalized by means
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of point to set maps, in this paper we focus on the relations among variational
inequalities with set-valued operator and differential inclusions. As the study
in the single-valued case has dealt with projected DS, we recall in Section2
the notion of projected differential inclusion (as in [1]), together with the ba-
sic results on variational inequalities. Main results are proven in Section3,
where existence of solutions of Minty type variational inequalities is related to
the monotonicity of trajectories of a projected differential inclusion. Finally, in
Section4, we apply the results to a generalized gradient inclusion.

http://jipam.vu.edu.au/
mailto:
mailto:g.crespi@univda.it
mailto:
mailto:
mailto:mrocca@eco.uninsubria.it
http://jipam.vu.edu.au/


Minty Variational Inequalities
and Monotone Trajectories of

Differential Inclusions

Giovanni P. Crespi and
Matteo Rocca

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 29

J. Ineq. Pure and Appl. Math. 5(2) Art. 48, 2004

http://jipam.vu.edu.au

2. Preliminaries
We first recall basic results on differential inclusions and variational inequali-
ties. In order to simplify the notation, we need to make the following standing
assumptions, which hold throughout the paper unless otherwise stated:

i) K denotes a convex and closed subset ofRn;

ii) F denotes an upper semi-continuous (u.s.c.) map fromRn to 2Rn
, with

nonempty convex and compact values.

For the sake of completeness, we recall the definition of upper semi-continuity
for a set-valued map:

Definition 2.1. A mapF from Rn to 2Rn
is said to be u.s.c. atx0 ∈ Rn, if for

every open setN containingF (x0), there exists a neighbourhoodM of x0 such
thatF (M) ⊆ N . F is said to be u.s.c. when it is so at everyx0 ∈ Rn.

2.1. Differential Inclusions

We start by recalling from [1] the following result about projection:

Theorem 2.1.We can associate to everyx ∈ Rn a unique elementπK(x) ∈ K,
satisfying:

‖x− πK(x)‖ = min
y∈K

‖x− y‖.

It is characterized by the following inequality:

〈πK(x)− x, πK(x)− y〉 ≤ 0, ∀y ∈ K.
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Furthermore the mapπK(·) is non expansive, i.e.:

‖πK(x)− πK(y)‖ ≤ ‖x− y‖.

The mapπK is said to be the projector (of best approximation) ontoK.
WhenK is a linear subspace, thenπK is linear (see [1]). We setπK(0) = m(K)
(i.e. m(K) denotes the element ofK with minimal norm). For our aims, we set
also:

πK(A) =
⋃
x∈A

πK(x).

The following notation should be common:

C− = {v ∈ Rn : 〈v, a〉 ≤ 0,∀a ∈ C}

is the (negative) polar cone of the setC ⊆ Rn, while:

T (C, x) = {v ∈ Rn : ∃vn → v, αn > 0, αn → 0, x + αnvn ∈ C}

is the Bouligand tangent cone to the setC atx ∈ clC andN(C, x) = [T (C, x)]−

stands for the normal cone toC atx ∈ clC.
It is known thatT (C, x) andN(C, x) are closed sets andN(C, x) is convex.

Furthermore, when we consider a closed convex setK ⊆ Rn, thenT (K,x) =
cl cone (K − x) (cone A denotes the cone generated by the setA), so that the
tangent cone is also convex.

Proposition 2.2 ([1]). Let A be a compact convex subset ofRn, T be a closed
convex cone andN = T− be its polar cone. Then:

(2.1) πT (A) ⊆ A−N.
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The elements of minimal norm are equal in the two sets:

m(πT (A)) = m(A−N)

and satisfy:
sup
z∈−A

〈z, m(πT (A))〉+ ‖m(πT (A)‖2 ≤ 0.

We recall that, given a mapG : K ⊆ Rn → 2Rn
, a differential inclusion

is the problem of finding an absolutely continuous functionx(·), defined on an
interval[0, T ], such that:{

∀t ∈ [0, T ], x(t) ∈ K,
for a.a.t ∈ [0, T ], x′(t) ∈ G(x(t)).

The solutions of the previous problem are called alsotrajectoriesof the differ-
ential inclusion. Moreover, anyx(·) such that:{

∀t ∈ [0, T ], x(t) ∈ K,
for a.a.t ∈ [0, T ], x′(t) = m(G(x(t)))

is called aslow solutionof the differential inclusion.
We are concerned with the following problem, which is a special case of

differential inclusion.

Problem 2.1. Find an absolutely continuous functionx(·) from [0, T ] into Rn,
satisfying:

(DV I(F, K))

{
∀t ∈ [0, T ], x(t) ∈ K,
for a.a.t ∈ [0, T ], x′(t) ∈ −F (x(t))−N(K, x(t))
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In [1], the previous problem is referred to as a “differential variational in-
equality” (for short,DV I) and it is proven to be equivalent to a “projected
differential inclusion” (for short,PDI).

