AN EXTENSION OF OZAKI AND NUNOKAWA'S UNIVALENCE CRITERION

HORIANA TUDOR
Faculty of Mathematics and Informatics
"Transilvania" University 2200 Braşov, ROMANIA
htudor@unitbv.ro

Received 11 May, 2008; accepted 14 October, 2008
Communicated by N.E. Cho

ABSTRACT. In this paper we obtain a sufficient condition for the analyticity and the univalence of the functions defined by an integral operator. In a particular case we find the well known condition for univalency established by S. Ozaki and M. Nunokawa.

Key words and phrases: Univalent functions, Univalence criteria.
2000 Mathematics Subject Classification 30C55.

1. Introduction

We denote by $U_{r}=\{z \in \mathbb{C}:|z|<r\}$ a disk of the z-plane, where $r \in(0,1], U_{1}=U$ and $I=[0, \infty)$. Let \mathcal{A} be the class of functions f analytic in U such that $f(0)=0, f^{\prime}(0)=1$.

Theorem 1.1 ([1]). Let $f \in \mathcal{A}$. If for all $z \in U$

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1, \tag{1.1}
\end{equation*}
$$

then the function f is univalent in U.

2. Preliminaries

In order to prove our main result we need the theory of Löewner chains; we recall the basic result of this theory, from Pommerenke.

Theorem 2.1 ([2]). Let $L(z, t)=a_{1}(t) z+a_{2}(t) z^{2}+\cdots, \quad a_{1}(t) \neq 0$ be analytic in U_{r}, for all $t \in I$, locally absolutely continuous in I and locally uniform with respect to U_{r}. For almost all $t \in I$, suppose that

$$
z \frac{\partial L(z, t)}{\partial z}=p(z, t) \frac{\partial L(z, t)}{\partial t}, \quad \forall z \in U_{r},
$$

where $p(z, t)$ is analytic in U and satisfies the condition $\operatorname{Re} p(z, t)>0$, for all $z \in U, t \in I$. If $\left|a_{1}(t)\right| \rightarrow \infty$ for $t \rightarrow \infty$ and $\left\{L(z, t) / a_{1}(t)\right\}$ forms a normal family in U_{r}, then for each $t \in I$, the function $L(z, t)$ has an analytic and univalent extension to the whole disk U.

3. Main Results

Theorem 3.1. Let $f \in \mathcal{A}$ and α be a complex number, $\operatorname{Re} \alpha>0$. If the following inequalities

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{align*}
\left.\left|\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right)\right| z\right|^{2 \alpha} & +2 \frac{1-|z|^{2 \alpha}}{\alpha}\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right) \tag{3.2}\\
& \left.+\frac{\left(1-|z|^{2 \alpha}\right)^{2}}{\alpha^{2}|z|^{2 \alpha}}\left[\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right)+(1-\alpha)\left(\frac{f(z)}{z}-1\right)\right] \right\rvert\, \leq 1
\end{align*}
$$

are true for all $z \in U \backslash\{0\}$, then the function F_{α},

$$
\begin{equation*}
F_{\alpha}(z)=\left(\alpha \int_{0}^{z} u^{\alpha-1} f^{\prime}(u) d u\right)^{\frac{1}{\alpha}} \tag{3.3}
\end{equation*}
$$

is analytic and univalent in U, where the principal branch is intended.
Proof. Let us consider the function $g_{1}(z, t)$ given by

$$
g_{1}(z, t)=1-\frac{e^{2 \alpha t}-1}{\alpha}\left(\frac{f\left(e^{-t} z\right)}{e^{-t} z}-1\right) .
$$

For all $t \in I$ and $z \in U$ we have $e^{-t} z \in U$ and because $f \in \mathcal{A}$, the function $g_{1}(z, t)$ is analytic in U and $g_{1}(0, t)=1$. Then there is a disk $U_{r_{1}}, 0<r_{1}<1$ in which $g_{1}(z, t) \neq 0$, for all $t \in I$. For the function

$$
g_{2}(z, t)=\alpha \int_{0}^{e^{-t} z} u^{\alpha-1} f^{\prime}(u) d u
$$

$g_{2}(z, t)=z^{\alpha} \cdot g_{3}(z, t)$, it can be easily shown that $g_{3}(z, t)$ is analytic in $U_{r_{1}}$ and $g_{3}(0, t)=e^{-\alpha t}$. It follows that the function

$$
g_{4}(z, t)=g_{3}(z, t)+\frac{\left(e^{\alpha t}-e^{-\alpha t}\right)\left(\frac{f\left(e^{-t} z\right)}{e^{-t} z}\right)^{2}}{g_{1}(z, t)}
$$

is also analytic in a disk $U_{r_{2}}, 0<r_{2} \leq r_{1}$ and $g_{4}(0, t)=e^{\alpha t}$. Therefore, there is a disk $U_{r_{3}}, 0<r_{3} \leq r_{2}$ in which $g_{4}(z, t) \neq 0$, for all $t \in I$ and we can choose an analytic branch of $\left[g_{4}(z, t)\right]^{1 / \alpha}$, denoted by $g(z, t)$. We choose the branch which is equal to e^{t} at the origin.
From these considerations it follows that the function

