Journal of Inequalities in Pure and Applied Mathematics

SOME INEQUALITIES INVOLVING THE GAMMA FUNCTION

LAZHAR BOUGOFFA

Al-imam Muhammad Ibn Saud Islamic University
Faculty of Computer Science
Department of Mathematics
P.O. Box 84880, Riyadh 11681

Saudi Arabia
EMail: bougoffa@hotmail.com
volume 7, issue 5, article 179, 2006.

Received 15 May, 2006; accepted 13 July, 2006.

Communicated by: J. Sándor

Abstract
Contents
Home Page
Goack
Close

Abstract

In this short paper, as a complement of the double inequality on the Euler gamma function, obtained by József Sándor in the paper [A note on certain inequalities for the gamma function, J. Ineq. Pure Appl. Math., 6(3) (2005), Art. 61], several inequalities involving the Euler gamma function are established by using the same method of J. Sándor that is used in [2].

2000 Mathematics Subject Classification: 33B15.
Key words: Euler gamma function, Digamma function.

Contents

1 Introduction and Lemma . 3
2 Main Results .. 5
References

1. Introduction and Lemma

In [1], C. Alsina and M.S. Tomas studied a very interesting inequality involving the gamma function and proved the following double inequality

$$
\begin{equation*}
\frac{1}{n!} \leq \frac{\Gamma(1+x)^{n}}{\Gamma(1+n x)} \leq 1, \quad x \in[0,1], n \in \aleph \tag{1.1}
\end{equation*}
$$

by using a geometrical method [1]. In view of the interest in this type of inequalities, J. Sándor [2] extended this result to a more general case, and obtained the following inequality

$$
\begin{equation*}
\frac{1}{\Gamma(1+a)} \leq \frac{\Gamma(1+x)^{a}}{\Gamma(1+a x)} \leq 1, \quad x \in[0,1], a \geq 1 \tag{1.2}
\end{equation*}
$$

The method used in [2] to obtain these results is based on the following lemma.
Lemma 1.1. For all $x>0$, and all $a \geq 1$ one has

$$
\begin{equation*}
\psi(1+a x) \geq \psi(1+x) \tag{1.3}
\end{equation*}
$$

where $\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}, x>0$ is the digamma function and has the following series representation

$$
\begin{equation*}
\psi(x)=-\gamma+(x-1) \sum_{k=0}^{\infty} \frac{1}{(k+1)(x+k)} \tag{1.4}
\end{equation*}
$$

In [3], A.McD. Mercer continued to create new inequalities on this subject and other special functions and obtained the following inequalities

$$
\begin{equation*}
\frac{\Gamma(1+x)^{a}}{\Gamma(1+a x)}<\frac{\Gamma(1+y)^{a}}{\Gamma(1+a y)}, \quad 0<a<1 \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\Gamma(1+x)^{a}}{\Gamma(1+a x)}>\frac{\Gamma(1+y)^{a}}{\Gamma(1+a y)}, \quad a<0 \text { or } a>1 \tag{1.6}
\end{equation*}
$$

where $y>x>0,1+a x>0$, and $1+b x>0$.
This paper is a continuation of the above papers. As in [2], our goal is to prove several inequalities involving the gamma function, using the same method of J. Sándor that is used in [2]. Here, the essential lemma is the following
Lemma 1.2. For all $x>0$, and all $a \geq b$ we have

$$
\begin{equation*}
\psi(1+a x) \geq \psi(1+b x) \tag{1.7}
\end{equation*}
$$

in which $1+a x>0$ and $1+b x>0$.
Proof. By the above series representation of ψ, observe that:

$$
\begin{gathered}
\psi(1+a x)-\psi(1+b x)=\sum_{k=0}^{\infty}\left[\frac{a x}{(k+1)(a x+k+1)}-\frac{b x}{(k+1)(b x+k+1)}\right], \\
\psi(1+a x)-\psi(1+b x)=(a-b) x \sum_{k=0}^{\infty} \frac{1}{(a x+k+1)(b x+k+1)} \geq 0,
\end{gathered}
$$

by $a \geq b, 1+a x>0,1+b x>0, x>0$ and $k>0$. Thus the inequality (1.7) is proved. The equality in (1.7) holds only if $a=b$.

