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1. Introduction and Preliminaries

LetA denote the class of functions of the form

(1.1) f(z) = z +
∞∑

k=2

akz
k,

which are analytic and univalent in the open unit diskU = {z; z ∈ C : |z| < 1}. If
f ∈ A is given by (1.1) andg ∈ A is given by

(1.2) g(z) = z +
∞∑

k=2

bkz
k,

then the Hadamard product (or convolution)f ∗ g of f andg is defined(as usual) by

(1.3) (f ∗ g)(z) := z +
∞∑

k=2

akbkz
k.

In this article we study the classSγ(g;α) introduced in the following:

Definition 1.1. For a given functiong(z) ∈ A defined by (1.2), where bk ≥ 0 (k ≥
2). We say thatf(z) ∈ A is in Sγ(g;α), provided that (f ∗ g)(z) 6= 0, and

(1.4) Re

{
1 +

1

γ

(
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1

)}
> α (z ∈ U; γ ∈ C\{0}; 0 ≤ α < 1).

Note that

S1

(
z

1− z
; α

)
= S∗(α) and S1

(
z

(1− z)2
; α

)
= K(α),
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are, respectively, the familiar classes of starlike and convex functions of orderα in
U (see, for example, [11]). Also

Sγ

(
z

1− z
; 0

)
= S∗γ and Sγ

(
z

(1− z)2
; 0

)
= Kγ,

where the classesS∗γ andKγ stem essentially from the classes of starlike and convex
functions of complex order, which were considered earlier by Nasr and Aouf [9] and
Wiatrowski [12], respectively (see also [7] and [8]).

Remark1. When

g(z) = z +
∞∑

k=2

(α1)k−1 · · · (αq)k−1

(β1)k−1 · · · (βs)k−1(k − 1)!
zk(1.5)

(αj ∈ C(j = 1, 2, . . . , q), βj ∈ C\{0,−1,−2, . . . } (j = 1, 2, . . . , s)) ,

with the parameters
α1, . . . , αq and β1, . . . , βs,

being so choosen that the coefficientsbk in (1.2) satisfy the following condition:

(1.6) bk =
(α1)k−1 · · · (αq)k−1

(β1)k−1 · · · (βs)k−1(k − 1)!
≥ 0,

then the classSγ(g;α) is transformed into a (presumbly) new classS∗γ(q, s, α) de-
fined by

S∗γ(q, s, α) :=

{
f : f ∈ A and Re

(
1 +

1

γ

(
z(Hq

s [α1]f)′(z)

(Hq
s [α1]f)(z)

− 1

))
> α

}
(1.7)

(z ∈ U; q ≤ s+ 1; q, s ∈ N0; γ ∈ C\{0}).
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The operator

(Hq
s [α1]f) (z) := Hq

s (α1, . . . , αq; β1, . . . , βs)f(z),

involved in (1.7) is the Dziok-Srivastava linear operator (see for details, [3]) which
contains such well known operators as the Hohlov linear operator, Carlson-Shaffer
linear operator, Ruscheweyh derivative operator, the Barnardi-Libera-Livingston op-
erator, and the Srivastava-Owa fractional derivative operator. One may refer to the
papers [3] to [5] for further details and references for these operators. The Dziok-
Srivastava linear operator defined in [3] was further extended by Dziok and Raina
[1] (see also [2]).

In our present investigation, we require the following definitions and a related
result due to Welf [13].

Definition 1.2 (Subordination Principal). For two functionsf and g analytic in
U, we say that the functionf(z) is subordinated tog(z) in U and writef(z) ≺
g(z) (z ∈ U), if there exists a Schawarz functionw(z) analytic inU withw(0) = 0,
and |w(z)| < 1, such thatf(z) = g(w(z)), z ∈ U. In particular, if the function
g(z) is univalent inU, the above subordination is equivalent tof(0) = g(0) and
f(U) ⊂ g(U).

Definition 1.3 (Subordinating Factor Sequence).A sequence{bk}∞k=1 of complex
numbers is called a subordinating factor sequence if, whenever

f(z) =
∞∑

k=1

akz
k (a1 = 1),

is analytic, univalent and convex inU, we have the subordination given by

(1.8)
∞∑

k=1

akbkz
k ≺ f(z) (z ∈ U).
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Lemma 1.4 (Wilf, [13]). The sequence{bk}∞k=1 is a subordinating factor sequence
if and only if

(1.9) Re

{
1 + 2

∞∑
k=1

bkz
k

}
> 0 (z ∈ U).
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2. Characterization Properties

In this section we establish two results (Theorem2.1 and Theorem2.3) which give
the sufficiency conditions for a functionf(z) defined by (1.1) and belong to the class
f(z) ∈ Sγ(g;α).

Theorem 2.1.Letf(z) ∈ A such that

(2.1)

∣∣∣∣z(f ∗ g)′(z)(f ∗ g)(z)
− 1

∣∣∣∣ < 1− β (β < 1; z ∈ U),

thenf(z) ∈ Sγ(g;α), provided that

(2.2) |γ| ≥ 1− β

1− α
, (0 ≤ α < 1).