$$
L(z, t)=z \cdot g(z, t)=e^{t} z+a_{2}(t) z^{2}+\cdots
$$

is analytic in $U_{r_{3}}$, for all $t \in I$ and can be written as follows

$$
\begin{equation*}
L(z, t)=\left[\alpha \int_{0}^{e^{-t} z} u^{\alpha-1} f^{\prime}(u) d u+\frac{\left(e^{2 \alpha t}-1\right) e^{(2-\alpha) t} z^{\alpha-2} f^{2}\left(e^{-t} z\right)}{1-\frac{e^{2 \alpha t}-1}{\alpha}\left(\frac{f\left(e^{-t} z\right)}{e^{-t} z}-1\right)}\right]^{\frac{1}{\alpha}} . \tag{3.4}
\end{equation*}
$$

From the analyticity of $L(z, t)$ in $U_{r_{3}}$, it follows that there is a number $r_{4}, 0<r_{4}<r_{3}$, and a constant $K=K\left(r_{4}\right)$ such that

$$
\left|L(z, t) / e^{t}\right|<K, \quad \forall z \in U_{r_{4}}, \quad t \in I,
$$

and then $\left\{L(z, t) / e^{t}\right\}$ is a normal family in $U_{r_{4}}$. From the analyticity of $\partial L(z, t) / \partial t$, for all fixed numbers $T>0$ and $r_{5}, 0<r_{5}<r_{4}$, there exists a constant $K_{1}>0$ (that depends on T and r_{5}) such that

$$
\left|\frac{\partial L(z, t)}{\partial t}\right|<K_{1}, \quad \forall z \in U_{r_{5}}, \quad t \in[0, T] .
$$

It follows that the function $L(z, t)$ is locally absolutely continuous in I, locally uniform with respect to $U_{r_{5}}$. We also have that the function

$$
p(z, t)=z \frac{\partial L(z, t)}{\partial z} / \frac{\partial L(z, t)}{\partial t}
$$

is analytic in $U_{r}, 0<r<r_{5}$, for all $t \in I$.
In order to prove that the function $p(z, t)$ has an analytic extension with positive real part in U for all $t \in I$, it is sufficient to show that the function $w(z, t)$ defined in U_{r} by

$$
w(z, t)=\frac{p(z, t)-1}{p(z, t)+1}
$$

can be continued analytically in U and that $|w(z, t)|<1$ for all $z \in U$ and $t \in I$.
By simple calculations, we obtain

$$
\begin{align*}
& w(z, t)=\left(\frac{e^{-2 t} z^{2} f^{\prime}\left(e^{-t} z\right)}{f^{2}\left(e^{-t} z\right)}-1\right) e^{-2 \alpha t}+2 \frac{1-e^{-2 \alpha t}}{\alpha}\left(\frac{e^{-2 t} z^{2} f^{\prime}\left(e^{-t} z\right)}{f^{2}\left(e^{-t} z\right)}-1\right) \tag{3.5}\\
&+\frac{\left(1-e^{-2 \alpha t}\right)^{2}}{\alpha^{2} e^{-2 \alpha t}}\left[\left(\frac{e^{-2 t} z^{2} f^{\prime}\left(e^{-t} z\right)}{f^{2}\left(e^{-t} z\right)}-1\right)+(1-\alpha)\left(\frac{f\left(e^{-t} z\right)}{e^{-t} z}-1\right)\right]
\end{align*}
$$

From (3.1) and (3.2) we deduce that the function $w(z, t)$ is analytic in the unit disk and

$$
\begin{equation*}
|w(z, 0)|=\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1 \tag{3.6}
\end{equation*}
$$

We observe that $w(0, t)=0$. Let t be a fixed number, $t>0, z \in U, z \neq 0$. Since $\left|e^{-t} z\right| \leq$ $e^{-t}<1$ for all $z \in \bar{U}=\{z \in \mathbb{C}:|z| \leq 1\}$ we conclude that the function $w(z, t)$ is analytic in \bar{U}. Using the maximum modulus principle it follows that for each arbitrary fixed $t>0$, there exists $\theta=\theta(t) \in \mathbb{R}$ such that

$$
\begin{equation*}
|w(z, t)|<\max _{|\xi|=1}|w(\xi, t)|=\left|w\left(e^{i \theta}, t\right)\right| \tag{3.7}
\end{equation*}
$$