Theorem 2.3.The solutions of Problem2.1are the solutions of:

(PDI(F, K))

{
∀t ∈ [0, T ], x(t) ∈ K,
for a.a.t ∈ [0, T ], x′(t) ∈ πT (K,x(t)) (−F (x(t)) ,

and conversely.

Remark 2.1. We recall that whenF is a single-valued operator, then the corre-
sponding “projected differential equation” and its applications have been stud-
ied for instance in [8, 19, 20].

Theorem 2.4 ([1]). The slow solutions of (DV I(F, K)) and (PDI(F, K)) co-
incide.

Definition 2.2. A pointx∗ ∈ K is an equilibrium point for (DV I(F, K)), when:

0 ∈ −F (x∗)−N(K, x∗).

We recall the following existence result.

Theorem 2.5. a) If K is compact, then there exists an equilibrium point for
(DV I(F, K)).

b) If m(F (·)) is bounded, then, for anyx0 ∈ K there exists an absolutely
continuous functionx(t) defined on an interval[0, T ], such that:{

x(0) = x0, x′(t) ∈ −F (x(t))−NK(x(t)) for a.a.t ∈ [0, T ],
∀t ∈ [0, T ], x(t) ∈ K.
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Finally we recall the notion of monotonicity of a trajectory of (DV I(F, K)),
as stated in [1], which plays a crucial role for our main results.

Definition 2.3. LetV be a function fromK toR+. A trajectoryx(t) of (DV I(F, K))
is monotone (with respect toV ) when:

∀t ≥ s, V (x(t))− V (x(s)) ≤ 0.

If the previous inequality holds strictly∀t > s, then we say thatx(t) is strictly
monotone w.r.t.V .

We are mainly concerned with the case when the previous definition applies
w.r.t. the function:

Ṽx∗(x) =
‖x− x∗‖2

2
,

wherex∗ is an equilibrium point of (DV I(F, K)).
We need also the following result which relates the monotonicity of trajec-

tories and Liapunov functions.

Theorem 2.6 ([1]). LetK be a subset ofRn and letV : K → R+ be a differen-
tiable function. Assume that for allx0 ∈ K, there existsT > 0 and a trajectory
x(·) defined on[0, T ) of the differential inclusionx′(t) ∈ F (x(t)), x(0) = x0,
satisfying:

∀s ≥ t, V (x(s))− V (x(t)) ≤ 0.

ThenV is a Liapunov function forF , that is∀x ∈ K, ∃ξ ∈ F (x), such that
〈V ′(x), ξ〉 ≤ 0.
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2.2. Variational Inequalities

Although we are mainly concerned with Minty type variational inequalities,
in this section we also state the Stampacchia variational inequality and exploit
some relations between the two formulations. The Minty lemma, which con-
stitutes the main result for this section, legitimizes the Minty formulation we
present for the variational inequality. The notation is classical (see for instance
[4, 9, 12]):

Definition 2.4. A point x∗ ∈ K is a solution of a Stampacchia Variational
Inequality (for short, SVI) when∃ξ∗ ∈ F (x∗) such that:

(SV I(F, K)) 〈ξ∗, y − x∗〉 ≥ 0, ∀y ∈ K.

Definition 2.5. A point x∗ ∈ K is a solution of a Strong Minty Variational
Inequality (for short,SMV I), when:

(SMV I(F, K)) 〈ξ, y − x∗〉 ≥ 0, ∀y ∈ K, ∀ξ ∈ F (y).

Definition 2.6. A pointx∗ ∈ K is a solution of a Weak Minty Variational In-
equality (for short,WMV I), when∀y ∈ K, ∃ξ ∈ F (y) such that:

(WMV I(F, K)) 〈ξ, y − x∗〉 ≥ 0.

Definition 2.7. If in Definition 2.5 (resp. 2.6), strict inequality holds∀y ∈ K,
y 6= x∗, then we say thatx∗ is a “strict” solution of (SMV I(F, K)) (resp. of
(WMV I(F, K))).

Remark 2.2. WhenF is single valued, Definitions2.5 and 2.6 reduce to the
classical notion ofMV I. (see e.g. [2, 21]).
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The classical Minty Lemma (see for instance [17]) relates the Minty Varia-
tional Inequalities and Stampacchia Variational Inequalities, whenF is a single
valued operator. The following result gives an extension to the case in whichF
is a point-to-set map. We recall first the following definition (see e.g. [12]).

