Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 5, Issue 4, Article 87, 2004

SOME RESULTS ON THE COMPLEX OSCILLATION THEORY OF DIFFERENTIAL EQUATIONS WITH POLYNOMIAL COEFFICIENTS

BENHARRAT BELAÏDI AND KARIMA HAMANI
Department of Mathematics
Laboratory of Pure and Applied Mathematics University of Mostaganem
B. P 227 Mostaganem-(Algeria) belaidi@univ-mosta.dz
HamaniKarima@yahoo.fr

Received 08 October, 2003; accepted 20 October, 2004
Communicated by H.M. Srivastava

Abstract

In this paper, we study the possible orders of transcendental solutions of the differential equation $f^{(n)}+a_{n-1}(z) f^{(n-1)}+\cdots+a_{1}(z) f^{\prime}+a_{0}(z) f=0$, where $a_{0}(z), \ldots$, $a_{n-1}(z)$ are nonconstant polynomials. We also investigate the possible orders and exponents of convergence of distinct zeros of solutions of non-homogeneous differential equation $f^{(n)}+$ $a_{n-1}(z) f^{(n-1)}+\cdots+a_{1}(z) f^{\prime}+a_{0}(z) f=b(z)$, where $a_{0}(z), \ldots, a_{n-1}(z)$ and $b(z)$ are nonconstant polynomials. Several examples are given.

Key words and phrases: Differential equations, Order of growth, Exponent of convergence of distinct zeros, Wiman-Valiron
theory.
2000 Mathematics Subject Classification. 34M10, 34M05, 30D35.

1. Introduction

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna value distribution theory of meromorphic functions (see [3]). Let $\sigma(f)$ denote the order of an entire function f, that is,

$$
\begin{equation*}
\sigma(f)=\varlimsup_{r \rightarrow+\infty} \frac{\log T(r, f)}{\log r}=\varlimsup_{r \rightarrow+\infty} \frac{\log \log M(r, f)}{\log r}, \tag{1.1}
\end{equation*}
$$

where $T(r, f)$ is the Nevanlinna characteristic function of f (see [3]), and $M(r, f)=$ $\max _{|z|=r}|f(z)|$.
We recall the following definition.

ISSN (electronic): 1443-5756

(c) 2004 Victoria University. All rights reserved.

141-03

Definition 1.1. Let f be an entire function. Then the exponent of convergence of distinct zeros of $f(z)$ is defined by

$$
\begin{equation*}
\bar{\lambda}(f)=\overline{\lim }_{r \rightarrow+\infty} \frac{\log \bar{N}\left(r, \frac{1}{f}\right)}{\log r} \tag{1.2}
\end{equation*}
$$

We define the logarithmic measure of a set $E \subset\left[1,+\infty\left[\right.\right.$ by $\operatorname{lm}(E)=\int_{1}^{+\infty} \frac{\chi_{E}(t) d t}{t}$, where χ_{E} is the characteristic function of set E.

In the study of the differential equations,

$$
\begin{equation*}
f^{\prime \prime}+a_{1}(z) f^{\prime}+a_{0}(z) f=0, \quad f^{\prime \prime}+a_{1}(z) f^{\prime}+a_{0}(z) f=b(z) \tag{1.3}
\end{equation*}
$$

where $a_{0}(z), a_{1}(z)$ and $b(z)$ are nonconstant polynomials, Z.-X. Chen and C.-C. Yang proved the following results:

Theorem 1.1 ([1]). Let a_{0} and a_{1} be nonconstant polynomials with degrees $\operatorname{deg} a_{j}=n_{j}$ $(j=0,1)$. Let $f(z)$ be an entire solution of the differential equation

$$
\begin{equation*}
f^{\prime \prime}+a_{1}(z) f^{\prime}+a_{0}(z) f=0 \tag{1.4}
\end{equation*}
$$

Then
(i) If $n_{0} \geq 2 n_{1}$, then any entire solution $f \not \equiv 0$ of the equation (1.4) satisfies $\sigma(f)=\frac{n_{0}+2}{2}$.
(ii) If $n_{0}<n_{1}-1$, then any entire solution $f \not \equiv 0$ of (1.4) satisfies $\sigma(f)=n_{1}+1$.
(iii) If $n_{1}-1 \leq n_{0}<2 n_{1}$, then any entire solution of (1.4) satisfies either $\sigma(f)=n_{1}+1$ or $\sigma(f)=n_{0}-n_{1}+1$.
(iv) In (iii), if $n_{0}=n_{1}-1$, then the equation (1.4) possibly has polynomial solutions, and any two polynomial solutions of (1.4) are linearly dependent, all the polynomial solutions have the form $f_{c}(z)=c p(z)$, where p is some polynomial, c is an arbitrary constant.