Proof. In view of (2.1), we write

z(f ∗ g)′(z)
(f ∗ g)(z)

= 1 + (1− β)w(z) where |w(z)| < 1 for z ∈ U.

Now

Re

{
1 +

1

γ

(
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1

)}
= Re

{
1 +

1

γ
(1− β)w(z)

}
= 1 + (1− β) Re

{
w(z)

γ

}
≥ 1− (1− β)

∣∣∣∣w(z)

γ

∣∣∣∣
> 1− (1− β) · 1

|γ|
≥ α,

provided that|γ| ≥ 1−β
1−α

. This completes the proof.
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If we set
β = 1− (1− α)|γ| (0 ≤ α < 1; γ ∈ C\{0}),

in Theorem2.1, we obtain

Corollary 2.2. If f(z) ∈ A such that

(2.3)

∣∣∣∣z(f ∗ g)′(z)(f ∗ g)(z)
− 1

∣∣∣∣ < (1− α)|γ| (z ∈ U, 0 ≤ α < 1; γ ∈ C\{0}),

thenf(z) ∈ Sγ(g;α).

Theorem 2.3.Letf(z) ∈ A satisfy the following inequality

∞∑
k=2

bk[(k − 1) + (1− α)|γ| ]|ak| ≤ (1− α)|γ|(2.4)

(z ∈ U; bk ≥ 0 (k ≥ 2); γ ∈ C\{0}; 0 ≤ α < 1),

thenf(z) ∈ Sγ(g;α).

Proof. Suppose the inequality (2.4) holds true. Then in view of Corollary2.2, we
have

|z(f ∗ g)′(z)− (f ∗ g)(z)| − (1− α)|γ| |(f ∗ g)(z)|

=

∣∣∣∣∣
∞∑

k=2

bk(k − 1)ak z
k

∣∣∣∣∣− (1− α)|γ|

∣∣∣∣∣z +
∞∑

k=2

bkak z
k

∣∣∣∣∣
≤

{
∞∑

k=2

bk(k − 1)|ak| − (1− α)|γ|+ (1− α)|γ|
∞∑

k=2

bk|ak|

}
|z|
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≤

{
∞∑

k=2

bk[(k − 1) + (1− α)|γ| ]|ak| − (1− α)|γ|

}
≤ 0.

This completes the proof.

On specializing the parameters, Theorem2.1would yield the following results:

Corollary 2.4. Letf(z) ∈ A satisfy the following inequality

(2.5)
∞∑

k=2

(k + |γ| − 1)|ak| ≤ |γ| (z ∈ U, γ ∈ C\{0}),

thenf(z) ∈ S∗γ .

Corollary 2.5. Letf(z) ∈ A satisfy the following inequality

(2.6)
∞∑

k=2

k(k + |γ| − 1)|ak| ≤ |γ| (z ∈ U, γ ∈ C\{0}),

thenf(z) ∈ Kγ.

Corollary 2.6. Letf(z) ∈ A satisfy the following inequality

∞∑
k=2

[(k − 1) + (1− α)|γ|](α1)k−1 · · · (αq)k−1

(β1)k−1 · · · (βs)k−1(k − 1)!
|ak| ≤ (1− α)|γ|(2.7)

(z ∈ U; q ≤ s+ 1; q, s ∈ N0; γ ∈ C\{0}; 0 ≤ α < 1),

thenf(z) ∈ S∗γ(q, s, α).
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3. Subordination Theorem

Theorem 3.1. Let the functionf(z) ∈ A satisfy the inequality (2.4), andK denote
the familiar class of functionsh(z) ∈ A which are univalent and convex inU. Then
for everyψ ∈ K, we have

[1 + (1− α)|γ|]b2
2[b2 + (1− α)(b2 + 1)|γ|]

(f ∗ ψ)(z) ≺ ψ(z)(3.1)

(z ∈ U; bk ≥ b2 > 0 (k ≥ 2); γ ∈ C\{0}; 0 ≤ α < 1),

and

(3.2) Re{f(z)} > − [b2 + (1− α)(b2 + 1)|γ|]
[1 + (1− α)|γ|]b2

(z ∈ U).

The following constant factor

[1 + (1− α)|γ|]b2
2[b2 + (1− α)(b2 + 1)|γ|]

in the subordination result (3.1) is the best dominant.