Definition 2.8. F is said to be:

i) monotone, if for allx, y ∈ K, we have:

∀u ∈ F (x), ∀v ∈ F (y) : 〈v − u, y − x〉 ≥ 0;

ii) pseudo-monotone (resp. strictly pseudo-monotone), if for allx, y ∈ K
(resp. for allx, y ∈ K with y 6= x) the following implication holds:

∃u ∈ F (x) : 〈u, y − x〉 ≥ 0 ⇒ ∀v ∈ F (y) : 〈v, y − x〉 ≥ 0;(
∃u ∈ F (x) : 〈u, y − x〉 ≥ 0 ⇒ ∀v ∈ F (y) : 〈v, y − x〉 > 0

)
Remark 2.3. The following relations among different classes of monotone maps
are classical:

monotone⇒ pseudomonotone
⇑

strictly pseudomonotone.

Lemma 2.7. i) Anyx∗ ∈ K, which solves (WMV I(F, K)), it is a solution
of (SV I(F, K)) as well.

ii) If F is a pseudo-monotone map, any solution of (SV I(F, K)) also solves
(SMV I(F, K)).
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iii) If F is a strictly pseudo-monotone map, any solution of (SV I(F, K)) is a
strict solution of (SMV I(F, K)).

Proof. i) Let z be an arbitrary point inK and considery = x∗ + t(z −
x∗) ∈ K, wheret ∈ (0, 1). Sincex∗ solves (WMV I(F, K)), we have that
∀t ∈ (0, 1), ∃ξ = ξ(t) ∈ F (x∗ + t(z − x∗)), such that:

〈ξ(t), t(z − x∗)〉 ≥ 0,

that is:
〈ξ(t), z − x∗〉 ≥ 0.

SinceF is u.s.c., we get that for any integern > 0, there exists a number
δn > 0 such that, fort ∈ (0, δn] the following holds:

F
(
x∗ + t(z − x∗)

)
⊆ F (x∗) +

1

n
B.

Hence, fort ∈ (0, δn], ξ(t) = f(t) + γ(t), wheref(t) ∈ F (x∗) and
γ(t) ∈ 1

n
B. Without loss of generality we can assumeδn < 1 ∀n and we

have:
0 ≤ 〈ξ(t), z − x∗〉 = 〈f(t), z − x∗〉+ 〈γ(t), z − x∗〉.

Furthermore, by the Cauchy-Schwartz inequality, we get:

|〈γ(t), z − x∗〉| ≤ ‖γ(t)‖ ‖z − x∗‖ ≤ 1

n
‖z − x∗‖,

so that, choosing in particular,t = δn, we obtain:

〈f(δn), z − x∗〉 ≥ − 1

n
‖z − x∗‖.
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Recalling thatF (x∗) is a compact set, whenn → +∞ we can assume that
f(δn) → f̄ ∈ F (x∗) and we get:

(2.2) 〈f̄ , z − x∗〉 ≥ 0.

By the former construction, we have that∀z ∈ K, there exists̄f = f̄(z) ∈
F (x∗) such that (2.2) holds.

SinceF is convex and compact-valued, then, from Lemma 1 in [3], we get
the result.

The proof of ii) and iii) is trivial.

Remark 2.4.

i) Since every solution of (SMV I(F, K)) is also a solution of (WMV I(F, K)),
then, from the previous theorem we obtain that, ifF is pseudo-monotone,
the solution sets of (WMV I(F, K)), (SMV I(F, K)) and (SV I(F, K))
coincide.

ii) It is easy to prove that if (SMV I(F, K)) admits a strict solutionx∗, then,
x∗ is the unique solution of (SV I(F, K)).

iii) It is also seen thatx∗ ∈ K is an equilibrium point for (DV I(F, K)) if and
only if it is a solution of (SV I(F, K)).

http://jipam.vu.edu.au/
mailto:
mailto:g.crespi@univda.it
mailto:
mailto:
mailto:mrocca@eco.uninsubria.it
http://jipam.vu.edu.au/


Minty Variational Inequalities
and Monotone Trajectories of

Differential Inclusions

Giovanni P. Crespi and
Matteo Rocca

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 14 of 29

J. Ineq. Pure and Appl. Math. 5(2) Art. 48, 2004

http://jipam.vu.edu.au

3. Variational Inequalities and Monotonicity of
Trajectories

Our main results concern the relations between the solutions of Minty varia-
tional inequalities and the monotonicity of trajectories of (DV I(F, K)), w.r.t.
the functionṼx∗.

Theorem 3.1. If x∗ ∈ K is a solution of (SMV I(F, K)), then every trajectory
x(t) of (DV I(F, K)) is monotone w.r.t. functioñVx∗.