Theorem 1.2 ([[1]). Let a_{0}, a_{1} and b be nonconstant polynomials with degrees $\operatorname{deg} a_{j}=n_{j}$ $(j=0,1)$. Let $f \not \equiv 0$ be an entire solution of the differential equation

$$
\begin{equation*}
f^{\prime \prime}+a_{1}(z) f^{\prime}+a_{0}(z) f=b(z) \tag{1.5}
\end{equation*}
$$

Then
(i) If $n_{0} \geq 2 n_{1}$, then $\bar{\lambda}(f)=\sigma(f)=\frac{n_{0}+2}{2}$.
(ii) If $n_{0}<n_{1}-1$, then $\bar{\lambda}(f)=\sigma(f)=n_{1}+1$.
(iii) If $n_{1}-1<n_{0}<2 n_{1}$, then $\bar{\lambda}(f)=\sigma(f)=n_{1}+1$ or $\bar{\lambda}(f)=\sigma(f)=n_{0}-n_{1}+1$, with at most one exceptional polynomial solution f_{0} for three cases above.
(iv) If $n_{0}=n_{1}-1$, then every transcendental entire solution f satisfies $\bar{\lambda}(f)=\sigma(f)=$ $n_{1}+1$ (or 0$)$.
Remark 1.3. If the corresponding homogeneous equation of (1.5) has a polynomial solution $p(z)$, then (1.5) may have a family of polynomial solutions $\left\{c p(z)+f_{0}(z)\right\}\left(f_{0}\right.$ is a polynomial solution of (1.5), c is a constant). If the corresponding homogeneous equation of (1.5) has no polynomial solution, then (1.5) has at most one polynomial solution.

2. Statement and Proof of Results

For $n \geq 2$, we consider the linear differential equation

$$
\begin{equation*}
f^{(n)}+a_{n-1}(z) f^{(n-1)}+\cdots+a_{1}(z) f^{\prime}+a_{0}(z) f=0 \tag{2.1}
\end{equation*}
$$

where $a_{0}(z), \ldots, a_{n-1}(z)$ are nonconstant polynomials with degrees $\operatorname{deg} a_{j}=d_{j}(j=0, \ldots$, $n-1$). It is well-known that all solutions of equation (2.1) are entire functions of finite rational order see [7], [6, pp. 106-108], [8, pp. 65-67]. It is also known [5] p. 127], that for any solution f of (2.1), we have

$$
\begin{equation*}
\sigma(f) \leq 1+\max _{0 \leq k \leq n-1} \frac{d_{k}}{n-k} \tag{2.2}
\end{equation*}
$$

Recently G. Gundersen, M. Steinbart and S. Wang have investigated the possible orders of solutions of equation (2.1) in [2]. In the present paper, we prove two theorems which are analogous to Theorem 1.1 and Theorem 1.2 for higher order linear differential equations.

Theorem 2.1. Let $a_{0}(z), \ldots, a_{n-1}(z)$ be nonconstant polynomials with degrees $\operatorname{deg} a_{j}=d_{j}$ $(j=0,1, \ldots, n-1)$. Let $f(z)$ be an entire solution of the differential equation

$$
\begin{equation*}
f^{(n)}+a_{n-1}(z) f^{(n-1)}+\cdots+a_{1}(z) f^{\prime}+a_{0}(z) f=0 \tag{2.3}
\end{equation*}
$$

Then
(i) If $\frac{d_{0}}{n} \geq \frac{d_{j}}{n-j}$ holds for all $j=1, \ldots, n-1$, then any entire solution $f \not \equiv 0$ of the equation (2.3) satisfies $\sigma(f)=\frac{d_{0}+n}{n}$.
(ii) If $d_{j}<d_{n-1}-(n-j-1)$ holds for all $j=0, \ldots, n-2$, then any entire solution $f \not \equiv 0$ of (2.3) satisfies $\sigma(f)=1+d_{n-1}$.
(iii) If $d_{j}-1 \leq d_{j-1}<d_{j}+d_{n-1}$ holds for all $j=1, \ldots, n-1$ with $d_{j-1}-d_{j}=\max _{0 \leq k<j} \frac{d_{k}-d_{j}}{j-k}$ and $d_{j-1}-d_{j}>\frac{d_{k}-d_{j}}{j-k}$ for all $0 \leq k<j-1$, then the possible orders of any solution $f \not \equiv 0$ of (2.3) are:

$$
1+d_{n-1}, 1+d_{n-2}-d_{n-1}, \ldots, 1+d_{j-1}-d_{j}, \ldots, 1+d_{0}-d_{1}
$$

(iv) In (iii), if $d_{j-1}=d_{j}-1$ for all $j=1, \ldots, n-1$, then the equation (2.3) possibly has polynomial solutions, and any n polynomial solutions of (2.3) are linearly dependent, all the polynomial solutions have the form $f_{c}(z)=c p(z)$, where p is some polynomial, c is an arbitrary constant.