Proof. Let f(z) satisfy the inequality (2.4) and letψ(z) =
∑∞

k=0 ckz
k+1 ∈ K, then

(3.3)
[1 + (1− α)|γ|]b2

2[b2 + (1− α)(b2 + 1)|γ|]
(f ∗ ψ)(z)

=
[1 + (1− α)|γ|]b2

2[b2 + (1− α)(b2 + 1)|γ|]

(
z +

∞∑
k=2

akckz
k

)
.
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By invoking Definition1.3, the subordination (3.1) of our theorem will hold true if
the sequence

(3.4)

{
[1 + (1− α)|γ|]b2

2[b2 + (1− α)(b2 + 1)|γ|]
ak

}∞

k=1

,

is a subordination factor sequence. By virtue of Lemma1.4, this is equivalent to the
inequality

(3.5) Re

{
1 +

∞∑
k=1

[1 + (1− α)|γ|]b2
[b2 + (1− α)(b2 + 1)|γ|]

akz
k

}
> 0 (z ∈ U).

Sincebk ≥ b2 > 0 for k ≥ 2, we have

Re

{
1 +

∞∑
k=1

[1 + (1− α)|γ|]b2

[b2 + (1− α)(b2 + 1)|γ|]akzk

}

= Re

{
1 +

[1 + (1− α)|γ|]b2

[b2 + (1− α)(b2 + 1)|γ|]z +
1

[b2 + (1− α)(b2 + 1)|γ|]

∞∑
k=2

[1 + (1− α)|γ|]b2akzk

}

≥ 1− [1 + (1− α)|γ|]b2

[b2 + (1− α)(b2 + 1)|γ|]r −
1

[b2 + (1− α)(b2 + 1)|γ|]

∞∑
k=2

[(k − 1) + (1− α)|γ|]bk|ak|rk

> 1− [1 + (1− α)|γ|]b2

[b2 + (1− α)(b2 + 1)|γ|]r −
(1− α)|γ|

[b2 + (1− α)(b2 + 1)|γ|]r > 0 (|z| = r < 1).

This establishes the inequality (3.5), and consequently the subordination relation
(3.1) of Theorem3.1 is proved. The assertion (3.2) follows readily from (3.1) when
the functionψ(z) is selected as

(3.6) ψ(z) =
z

1− z
= z +

∞∑
k=2

zk ∈ K.
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The sharpness of the multiplying factor in (3.1) can be established by considering
a functionh(z) defined by

h(z) = z − (1− α)|γ|
[1 + (1− α)|γ|]

z2 (z ∈ U; γ ∈ C\{0}; 0 ≤ α < 1),

which belongs to the classSγ(g;α). Using (3.1), we infer that

[1 + (1− α)|γ|]b2
2[b2 + (1− α)(b2 + 1)|γ|]

h(z) ≺ z

1− z
.

It can easily be verified that

(3.7) min
|z|≤1

[
[1 + (1− α)|γ|]b2

2[b2 + (1− α)(b2 + 1)|γ|]
h(z)

]
= −1

2
,

which shows that the constant

[1 + (1− α)|γ|]b2
2[b2 + (1− α)(b2 + 1)|γ|]

is the best estimate.

Before concluding this paper, we consider some useful consequences of the sub-
ordination Theorem3.1.

Corollary 3.2. Let the functionf(z) defined by (1.1) satisfy the inequality (2.5).
Then for everyψ ∈ K, we have

(3.8)
(1 + |γ|)

2(1 + 2|γ|)
(f ∗ ψ)(z) ≺ ψ(z) (z ∈ U),
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and

(3.9) Re{f(z)} > −(1 + 2|γ|)
(1 + |γ|)

(z ∈ U).

The constant factor
(1 + |γ|)

2(1 + 2|γ|)
,

in the subordination result (3.8) is the best dominant.

Corollary 3.3. Let the functionf(z) defined by (1.1) satisfy the inequality (2.6).
Then for everyψ ∈ K, we have

(3.10)
(1 + |γ|)
(2 + 3|γ|)

(f ∗ ψ)(z) ≺ ψ(z) (z ∈ U),

and

(3.11) Re{f(z)} > −2(2 + 3|γ|)
(1 + |γ|)

(z ∈ U).

The constant factor
(1 + |γ|)
(2 + 3|γ|)

,

in the subordination result (3.10) is the best dominant.

Corollary 3.4. Let the functionf(z) defined by (1.1) satisfy the inequality (2.7).
Then for everyψ ∈ K, we have

(3.12)
[1 + (1− α)|γ|]c2

2[c2 + (1− α)(c2 + 1)|γ|]
(f ∗ ψ)(z) ≺ ψ(z) (z ∈ U),
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and

(3.13) Re{f(z)} > − [c2 + (1− α)(c2 + 1)|γ|]
[1 + (1− α)|γ|]c2

(z ∈ U).

The constant factor
[1 + (1− α)|γ|]c2

2[c2 + (1− α)(c2 + 1)|γ|]
,

in the subordination result (3.12) is the best dominant, wherec2 is given by

c2 =
α1 · · · αq

β1 · · · βs

.

Remark2. On settingγ = 1 in Corollaries3.2and3.3, we obtain results that corre-
spond to those of Frasin [6, p. 5, Corollary 2.4; p. 6 , Corollary 2.7] (see also, Singh
[10, p. 434, Corollary 2.2]).
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