Proof. We observe that, under the hypotheses of the theorem,x∗ is an equilib-
rium point of (DV I(F, K)) (recall Lemma2.7and Remark2.4point iii)). Since
x(t) is differentiable a.e., so isv(t) = Ṽx∗(x(t)) and we have (at least a.e.):

v′(t) = 〈Ṽ ′
x∗(x(t)), x′(t)〉

= 〈x′(t), x(t)− x∗〉
= 〈−ξ(x(t))− nK(x(t)), x(t)− x∗〉,

whereξ(x(t)) ∈ F (x(t)) andnK(x(t)) ∈ N(K, x(t))). Hencev′(t) ≤ 0 for
a.a.t ≥ 0 and hence, fort2 > t1:

v(t2)− v(t1) =

∫ t2

t1

v′(τ)dτ ≤ 0.

Corollary 3.2. Let x∗ be an equilibrium point of (DV I(F, K)) and assume
thatF is pseudo-monotone. Then every trajectory of (DV I(F, K)) is monotone
w.r.t. functionṼx∗.
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Proof. It is immediate upon combining Lemma2.7and Theorem3.1.

The following theorem, somehow reverts the previous implication.

Theorem 3.3.Letx∗ be an equilibrium point of (DV I(F, K)). If for any point
x ∈ K there exists a trajectory of (DV I(F, K)) starting atx and monotone
w.r.t. functionṼx∗, thenx∗ solves (WMV I(F, K)).

Proof. Let x̄ ∈ ri K (the relative interior ofK) be the initial condition for a
trajectoryx(t) of (DV I(F, K)) and assume thatx(t) is monotone w.r.t.̃Vx∗. If
we denote byL the smallest affine subspace generated byK and setS = L− x̄,
for x ∈ K∩U , whereU is a suitable neighbourhood ofx̄, we haveT (K, x) = S
andN(K, x) = S⊥ (the subspace orthogonal toS). So, if x(t) is a trajectory
of (DV I(F, K)) that starts at̄x, then, fort "small enough" (sayt ∈ [0, T ]), it
remains inri K ∩ U and satisfies (recall Theorem2.3):{

for all t ∈ [0, T ], x(t) ∈ K;
for a.a.t ∈ [0, T ], x′(t) ∈ πS(−F (x(t)).

SinceS is a subspace,πS is a linear operator; henceπS(−F (x(t)) is compact
and convex∀t ∈ [0, T ] and furthermoreπS(−F (·)) is u.s.c.

Applying Theorem2.6we obtain the existence of a vectorµ ∈ πS(−F (x̄)),
such that〈Ṽ ′

x∗(x̄), µ〉 ≤ 0. Taking into account inclusion (2.1), we haveµ =
−ξ(x̄)− n(x̄), whereξ(x̄) ∈ F (x̄) andn(x̄) ∈ S⊥. Hence:

〈Ṽ ′
x∗(x̄), µ〉 = 〈−ξ(x̄)− n(x̄), x̄− x∗〉

= 〈−ξ(x̄), x̄− x∗〉+ 〈n(x̄), x∗ − x̄〉 ≤ 0,
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from which it follows, since〈n(x̄), x∗ − x̄〉 = 0:

〈ξ(x̄), x̄− x∗〉 ≥ 0.

Sincex̄ is arbitrary inri K, we have:

〈ξ(x), x− x∗〉 ≥ 0, ∀x ∈ ri K.

Now, let x̃ ∈ cl K\ri K. Sincecl K = cl ri K, then x̃ = lim xk, for some
sequence{xk} ∈ ri K and:

〈ξ(xk), xk − x∗〉 ≥ 0, ∀k.

There exists a closed ball̄B(x̃, δ), with centre inx̃ and radiusδ, such thatxk is
contained in the compact set̄B(x̃, δ) ∩ K and sinceF is u.s.c., with compact
images, the set: ⋃

y∈B̄(x̃,δ)∩K

F (y)

is compact (see Proposition 3, p. 42 in [1]) and we can assume thatξ(xk) →
ξ̃ ∈

⋃
y∈B̄(x̃,δ)∩K F (y). From the upper semi-continuity ofF , it follows also

ξ̃ ∈ F (x̃) and so:
〈ξ̃, x̃− x∗〉 ≥ 0.

This completes the proof.

Theorem3.1can be strengthened with the following:

Proposition 3.4. Letx∗ be a strict solution of (SMV I(F, K)), then:
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i) x∗ is the unique equilibrium point of (DV I(F, K));

ii) every trajectory of (DV I(F, K)), starting at a pointx0 ∈ K and defined
on [0, +∞) is strictly monotone w.r.t.̃Vx∗ and converges tox∗.

Proof. The uniqueness of the equilibrium point follows from Remark2.4point
i). The strict monotonicity of any trajectoryx(t) w.r.t. Ṽx∗ follows along the
lines of the proof of Theorem3.1. Now the proof of the convergence is an
application of Liapunov function’s technique.