Theorem 2.2. Let $a_{0}(z), \ldots, a_{n-1}(z)$ and $b(z)$ be nonconstant polynomials with degrees $\operatorname{deg} a_{j}=d_{j}(j=0,1, \ldots, n-1)$. Let $f \not \equiv 0$ be an entire solution of the differential equation

$$
\begin{equation*}
f^{(n)}+a_{n-1}(z) f^{(n-1)}+\cdots+a_{1}(z) f^{\prime}+a_{0}(z) f=b(z) . \tag{2.4}
\end{equation*}
$$

Then
(i) If $\frac{d_{0}}{n} \geq \frac{d_{j}}{n-j}$ holds for all $j=1, \ldots, n-1$, then $\bar{\lambda}(f)=\sigma(f)=\frac{d_{0}+n}{n}$.
(ii) If $d_{j}<d_{n-1}-(n-j-1)$ holds for all $j=0, \ldots, n-2$, then $\bar{\lambda}(f)=\sigma(f)=1+d_{n-1}$.
(iii) If $d_{j}-1<d_{j-1}<d_{j}+d_{n-1}$ holds for all $j=1, \ldots, n-1$ with $d_{j-1}-d_{j}=\max _{0 \leq k<j} \frac{d_{k}-d_{j}}{j-k}$ and $d_{j-1}-d_{j}>\frac{d_{k}-d_{j}}{j-k}$ for all $0 \leq k<j-1$, then $\bar{\lambda}(f)=\sigma(f)=1+d_{n-1}$ or $\bar{\lambda}(f)=\sigma(f)=1+d_{n-2}-d_{n-1}$ or \ldots or $\bar{\lambda}(f)=\sigma(f)=1+d_{j-1}-d_{j}$ or \ldots or $\bar{\lambda}(f)=\sigma(f)=1+d_{0}-d_{1}$, with at most one exceptional polynomial solution f_{0} for three cases above.
(iv) If $d_{j-1}=d_{j}-1$ for some $j=1, \ldots, n-1$, then any transcendental entire solution f of (2.4) satisfies $\bar{\lambda}(f)=\sigma(f)=1+d_{n-1}$ or $\bar{\lambda}(f)=\sigma(f)=1+d_{n-2}-d_{n-1}$ or \ldots or $\bar{\lambda}(f)=\sigma(f)=1+d_{j}-d_{j+1}$ or $\bar{\lambda}(f)=\sigma(f)=1+d_{j-2}-d_{j-1}$ or \ldots or $\bar{\lambda}(f)=\sigma(f)=1+d_{0}-d_{1}($ or 0$)$.

Remark 2.3. If the corresponding homogeneous equation of (2.4) has a polynomial solution $p(z)$, then (2.4) may have a family of polynomial solutions $\left\{c p(z)+f_{0}(z)\right\}\left(f_{0}\right.$ is a polynomial solution of (2.4), c is a constant). If the corresponding homogeneous equation of (2.4) has no polynomial solution, then (2.4) has at most one polynomial solution.

3. Proof of Theorem 2.1

Assume that $f(z)$ is a transcendental entire solution of 2.3). First of all from the WimanValiron theory (see [4] or [6]), it follows that there exists a set E_{1} that has finite logarithmic measure, such that for all $j=1, \ldots, n$ we have

$$
\begin{equation*}
\frac{f^{(j)}(z)}{f(z)}=\left(\frac{\nu_{f}(r)}{z}\right)^{j}(1+o(1)) \tag{3.1}
\end{equation*}
$$

as $r \rightarrow+\infty, r \notin E_{1}$, where $|z|=r$ and $|f(z)|=M(r, f)$. Here $\nu_{f}(r)$ denotes the central index of f. Furthermore

$$
\begin{equation*}
\nu_{f}(r)=(1+o(1)) \alpha r^{\sigma} \tag{3.2}
\end{equation*}
$$

as $r \rightarrow+\infty$, where $\sigma=\sigma(f)$ and α is a positive constant. Now we divide equation (2.3) by f, and then substitute (3.1) and (3.2) into (2.3). This yields an equation whose right side is zero and whose left side consists of a sum of $(n+1)$ terms whose absolute values are asymptotic as ($r \rightarrow+\infty, r \notin E_{1}$) to the following $(n+1)$ terms:

$$
\begin{equation*}
\alpha^{n} r^{n(\sigma-1)}, \beta_{n-1} r^{d_{n-1}+(n-1)(\sigma-1)}, \ldots, \beta_{j} r^{d_{j}+j(\sigma-1)}, \ldots, \beta_{0} r^{d_{0}} \tag{3.3}
\end{equation*}
$$

where $\beta_{j}=\alpha^{j}\left|b_{j}\right|$ and $a_{j}=b_{j} z^{d_{j}}(1+o(1))$ for each $j=0, \ldots, n-1$.
(i) If $\frac{d_{0}}{n} \geq \frac{d_{j}}{n-j}$ for all $j=1, \ldots, n-1$, then

$$
\begin{equation*}
\sigma(f) \leq 1+\max _{0 \leq k \leq n-1} \frac{d_{k}}{n-k}=1+\frac{d_{0}}{n} \tag{3.4}
\end{equation*}
$$