Some Inequalities Involving the Gamma Function

Lazhar Bougoffa

Title Page
Contents

| $\mathbf{~ G o ~ B a c k ~}$ |
| :---: | :---: |
| Close |
| Quit |
| Page 4 of 7 |

2. Main Results

Now we are in a position to give the following theorem.
Theorem 2.1. Let f be a function defined by

$$
f(x)=\frac{\Gamma(1+b x)^{a}}{\Gamma(1+a x)^{b}}, \quad \forall x \geq 0
$$

in which $1+a x>0$ and $1+b x>0$, then for all $a \geq b>0$ or $0>a \geq b$ ($a>0$ and $b<0$), f is decreasing (increasing) respectively on $[0, \infty)$.

Proof. Let g be a function defined by

$$
g(x)=\log f(x)=a \log \Gamma(1+b x)-b \log \Gamma(1+a x)
$$

then

$$
g^{\prime}(x)=a b[\psi(1+b x)-\psi(1+a x)] .
$$

By Lemma 1.2, we get $g^{\prime}(x) \leq 0$ if $a \geq b>0$ or $0>a \geq b\left(g^{\prime}(x) \geq 0\right.$ if $0>a \geq b$), i.e., g is decreasing on $[0, \infty)$ (increasing on $[0, \infty)$) respectively. Hence f is decreasing on $[0, \infty)$ if $a \geq b>0$ or $0>a \geq b$ (increasing if $a>0$ and $b<0$) respectively. The proof is complete.

Corollary 2.2. For all $x \in[0,1]$, and all $a \geq b>0$ or $0>a \geq b$, we have

$$
\begin{equation*}
\frac{\Gamma(1+b)^{a}}{\Gamma(1+a)^{b}} \leq \frac{\Gamma(1+b x)^{a}}{\Gamma(1+a x)^{b}} \leq 1 \tag{2.1}
\end{equation*}
$$

Some Inequalities Involving the Gamma Function

Lazhar Bougoffa

Title Page
Contents
Close Back
Quit

J. Ineq. Pure and Appl. Math. 7(5) Art. 179, 2006

Proof. To prove (2.1), applying Theorem 2.1, and taking account of $\Gamma(1)=1$ we get $f(1) \leq f(x) \leq f(0)$ for all $x \in[0,1]$, and we omit (2.1).

Corollary 2.3. For all $x \in[0,1]$, and all $a>0$ and $b<0$, we have

$$
\begin{equation*}
1 \leq \frac{\Gamma(1+b x)^{a}}{\Gamma(1+a x)^{b}} \leq \frac{\Gamma(1+b)^{a}}{\Gamma(1+a)^{b}} \tag{2.2}
\end{equation*}
$$

Proof. Applying Theorem 2.1, we get $f(0) \leq f(x) \leq f(1)$ for all $x \in[0,1]$, and we omit (2.2).

Now we consider the simplest cases of Corollary 2.2 to obtain the known results of C. Alsina and M.S. Tomas [1] and J. Sándor [2].
Remark 1. Taking $a=n$ and $b=1(a \geq 1$ and $b=1)$, in Corollary 2.2, we obtain (1.1) ((1.2)) respectively.

Also we conclude different generalizations of (1.5)-(1.6) which are obtained by A.McD. Mercer [3].

Corollary 2.4. For all $x \in[0,1]$, and all $a \geq b>0$ or $0>a \geq b$, we have

$$
\begin{equation*}
\frac{\Gamma(1+b x)^{a}}{\Gamma(1+a x)^{b}}<\frac{\Gamma(1+b y)^{a}}{\Gamma(1+a y)^{b}} \tag{2.3}
\end{equation*}
$$

where $0<y<x \leq 1$.
Corollary 2.5. For all $x \in[0,1]$, and all $a>0$ and $b<0$, we have

$$
\begin{equation*}
\frac{\Gamma(1+b y)^{a}}{\Gamma(1+a y)^{b}}<\frac{\Gamma(1+b x)^{a}}{\Gamma(1+a x)^{b}} \tag{2.4}
\end{equation*}
$$

Some Inequalities Involving the Gamma Function

Lazhar Bougoffa

Title Page
Contents
Go Back
Close
Quit 6

References

[1] C. ALSINA AND M.S. TOMAS, A geometrical proof of a new inequality for the gamma function, J. Ineq. Pure Appl. Math., 6(2) (2005), Art. 48. [ONLINE: http://jipam.vu.edu.au/article.php?side= 517].
[2] J. SÁNDOR, A note on certain inequalities for the gamma function, J. Ineq. Pure Appl. Math., 6(3) (2005), Art. 61. [ONLINE: http: / / jipam.vu. edu.au/article.php?side=534].
[3] A.McD. MERCER, Some new inequalities for the gamma, beta and zeta functions, J. Ineq. Pure Appl. Math., 7(1) (2006), Art. 29. [ONLINE: http://jipam.vu.edu.au/article.php?side=636].