Let x(t) ∈ K be a solution of (DV I(F, K)), starting at some pointx0 ∈ K,
i.e. with x(0) = x0. Assume, ab absurdo, thatα = limt→+∞ v(t) > 0 =
miny∈K Ṽx∗(·), wherev(t) = Ṽx∗(x(t)). We observe that the limit definingα
exists, because of the monotonicity ofv(·) and to assume it differs from0, it is
equivalent to say thatx(t) 6→ x∗. Thus, sincex(t) is monotone w.r.t.Ṽx∗, we
have∀t ≥ 0:

α ≤ v(t) ≤ δ =
‖x0 − x∗‖2

2
.

Let

L :=

{
x ∈ K : α ≤ ‖x− x∗‖2

2
≤ δ

}
,

we have thatL is a compact set andx∗ 6∈ L, while x(t) ∈ L, ∀t ≥ 0. Sincex∗

is a strict solution of (SMV I(F, K)), we have:

〈ξ, y − x∗〉 < 0, ∀y ∈ K, y 6= x∗, ∀ξ ∈ −F (y)

and, in particular:

〈ξ, y − x∗〉 < 0, ∀y ∈ L, ∀ξ ∈ −F (y).
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Now, we observe that there exists a numberm > 0, such that:

max
ξ∈−F (y)

〈ξ, y − x∗〉 ≤ −m, ∀y ∈ L.

In fact, if such a number does not exist, we would obtain the existence of se-
quencesyn ∈ L andξn ∈ F (yn), such that:

〈ξn, yn − x∗〉 ≥ − 1

n
.

Sendingn to +∞, we can assume thatyn → ȳ ∈ L. Furthermore, sinceF is
u.s.c. with compact images, the set:⋃

y∈L

F (y)

is compact and we can also assumeξn → ξ̄ ∈
⋃

y∈L F (y). By the upper semi-
continuity ofF , it follows alsoξ̄ ∈ F (ȳ) and we get the absurdo:

〈ξ̄, ȳ − x∗〉 ≥ 0.

We have:

v′(t) = 〈x′(t), x(t)− x∗〉 = 〈a(t) + b(t), x(t)− x∗〉,

with a(t) ∈ −F (x(t)), b(t) ∈ −N(K, x(t)) and hence:

v′(t) = 〈a(t), x(t)− x∗〉+ 〈−b(t), x∗ − x(t)〉.
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Sincex(t) ∈ L, for t ≥ 0, we have〈a(t), x(t)− x∗〉 ≤ −m, while 〈−b(t), x∗−
x(t)〉 ≤ 0. Thereforev′(t) ≤ −m, for t ≥ 0. Now, we obtain, forT > 0:

v(T )− v(0) =

∫ T

0

v′(τ)dτ ≤ −mT.

If T = v(0)
m

, we getv(T ) ≤ 0 = miny∈KV (·). But we also have:

v(T ) ≥ α > min
y∈K

V (·) = 0.

Hence a contradiction follows and we must haveα = 0, that isx(t) → x∗.

Corollary 3.5. Let x∗ be an equilibrium point of (DV I(F, K)) and assume
that F is strictly pseudo-monotone. Then properties i) and ii) of the previous
proposition hold.

Proof. It is immediate on combining Lemma2.7and Proposition3.4.

Example 3.1. LetK = R2 and consider the system of autonomous differential
equations:

x′(t) = −F (x(t)),

whereF : R2 → R2 is a single-valued map defined as:

F (x, y) =

[
−y + x|1− x2 − y2|
x + y|1− x2 − y2|

]
.

Clearly(x∗, y∗) = (0, 0) is an equilibrium point and one has〈F (x, y), (x, y)〉 ≥
0 ∀(x, y) ∈ R2, so that(0, 0) is a solution of (SMV I(F, K)) and hence, ac-
cording to Theorem3.1, every solutionx(t) of the considered system of differ-
ential equations is monotone w.r.t.̃Vx∗. Anyway, not all the solutions of the
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system converge to(0, 0). In fact, passing to polar coordinates, the system can
be written as: {

ρ′(t) = −ρ(t)|1− ρ2(t)|,
θ′(t) = −1

and solving the system, one can easily see that the solutions that start at a point
(ρ, θ), with ρ ≥ 1 do not converge to(0, 0), while the solutions that start at a
point (ρ, θ) with ρ < 1 converge to(0, 0). This last fact could be checked by
observing that for everyc < 1, (0, 0) is a strict solution of (SMV I(F, Kc))
where:

Kc := {(x, y) ∈ R2 : x2 + y2 ≤ c}.
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4. An Application: Generalized Gradient Inclusions
Let f : Ω ⊆ Rn → R be a differentiable function on the open setΩ. Equations
of the form:

x′(t) = −f ′(x(t)), x(0) = x0

are called “gradient equations” (see for instance [13]). In [1] an extension of the
classical gradient equation to the case in whichf is a lower semi-continuous
convex function is considered, replacing the above gradient equation, with the
differential inclusion:

x′(t) ∈ −∂f(x(t)), x(0) = x0,

where∂f denotes the subgradient off .
Here, we consider a locally Lipschitz functionf : Ω ⊆ Rn → R, whereΩ is

an open set containing the closed convex setK, and the DVI:

(DV I(∂Cf, K))

{
∀t ∈ [0, T ], x(t) ∈ K,
for a.a.t ∈ [0, T ], x′(t) ∈ −∂Cf(x(t))−N(K, x(t)),

where∂Cf(x) denotes Clarke’s generalized gradient off atx [6], with the aim
of studying the behaviour of its trajectories. For the sake of completeness we
recall the following definitions.

Definition 4.1. Let f be a locally Lipschitz function fromK to R. Clarke’s
generalized gradient off at x is the subset ofRn, defined as:

∂Cf(x) = conv
{
lim f ′(xk) : xk → x, f is differentiable atxk

}
(heref ′ denotes the gradient off andconv A stands for the convex hull of the
setA ⊆ Rn).
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Definition 4.2 ([16]). We say that∂Cf is semistrictly pseudo-monotone onK,
when for everyx, y ∈ K, with f(x) 6= f(y), we have:

∃u ∈ ∂Cf(x) : 〈u, y − x〉 ≥ 0 ⇒ ∀v ∈ ∂Cf(y) : 〈v, y − x〉 > 0.

Clearly, if∂Cf is strictly pseudo-monotone, then it is also semistrictly pseudo-
monotone.

Definition 4.3. i) f is said to be pseudo-convex onK when∀x, y ∈ K, with
f(y) > f(x), there exists a positive numbera(x, y), depending onx and
y and a numberδ(x, y) ∈ (0, 1], such that:

f(λx + (1− λ)y) ≤ f(y)− λa(x, y), ∀λ ∈ (0, δ(x, y)).

ii) f is said to be strictly pseudo-convex if the previous inequality holds when-
everf(y) ≥ f(x), x 6= y.

Theorem 4.1 ([16]). i) Assume that∂Cf is semistrictly pseudo-monotone on
an open convex setA ⊆ Rn. Thenf is pseudo-convex onA.

ii) Assume that∂Cf is strictly pseudo-monotone on an open convex setA.
Thenf is strictly pseudo-convex onA.

Remark 4.1. Strictly pseudo-monotone and semistrictly pseudo-monotone maps
are called respectively “strictly quasi-monotone” and “semistrictly quasi-monotone”
in [16].

Definition 4.4. We say that a functionf : Rn → R is inf-compact on the closed
convex setK, when∀c ∈ R, the level sets:

lev≤cf :=
{
x ∈ K : f(x) ≤ c

}
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are compact.

Remark 4.2. Clearly, if f is inf-compact onK the setargmin(f, K) of mini-
mizers off overK is compact. The converse does not hold.

Proposition 4.2. Let x(t) be a slow solution of (DV I(∂Cf, K)) defined on
[0, T ]. Then,∀s1, s2 ∈ [0, T ] with s2 ≥ s1, we have:

f(x(s2))− f(x(s1)) ≤ −
∫ s2

s1

‖m(−∂Cf(x(s))−N(K,x(s)))‖2ds.

Hence the functiong(t) = f(x(t)) is non-increasing andlimt→+∞ f(x(t)) ex-
ists.

Proof. Since a locally Lipschitz function is differentiable a.e., the functiong(t) =
f(x(t)) is differentiable a.e., withg′(t) = f ′(x(t))x′(t) andx′(t) ∈ m(−∂Cf(x(t))
−N(K,x(t))) for a.a. t . Recalling (Theorem2.4) that the slow solutions of
(DV I(∂Cf, K)) coincide with the slow solutions ofPDI(∂Cf, K) and that
f ′(x(t)) ∈ ∂Cf(x(t)) [6], we have from Proposition2.2:

sup
z∈∂Cf(x(t))

〈z, m(−∂Cf(x(t))−N(K, x(t)))〉

+ ‖m(−∂Cf(x(t))−N(K, x(t)))‖2 ≤ 0

and for a.a.t, we get:

g′(t) = f ′(x(t))x′(t) ≤ −‖m(−∂Cf(x(t))−N(K, x(t)))‖2 ≤ 0,
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from which we deduce:

f(x(s2))− f(x(s1)) ≤ −
∫ s2

s1

‖m(−∂Cf(x(s))−N(K, x(s)))‖2ds ≤ 0.