Suppose that $\sigma(f)<1+\frac{d_{0}}{n}$, then we have

$$
\begin{equation*}
d_{j}+j(\sigma-1)<\left(\frac{n-j}{n}\right) d_{0}+j \frac{d_{0}}{n}=d_{0} \tag{3.5}
\end{equation*}
$$

for all $j=1, \ldots, n-1$. Then the term in (3.3) with exponent d_{0} is a dominant term as $\left(r \rightarrow+\infty, r \notin E_{1}\right)$. This is impossible. Hence $\sigma(f)=1+\frac{d_{0}}{n}$.
(ii) If $d_{j}<d_{n-1}-(n-j-1)$ for all $j=0, \ldots, n-2$, then we have

$$
\begin{equation*}
\frac{d_{j}}{n-j}<\frac{d_{n-1}-(n-j-1)}{n-j}<\frac{d_{n-1}}{n-j}<d_{n-1} \tag{3.6}
\end{equation*}
$$

for all $j=0, \ldots, n-2$. Hence $\max _{0 \leq j \leq n-1} \frac{d_{j}}{n-j}=d_{n-1}$ and $\sigma(f) \leq 1+d_{n-1}$. Suppose that $\sigma(f)<1+d_{n-1}$. We have for all $j=0, \ldots, n-2$,

$$
\begin{align*}
d_{j}+j(\sigma-1) & <d_{n-1}-(n-j-1)+j(\sigma-1) \tag{3.7}\\
& <d_{n-1}-(n-j-1)+j(\sigma-1)+(n-j-1) \sigma \\
& \leq d_{n-1}+(n-1)(\sigma-1) .
\end{align*}
$$

Then the term in (3.3) with exponent $d_{n-1}+(n-1)(\sigma-1)$ is a dominant term as $\left(r \rightarrow+\infty, r \notin E_{1}\right)$. This is impossible. Hence $\sigma(f)=1+d_{n-1}$.
(iii) If $d_{j}-1 \leq d_{j-1}<d_{j}+d_{n-1}$ for all $j=1, \ldots, n-1$ with $d_{j-1}-d_{j}=\max _{0 \leq k<j} \frac{d_{k}-d_{j}}{j-k}$ and $d_{j-1}-d_{j}>\frac{d_{k}-d_{j}}{j-k}$ for all $0 \leq k<j-1$, then we have in this case

$$
\begin{equation*}
\max _{0 \leq j \leq n-1} \frac{d_{j}}{n-j}=d_{n-1} \tag{3.8}
\end{equation*}
$$

Hence $\sigma(f) \leq 1+d_{n-1}$. Set

$$
\begin{equation*}
\sigma_{j}=1+d_{j-1}-d_{j} \quad(j=1, \ldots, n-1) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{n}=1+d_{n-1} . \tag{3.10}
\end{equation*}
$$

First, we prove that $\sigma_{1}<\sigma_{2}<\cdots<\sigma_{n-1}<\sigma_{n}$. From the conditions, we have

$$
d_{j-1}-d_{j}>\frac{d_{j-2}-d_{j}}{2} \quad(j=2, \ldots, n-1),
$$

which yields

$$
\begin{equation*}
-(j-2) d_{j-1}-d_{j}>d_{j-2}-j d_{j-1} \tag{3.12}
\end{equation*}
$$

Adding $(j-1) d_{j-1}$ to both sides of (3.12) gives

$$
\begin{equation*}
d_{j-1}-d_{j}>d_{j-2}-d_{j-1} \quad(j=2, \ldots, n-1) \tag{3.13}
\end{equation*}
$$

Hence $\sigma_{j-1}<\sigma_{j}$ for all $j=2, \ldots, n-1$. Furthermore, from the conditions, we have $d_{j-1}-d_{j}<d_{n-1}$ for all $j=1, \ldots, n-1$. Hence $\sigma_{j}<\sigma_{n}$ for all $j=1, \ldots, n-1$. Finally, we obtain that $\sigma_{1}<\sigma_{2}<\cdots<\sigma_{n-1}<\sigma_{n}$. Next suppose $\sigma_{j}<\sigma<\sigma_{j+1}$ for some $j=1, \ldots, n-1$.
(a) First we prove that if $\sigma>\sigma_{j}$ for some $j=1, \ldots, n-1$, and k is any integer satisfying $0 \leq k<j$, then $d_{k}+k(\sigma-1)<d_{j}+j(\sigma-1)$. Since

$$
\begin{equation*}
d_{k}+k(\sigma-1)=d_{j}+j(\sigma-1)+d_{k}-d_{j}+(k-j)(\sigma-1), \tag{3.14}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
d_{k}+k(\sigma-1)<d_{j}+j(\sigma-1)+d_{k}-d_{j}+(k-j)\left(\sigma_{j}-1\right) . \tag{3.15}
\end{equation*}
$$