We denote $u=e^{-t} \cdot e^{i \theta}$. Then $|u|=e^{-t}<1$ and from (3.5) we get

$$
\begin{aligned}
w\left(e^{i \theta}, t\right)=\left(\frac{u^{2} f^{\prime}(u)}{f^{2}(u)}-1\right)|u|^{2 \alpha} & +2 \frac{1-|u|^{2 \alpha}}{\alpha}\left(\frac{u^{2} f^{\prime}(u)}{f^{2}(u)}-1\right) \\
& +\frac{\left(1-|u|^{2 \alpha}\right)^{2}}{\alpha^{2}|u|^{2 \alpha}}\left[\left(\frac{u^{2} f^{\prime}(u)}{f^{2}(u)}-1\right)+(1-\alpha)\left(\frac{f(u)}{u}-1\right)\right] .
\end{aligned}
$$

Since $u \in U$, the inequality (3.2 implies that $\left|w\left(e^{i \theta}, t\right)\right| \leq 1$ and from 3.6) and 3.7) we conclude that $|w(z, t)|<1$ for all $z \in U$ and $t \geq 0$.

From Theorem 2.1 it results that the function $L(z, t)$ has an analytic and univalent extension to the whole disk U for each $t \in I$, in particular $L(z, 0)$. But $L(z, 0)=F_{\alpha}(z)$. Therefore the function $F_{\alpha}(z)$ defined by (3.3) is analytic and univalent in U.

If in Theorem 3.1 we take $\alpha=1$ we obtain the following corollary which is just Theorem 1.1. namely Ozaki-Nunokawa's univalence criterion.

Corollary 3.2. Let $f \in \mathcal{A}$. If for all $z \in U$, the inequality (3.1) holds true, then the function f is univalent in U.

Proof. For $\alpha=1$ we have $F_{1}(z)=f(z)$ and the inequality (3.2) becomes

$$
\begin{equation*}
\left|\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right)\left[|z|^{2}+2\left(1-|z|^{2}\right)+\frac{\left(1-|z|^{2}\right)^{2}}{|z|^{2}}\right]\right|=\left|\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right) \cdot \frac{1}{|z|^{2}}\right| \leq 1 . \tag{3.8}
\end{equation*}
$$

It is easy to check that if the inequality (3.1) is true, then the inequality 3.8 is also true. Indeed, the function g,

$$
g(z)=\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1
$$

is analytic in $U, g(z)=b_{2} z^{2}+b_{3} z^{3}+\cdots$, which shows that $g(0)=g^{\prime}(0)=0$. In view of (1.1) we have $|g(z)|<1$ and using Schwarz's lemma we get $|g(z)|<|z|^{2}$.

Example 3.1. Let n be a natural number, $n \geq 2$, and the function

$$
\begin{equation*}
f(z)=\frac{z}{1-\frac{z^{n+1}}{n}} . \tag{3.9}
\end{equation*}
$$

Then f is univalent in U and $F_{\frac{n+1}{2}}$ is analytic and univalent in U, where

$$
\begin{equation*}
F_{\frac{n+1}{2}}(z)=\left[\frac{n+1}{2} \int_{0}^{z} u^{\frac{n-1}{2}} f^{\prime}(u) d u\right]^{\frac{2}{n+1}} . \tag{3.10}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1=z^{n+1} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{f(z)}{z}-1=\frac{z^{n+1}}{n-z^{n+1}} . \tag{3.12}
\end{equation*}
$$

It is clear that condition (3.1) of Theorem 3.1 is satisfied, and the function f is univalent in U.
Taking into account (3.11) and (3.12), condition (3.2) of Theorem 3.1 becomes

$$
\begin{aligned}
& \left.\left||z|^{2(n+1)}+\frac{4}{n+1}\right| z\right|^{n+1}\left(1-|z|^{n+1}\right)+\frac{4}{(n+1)^{2}}\left(1-|z|^{n+1}\right)^{2} \\
& \left.\quad+\frac{2(1-n)}{(n+1)^{2}}\left(1-|z|^{n+1}\right)^{2} \frac{1}{n-|z|^{n+1}} \right\rvert\, \\
& \leq \frac{1}{(n+1)^{2}}\left[(n+1)^{2}|z|^{2(n+1)}+4(n+1)\left(1-|z|^{n+1}\right)+6\left(1-|z|^{n+1}\right)^{2}\right] \\
& =\frac{1}{(n+1)^{2}}\left[\left(n^{2}-2 n+3\right)|z|^{2(n+1)}+(4 n-8)|z|^{n+1}+6\right] \leq 1,
\end{aligned}
$$

because the greatest value of the function

$$
g(x)=\left(n^{2}-2 n+3\right) x^{2}+(4 n-8) x+6,
$$

for $x \in[0,1], n \geq 2$ is taken for $x=1$ and is $g(1)=(n+1)^{2}$. Therefore the function $F_{\frac{n+1}{2}}$ is analytic and univalent in U.

References

[1] S. OZAKI and M. NUNOKAWA, The Schwartzian derivative and univalent functions, Proc. Amer. Math. Soc., 33(2) (1972), 392-394.
[2] Ch. POMMERENKE, Univalent Functions, Vandenhoech Ruprecht, Göttingen, 1975.