The second part of the theorem is now an immediate consequence.

Proposition 4.3. Suppose thatf achieves its minimum overK at some point.
Assume that∂Cf is a semistrictly pseudo-monotone map and thatf is inf-
compact. Then every slow solutionx(t) of (DV I(∂Cf, K)) defined on[0, +∞),
is such that:

lim
t→+∞

f(x(t)) = min
x∈K

f(x).

Furthermore, every cluster point ofx(t) is a minimum point forf overK.

Proof. Let x(t) be a slow solution starting atx0 = x(0) and ab absurdo, assume
that lim

t→+∞
f(x(t)) = α > minx∈K f(x). The set:

Z = {x ∈ K : α ≤ f(x) ≤ f(x0)}.

is compact, sincef is inf-compact andargmin(f, K) ∩ Z = ∅. If we setA =
{x(t), t ∈ [0, +∞)}, then we getcl A ⊆ Z (recall Proposition4.2), and hence
argmin(f, K)∩ cl A = ∅. If x∗ ∈ argmin(f, K), then it is an equilibrium point
of (DV I(∂Cf, K)) (see [6]), that is:

0 ∈ ∂Cf(x∗) + N(K, x∗),

and this is equivalent (see point iii) of Remark2.4) to the fact thatx∗ solves
(SV I(∂Cf, K)), that is, to the existence of vectorv ∈ ∂Cf(x∗) such that:

〈v, x− x∗〉 ≥ 0, ∀x ∈ K.
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It follows also: 〈v, a − x∗〉 ≥ 0, ∀a ∈ cl A and since∂Cf is semistrictly
pseudo-monotone, we have (observe thatf(a) 6= f(x∗) ∀a ∈ cl A):

〈w, a− x∗〉 < 0, ∀w ∈ −∂Cf(a), ∀a ∈ cl A.

Observing thatcl A is a compact set, as in the proof of Theorem3.4, it follows
that there exists a positive numberm such that:

〈w, a− x∗〉 < −m, ∀w ∈ −∂Cf(a), ∀a ∈ cl A.

Hence, lettingv(t) = ‖x(t)−x∗‖2
2

, as in the proof of Theorem3.4, we obtain
v′(t) ≤ −m for a.a.t and hence, forT > 0:

v(T )− v(0) =

∫ T

0

v′(τ)dτ ≤ −mT.

For T = v(0)/m, we obtainv(T ) ≤ 0, that isv(T ) = 0 and hencex(T ) = x∗,
but this is absurdo, since the setA does not intersectargmin(f, K).

Now the last assertion of the theorem is obvious.

The previous result can be strengthened using the results of Section3.

Proposition 4.4. Letf be a function that achieves its minimum overK at some
point x∗ and assume thatx∗ is a strict solution of(SMV I(∂Cf, K)). Then
every solution defined on[0, +∞) of (DV I(∂Cf, K)) is strictly monotone w.r.t.
Ṽx∗ and converges tox∗.

Proof. It is immediate recalling that ifx∗ is a minimum point forf overK, then
it is an equilibrium point of (DV I(∂Cf, K)) and applying Proposition3.4.
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Remark 4.3. If x∗ is a strict solution of(SMV I(∂Cf, K)), then it can be
proved thatf is strictly increasing along rays starting atx∗. The proof is similar
to that of Proposition 4 in [7].

Corollary 4.5. Let f be a function that achieves its minimum overK at some
point x∗. If ∂Cf is strictly pseudo-monotone, thenx∗ is the unique minimum
point for f overK and every solution of (DV I(∂Cf, K)) defined on[0, +∞)
converges tox∗.

Proof. Recall that, under the hypotheses,f is strictly pseudo-convex (Theorem
4.1) and hence it follows easily thatx∗ is the unique minimum point off over
K. The proof is now an immediate consequence of Corollary3.5.

http://jipam.vu.edu.au/
mailto:
mailto:g.crespi@univda.it
mailto:
mailto:
mailto:mrocca@eco.uninsubria.it
http://jipam.vu.edu.au/


Minty Variational Inequalities
and Monotone Trajectories of

Differential Inclusions

Giovanni P. Crespi and
Matteo Rocca

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 27 of 29

J. Ineq. Pure and Appl. Math. 5(2) Art. 48, 2004

http://jipam.vu.edu.au

References
[1] J.P. AUBIN AND A. CELLINA, Differential Inclusions, Springer, Berlin,

1984.

[2] C. BAIOCCHI AND A. CAPELO, Disequazioni variazionali e quasivari-
azionali, Applicazioni a problemi di frontiera libera, Quaderni U.M.I. ,
Pitagora editrice, Bologna, 1978.