Now from the definition of σ_{j} in (3.9), we obtain

$$
\begin{equation*}
d_{k}-d_{j}+(k-j)\left(\sigma_{j}-1\right)=(k-j)\left[d_{j-1}-d_{j}-\frac{d_{k}-d_{j}}{j-k}\right] . \tag{3.16}
\end{equation*}
$$

Since $0 \leq k<j$, it follows from the conditions that

$$
\begin{equation*}
d_{j-1}-d_{j} \geq \frac{d_{k}-d_{j}}{j-k} \tag{3.17}
\end{equation*}
$$

Then from (3.16) and (3.17), we obtain that

$$
\begin{gather*}
\qquad d_{k}-d_{j}+(k-j)\left(\sigma_{j}-1\right) \leq 0 \tag{3.18}\\
\text { Hence } d_{k}+k(\sigma-1)<d_{j}+j(\sigma-1) \text { for all } 0 \leq k<j
\end{gather*}
$$

(b) Now, we prove that if $\sigma<\sigma_{j+1}$ for some $j=0, \ldots, n-1$ and k is any integer satisfying $j<k \leq n-1$, then $d_{k}+k(\sigma-1)<d_{j}+j(\sigma-1)$. First, remark that if $k=j+1$, then

$$
\begin{aligned}
d_{j+1}+(j+1)(\sigma-1) & =d_{j+1}+(\sigma-1)+j(\sigma-1) \\
& <d_{j+1}+\left(\sigma_{j+1}-1\right)+j(\sigma-1) \\
& =d_{j+1}+\left(d_{j}-d_{j+1}\right)+j(\sigma-1) \\
& \leq d_{j}+j(\sigma-1) .
\end{aligned}
$$

Hence

$$
d_{j+1}+(j+1)(\sigma-1)<d_{j}+j(\sigma-1) .
$$

We have,

$$
\begin{equation*}
\sigma<\sigma_{j+1}<\sigma_{j+2}<\cdots<\sigma_{n-1}<\sigma_{n} \tag{3.20}
\end{equation*}
$$

Then

$$
\begin{gather*}
d_{j+2}+(j+2)(\sigma-1)<d_{j+1}+(j+1)(\sigma-1)\left(\sigma<\sigma_{j+2}\right) \tag{3.21}\\
\cdots \\
d_{n-1}+(n-1)(\sigma-1)<d_{n-2}+(n-2)(\sigma-1)\left(\sigma<\sigma_{n-1}\right) .
\end{gather*}
$$

Therefore from (3.20) and by combining the inequalities in (3.19) and (3.21), we obtain that $d_{k}+k(\sigma-1)<d_{j}+j(\sigma-1)$ for all $j<k \leq n-1$. Furthermore

$$
n(\sigma-1)=(n-1)(\sigma-1)+(\sigma-1)<(n-1)(\sigma-1)+d_{n-1}
$$

since $\sigma<\sigma_{n}$ and from (3.21) and (3.19), we deduce that $n(\sigma-1)<d_{j}+$ $j(\sigma-1)$. Then from $a)$ and $b)$, we obtain that if $\sigma_{j}<\sigma<\sigma_{j+1}$ for some $j=$ $1, \ldots, n-1$, then $n(\sigma-1)<d_{j}+j(\sigma-1)$ and $d_{k}+k(\sigma-1)<d_{j}+j(\sigma-1)$ for any $k \neq j$. It follows that the term in (3.3) with exponent $d_{j}+j(\sigma-1)$ is a dominant term (as $r \rightarrow+\infty, r \notin E_{1}$). This is impossible. From b), it follows that if $\sigma<\sigma_{1}$, then $d_{k}+k(\sigma-1)<d_{0}$ for all $0<k \leq n-1$ and $n(\sigma-1)<d_{0}$. Hence the term in (3.3) with exponent d_{0} is a dominant term (as $r \rightarrow+\infty, r \notin E_{1}$). This is impossible.
Finally, we deduce that the possible orders of f are

$$
1+d_{n-1}, 1+d_{n-2}-d_{n-1}, \ldots, 1+d_{j-1}-d_{j}, \ldots, 1+d_{0}-d_{1} .
$$

(iv) If $d_{j-1}=d_{j}-1$ for all $j=1, \ldots, n-1$, it is easy to see that 2.3 has possibly polynomial solutions. Now we discuss polynomial solutions of equation (2.3), if $f_{1}(z), \ldots, f_{n}(z)$ are linearly independent polynomial solutions, then by the wellknown identity

$$
\left|\begin{array}{ccc}
f_{1} & f_{2} & f_{n} \tag{3.22}\\
f_{1}^{\prime} & f_{2}^{\prime} & f_{n}^{\prime} \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & f_{n}^{(n-1)}
\end{array}\right|=C \exp \left\{-\int_{0}^{z} a_{n-1}(s) d s\right\}
$$

where $C \neq 0$ is some constant, we obtain a contradiction. Therefore any n polynomial solutions are linearly dependent, hence all polynomial solutions have the form $f_{c}(z)=$ $c p(z)$, where p is a polynomial and c is an arbitrary constant.
Next, we give several examples that illustrate the sharpness of Theorem 2.1.

Example 3.1. Consider the differential equation

$$
\begin{equation*}
f^{\prime \prime \prime}-(6 z+1) f^{\prime \prime}+3 z(3 z+1) f^{\prime}-2\left(z^{3}+z^{2}-1\right) f=0 . \tag{3.23}
\end{equation*}
$$

Set

$$
\begin{aligned}
& a_{2}(z)=-(6 z+1), \quad d_{2}=1 \\
& a_{1}(z)=3 z(3 z+1), \quad d_{1}=2 \\
& a_{0}(z)=-2\left(z^{3}+z^{2}-1\right), \quad d_{0}=3
\end{aligned}
$$

We have $\frac{d_{0}}{3} \geq \frac{d_{1}}{2}$ and $\frac{d_{0}}{3} \geq \frac{d_{2}}{1}$. Hence, by Theorem $2.1(i)$, all transcendental solutions of equation (3.23) are of order $1+\frac{d_{0}}{3}=2$. We see for example that $f(z)=e^{z^{2}}$ is a solution of (3.23) with $\sigma(f)=2$.

Example 3.2. Consider the differential equation

$$
\begin{equation*}
f^{\prime \prime \prime}+z f^{\prime \prime}+2\left(z^{2}-8 z-1\right) f^{\prime}-3\left(9 z^{6}+3 z^{5}+2 z^{4}+2 z^{3}+2\right) f=0 . \tag{3.24}
\end{equation*}
$$

Set

$$
\begin{aligned}
& a_{2}(z)=z, \quad d_{2}=1 ; \\
& a_{1}(z)=2\left(z^{2}-8 z-1\right), \quad d_{1}=2 \\
& a_{0}(z)=-3\left(9 z^{6}+3 z^{5}+2 z^{4}+2 z^{3}+2\right), \quad d_{0}=6 .
\end{aligned}
$$

We have $\frac{d_{0}}{3}>\frac{d_{1}}{2}$ and $\frac{d_{0}}{3}>\frac{d_{2}}{1}$. Hence, by Theorem 2.1(i), all transcendental solutions of equation (3.24) are of order $1+\frac{d_{0}}{3}=3$. Remark that $f(z)=e^{z^{3}}$ is a solution of (3.24) with $\sigma(f)=3$.

Example 3.3. Consider the differential equation

$$
\begin{equation*}
f^{\prime \prime \prime \prime}-2 z f^{\prime \prime \prime}-4\left(z^{2}+1\right) f^{\prime \prime}+6 z^{3} f^{\prime}+4\left(z^{4}-1\right) f=0 \tag{3.25}
\end{equation*}
$$

Set

$$
\begin{aligned}
& a_{3}(z)=-2 z, \quad d_{3}=1 ; \\
& a_{2}(z)=-4\left(z^{2}+1\right), \quad d_{2}=2 \\
& a_{1}(z)=6 z^{3}, \quad d_{1}=3 ; \\
& a_{0}(z)=4\left(z^{4}-1\right), \quad d_{0}=4
\end{aligned}
$$

We have $\frac{d_{j}}{4-j} \leq \frac{d_{0}}{4}$ for all $j=1,2,3$. Hence, by Theorem $2.1(i)$, all transcendental solutions of equation (3.25) are of order $1+\frac{d_{0}}{4}=2$. Remark that $f(z)=e^{z^{2}}$ is a solution of (3.25) with $\sigma(f)=2$.

Example 3.4. Consider the differential equation

$$
\begin{equation*}
f^{\prime \prime \prime}+\left(z^{2}+z-1\right) f^{\prime \prime}+\left(z^{3}-z^{2}-z+1\right) f^{\prime}-\left(z^{3}+1\right) f=0 . \tag{3.26}
\end{equation*}
$$

Set

$$
\begin{aligned}
& a_{2}(z)=z^{2}+z-1, \quad d_{2}=2 \\
& a_{1}(z)=z^{3}-z^{2}-z+1, \quad d_{1}=3 ; \\
& a_{0}(z)=-\left(z^{3}+1\right), \quad d_{0}=3
\end{aligned}
$$

We have $d_{1}-1<d_{0}<d_{1}+d_{2}$ and $d_{2}-1<d_{1}<2 d_{2}, d_{1}-d_{2}>\frac{d_{0}-d_{2}}{2}$. Hence, by Theorem 2.1 (iii), all possible orders of solutions of equation (3.26) are $1+d_{2}=3,1+d_{1}-d_{2}=2$, $1+d_{0}-d_{1}=1$. For example $f(z)=e^{z}$ is a solution of (3.26) with $\sigma(f)=1$.