[3] E. BLUM AND W. OETTLI, From optimization and variational inequali-
ties to equilibrium problems,The Mathematical Student,63 (1994), 123–
145.

[4] D. CHAN AND J.S. PANG, The generalized quasi-variational inequality
problem,Mathematics of Operations Research,7(2) (1982), 211–222.

[5] G.Y. CHENAND G.M. CHENG, Vector variational inequalities and vector
optimization,Lecture notes in Economics and Mathematical Systems, 285,
Springer-Verlag, Berlin, 1987, pp. 408–416.

[6] F.H. CLARKE, Optimization and nonsmooth Analysis,S.I.A.M. Classics
in Applied Mathematics, Philadelphia, 1990

[7] G.P. CRESPI, I. GINCHEVAND M. ROCCA, Existence of solution and
star-shapedness in Minty variational inequalities,J.O.G.O., to appear.

[8] P. DUPUISAND A. NAGURNEY, Dynamical systems and variational in-
equalities,Ann. Op. Res., 44 (1993), 9–42.

[9] S.C. FANGAND E.L. PETERSON, Generalized variational inequalities,
J.O.T.A., 38 (1992), 363–383.

http://jipam.vu.edu.au/
mailto:
mailto:g.crespi@univda.it
mailto:
mailto:
mailto:mrocca@eco.uninsubria.it
http://jipam.vu.edu.au/


Minty Variational Inequalities
and Monotone Trajectories of

Differential Inclusions

Giovanni P. Crespi and
Matteo Rocca

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 28 of 29

J. Ineq. Pure and Appl. Math. 5(2) Art. 48, 2004

http://jipam.vu.edu.au

[10] S.D. FLAM AND A. BEN-ISRAEL, A continuous approach to oligopolis-
tic market equilibrium,Operation Research, 38(6) (1990), 1045–1051.

[11] F. GIANNESSI, On Minty variational principle,New Trends in Mathemat-
ical Programming,Kluwer, 1997.

[12] N. HADJISAVVAS AND S. SCHAIBLE, Quasimonotonicity and pseudo-
monotonicity in variational inequalities and equilibrium problems,Gener-
alized convexity, generalized monotonicity: recent results(Luminy, 1996),
Nonconvex Optim. Appl., 27 (1998), 257–275.

[13] M.W. HIRSCH AND S. SMALE,Differential Equations, Dynamical Sys-
tems and Linear Algebra, Academic Press, New York, 1974.

[14] D. KINDERLEHRERAND G. STAMPACCHIA,An Introduction to Vari-
ational Inequalities and their Applications, Academic Press, New York,
1980.

[15] S. KOMLÓSI, On the Stampacchia and Minty variational inequalities,
Generalized Convexity and Optimization for Economic and Financial De-
cisions, (G. Giorgi, F.A. Rossi eds.), Pitagora, Bologna, 1998.

[16] D.T. LUC, On generalized convex nonsmooth functions,Bull. Austral.
Math Soc., 49 (1994), 139–149.

[17] G.J. MINTY, On the generalization of a direct method of the calculus of
variations,Bull. Amer. Math. Soc., 73 (1967), 314–321.

[18] A. NAGURNEY, Network Economics: A Variational Inequality Approach,
Kluwer Academic, Boston, MA, 1993

http://jipam.vu.edu.au/
mailto:
mailto:g.crespi@univda.it
mailto:
mailto:
mailto:mrocca@eco.uninsubria.it
http://jipam.vu.edu.au/


Minty Variational Inequalities
and Monotone Trajectories of

Differential Inclusions

Giovanni P. Crespi and
Matteo Rocca

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 29 of 29

J. Ineq. Pure and Appl. Math. 5(2) Art. 48, 2004

http://jipam.vu.edu.au

[19] A. NAGURNEY AND D. ZHANG, Projected Dymamical Systems and
Variational Inequalities with Applications, Kluwer, Dordrecht, 1996.

[20] M. PAPPALARDO AND M. PASSACANTANDO, Stability for equi-
librium problems: from variational inequalities to dynamical systems,
J.O.T.A., 113(2002), 567–582.

[21] G. STAMPACCHIA, Formes bilinéaires coercives sur les ensembles con-
vexes,C. R. Acad. Sci. Paris, 258(1) (1960), 4413–4416.

http://jipam.vu.edu.au/
mailto:
mailto:g.crespi@univda.it
mailto:
mailto:
mailto:mrocca@eco.uninsubria.it
http://jipam.vu.edu.au/

	Introduction
	Preliminaries
	Differential Inclusions
	Variational Inequalities

	Variational Inequalities and Monotonicity of Trajectories
	An Application: Generalized Gradient Inclusions