Example 3.5. The equation

$$
f^{\prime \prime \prime}+z^{3} f^{\prime \prime}-2 z^{2} f^{\prime}+2 z f=0
$$

has a polynomial solution $f_{c}(z)=c\left(z^{2}+2 z\right)$ where c is a constant.
Example 3.6. The equation

$$
f^{\prime \prime \prime \prime}-z\left(z^{3}+3 z^{2}+2 z+1\right) f^{\prime \prime \prime}-z\left(z^{2}+3 z+1\right) f^{\prime \prime}+2\left(z^{2}+z+1\right) f^{\prime}+6(z+1) f=0
$$

has a polynomial solution $f_{c}(z)=c\left(z^{3}+3 z^{2}\right)$ where c is a constant.

4. Proof of Theorem 2.2

We assume that $f(z)$ is a transcendental entire solution of (2.4).We adopt the argument as used in the proof of Theorem 2.1, and notice that when z satisfies $|f(z)|=M(r, f)$ and $|z| \rightarrow+\infty,\left|\frac{b(z)}{f(z)}\right| \rightarrow 0$, we can prove that
(1) if $\frac{d_{0}}{n} \geq \frac{d_{j}}{n-j}$ for all $j=1, \ldots, n-1$, then $\sigma(f)=\frac{d_{0}+n}{n}$;
(2) if $d_{j}<d_{n-1}-(n-j-1)$ for all $j=0, \ldots, n-2$, then $\sigma(f)=1+d_{n-1}$;
(3) if $d_{j}-1<d_{j-1}<d_{j}+d_{n-1}$ for all $j=1, \ldots, n-1$ with $d_{j-1}-d_{j}=\max _{0 \leq k<j} \frac{d_{k}-d_{j}}{j-k}$ and $d_{j-1}-d_{j}>\frac{d_{k}-d_{j}}{j-k}$ for all $0 \leq k<j-1$, then $\sigma(f)=1+d_{n-1}$ or $\sigma(f)=1+d_{n-2}-d_{n-1}$ or \ldots or $\sigma(f)=1+d_{j-1}-d_{j}$ or \ldots or $\sigma(f)=1+d_{1}-d_{2}$ or $\sigma(f)=1+d_{0}-d_{1}$.
We know that when $\frac{d_{0}}{n} \geq \frac{d_{j}}{n-j}$ for all $j=1, \ldots, n-1$ or $d_{j}<d_{n-1}-(n-j-1)$ for all $j=0, \ldots, n-2$ or $d_{j}-1<d_{j-1}<d_{j}+d_{n-1}$ for all $j=1, \ldots, n-1$ with $d_{j-1}-$ $d_{j}=\max _{0 \leq k<j} \frac{d_{k}-d_{j}}{j-k}$ and $d_{j-1}-d_{j}>\frac{d_{k}-d_{j}}{j-k}$ for all $0 \leq k<j-1$, every solution $f \not \equiv 0$ of the corresponding homogeneous equation of (2.4) is transcendental, so that the equation (2.4) has at most one exceptional polynomial solution, in fact if $f_{1}, f_{2}\left(f_{2} \not \equiv f_{1}\right)$ are polynomial solutions of (2.4), then $f_{1}-f_{2} \not \equiv 0$ is a polynomial solution of the corresponding homogeneous equation of (2.4), this is a contradiction. When $d_{j-1}=d_{j}-1$ for some $j=1, \ldots, n-1$, if the corresponding homogeneous equation of (2.4) has no polynomial solution, then (2.4) has clearly at most one exceptional polynomial solution, if the corresponding homogeneous equation of (2.4) has a polynomial solution $p(z)$, then (2.4) may have a family of polynomial solutions $\left\{c p(z)+f_{0}(z)\right\}$ (f_{0} is a polynomial solution of $(2.4), c$ is a constant). Now we prove $\bar{\lambda}(f)=\sigma(f)$ for a transcendental solution f of (2.4). Since $b(z)$ is a polynomial which has only finitely many zeros, it follows that if z_{0} is a zero of $f(z)$ and $\left|z_{0}\right|$ is sufficiently large, then the order of zero at z_{0} is less than or equal to n from (2.4). Hence

$$
\begin{equation*}
N\left(r, \frac{1}{f}\right) \leq n \bar{N}\left(r, \frac{1}{f}\right)+O(\ln r) \tag{4.1}
\end{equation*}
$$

By (2.4), we have

$$
\begin{equation*}
\frac{1}{f}=\frac{1}{b}\left(\frac{f^{(n)}}{f}+a_{n-1} \frac{f^{(n-1)}}{f}+\cdots+a_{1} \frac{f^{\prime}}{f}+a_{0}\right) \tag{4.2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
m\left(r, \frac{1}{f}\right) \leq \sum_{j=1}^{k} m\left(r, \frac{f^{(j)}}{f}\right)+O(\ln r) \tag{4.3}
\end{equation*}
$$

By $\sigma(f)<+\infty$, we have

$$
\begin{equation*}
m\left(r, \frac{f^{(j)}}{f}\right)=O(\ln r)(j=1, \ldots, n) \tag{4.4}
\end{equation*}
$$

Then we get from (4.1), (4.3) and (4.4),

$$
\begin{align*}
T(r, f) & =T\left(r, \frac{1}{f}\right)+O(1) \tag{4.5}\\
& \leq n \bar{N}\left(r, \frac{1}{f}\right)+d(\log r)
\end{align*}
$$

where $d(>0)$ is a constant. By 4.5 , we have $\sigma(f) \leq \bar{\lambda}(f)$. On the other hand, we have

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{f}\right) \leq N\left(r, \frac{1}{f}\right) \leq N\left(r, \frac{1}{f}\right)+m\left(r, \frac{1}{f}\right) \tag{4.6}
\end{equation*}
$$

since $m\left(r, \frac{1}{f}\right)$ is a positive function. Hence

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{f}\right) \leq T\left(r, \frac{1}{f}\right)=T(r, f)+O(1) . \tag{4.7}
\end{equation*}
$$

From (4.7), we obtain $\bar{\lambda}(f) \leq \sigma(f)$. Therefore, $\bar{\lambda}(f)=\sigma(f)$.
Next, we give several examples that illustrate the sharpness of Theorem 2.2 .
Example 4.1. Consider the differential equation

$$
\begin{equation*}
f^{\prime \prime \prime}-(6 z+1) f^{\prime \prime}+3 z(3 z+1) f^{\prime}-2\left(z^{3}+z^{2}-1\right) f=z\left(-2 z^{3}-2 z^{2}+9 z+5\right) . \tag{4.8}
\end{equation*}
$$

By Theorem $2.2(i)$, every entire transcendental solution of equation (4.8) is of order $1+\frac{d_{0}}{3}=2$.
Remark that $f(z)=z+e^{z^{2}}$ is a solution of (4.8) with $\sigma(f)=\bar{\lambda}(f)=2$.
Example 4.2. Consider the differential equation

$$
\begin{equation*}
f^{\prime \prime \prime \prime}-2 z f^{\prime \prime \prime}-4\left(z^{2}+1\right) f^{\prime \prime}+6 z^{3} f^{\prime}+4\left(z^{4}-1\right) f=4\left(z^{6}+3 z^{4}-3 z^{2}-2\right) . \tag{4.9}
\end{equation*}
$$

From Theorem 2.2 (i), it follows that every entire transcendental solution of equation (4.9) is of order $1+\frac{d_{0}}{4}=2$. We have $f(z)=z^{2}+e^{z^{2}}$ is a solution of (4.9) with $\sigma(f)=\bar{\lambda}(f)=2$.
Example 4.3. Consider the differential equation

$$
\begin{equation*}
f^{\prime \prime \prime}+\left(z^{2}+z-1\right) f^{\prime \prime}+\left(z^{3}-z^{2}-z+1\right) f^{\prime}-\left(z^{3}+1\right) f=z^{4}-z^{3}+z^{2}+2 z-1 \tag{4.10}
\end{equation*}
$$

If f is a solution of equation (4.10), then by Theorem 2.2 (iii), it follows that $\sigma(f)=\bar{\lambda}(f)=3$ or $\sigma(f)=\bar{\lambda}(f)=2$ or $\sigma(f)=\bar{\lambda}(f)=1$. We have for example $f(z)=-z+e^{z}$ is a solution of (4.10) with $\sigma(f)=\bar{\lambda}(f)=1$.

Example 4.4. The equation

$$
f^{\prime \prime \prime}+\left(z^{3}+z^{2}+z+1\right) f^{\prime \prime}-\left(2 z^{2}+2 z+1\right) f^{\prime}+2(z+1) f=2(z+1)
$$

has a family of polynomial solutions $\left\{c\left(z^{2}+2 z\right)+1\right\}$ (c is a constant).
Example 4.5. The equation

$$
f^{\prime \prime \prime}+\left(z^{3}+z^{2}+z+1\right) f^{\prime \prime}-\left(2 z^{2}+2 z+1\right) f^{\prime}+2(z+1) f=4 z+3
$$

has a family of polynomial solutions $\left\{c\left(z^{2}+2 z\right)+z+2\right\}$ (c is a constant).

References

[1] Z.-X. CHEN AND C.-C. YANG, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J., 22 (1999), 273-285.
[2] G. GUNDERSEN, M. STEINBART and S. WANG, The possible orders of solutions of linear differential equations with polynomial coefficients, Trans. Amer. Math. Soc., 350 (1998), 1225-1247.
[3] W.K. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[4] W.K. HAYMAN, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull., 17 (1974), 317-358.
[5] I. LAINE, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin-New York, 1993.
[6] G. VALIRON, Lectures on the General Theory of Integral Functions, translated by E. F. Collingwood, Chelsea, New York, 1949.
[7] H. WITTICH, Über das Anwachsen der Lösungen linearer differentialgleichungen, Math. Ann., 124 (1952), 277-288.
[8] H. WITTICH, Neuere Untersuchungen über eindeutige analytische Funktionen, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1968.

