

# Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 4, Article 142, 2006

# INEQUALITIES RELATED TO THE UNITARY ANALOGUE OF LEHMER PROBLEM

#### V. SIVA RAMA PRASAD AND UMA DIXIT

DEPARTMENT OF MATHEMATICS OSMANIA UNIVERSITY, HYDERABAD - 500007. vangalasrp@yahoo.co.in

DEPARTMENT OF MATHEMATICS BHAVAN'S VIVEKANANDA COLLEGE, SAINIKPURI, SECUNDERABAD - 500094. umadixit@rediffmail.com

Received 15 May, 2006; accepted 20 June, 2006 Communicated by J. Sándor

ABSTRACT. Observing that  $\phi(n)$  divides n-1 if n is a prime, where  $\phi(n)$  is the well known Euler function, Lehmer has asked whether there is any composite number n with this property. For this unsolved problem, partial answers were given by several researchers. Considering the unitary analogue  $\phi^*(n)$  of  $\phi(n)$ , Subbarao noted that  $\phi^*(n)$  divides n-1, if n is the power of a prime; and sought for integers n other than prime powers which satisfy this condition. In this paper we improve two inequalities, established by Subbarao and Siva Rama Prasad [5], to be satisfied by n for  $\phi^*(n)$  which divides n-1.

[5] M.V. Subbarao and V. Siva Rama Prasad, Some analogues of a Lehmer problem on the totient function, Rocky Mountain Journal of Mathematics; Vol. 15, Number 2: Spring 1985, 609-619.

Key words and phrases: Lehmer Problem, Unitary analogue of Lehmer problem.

2000 Mathematics Subject Classification. 11A25.

#### 1. INTRODUCTION

Let  $\phi(n)$  denote, as usual the number of positive integers not exceeding n that are relatively prime to n. Noting that  $\phi(n) \mid n-1$  if n is a prime, Lehmer [2] asked, in 1932, whether there is a composite number n for which  $\phi(n) \mid n-1$ .

Equivalently, if

(1.1)  $S_M = \{n : M\phi(n) = n - 1\}$  for  $M = 1, 2, 3, \dots$ ,

ISSN (electronic): 1443-5756

<sup>© 2006</sup> Victoria University. All rights reserved.

<sup>143-06</sup> 

then the Lehmer problem seeks composite numbers in  $S = \bigcup_{M>1} S_M$ . For this problem, which has not been settled so far, several partial answers were provided, the details of which can be found in [5]. Lehmer [2] has shown that

(1.2) If 
$$n \in S$$
, then n is square free.

It is well known that a divisor d > 0 of a positive integer n for which (d, n/d) = 1 is called a *unitary divisor* of n. For positive integers a and b, the greatest divisor of a which is a unitary divisor of b is denoted by  $(a, b)^*$ .

E. Cohen [1] has defined  $\phi^*(n)$ , the unitary analogue of the Euler totient function, as the number of integers a with  $1 \le a \le n$  and  $(a, n)^* = 1$ . It can be seen that  $\phi^*(1) = 1$  and if n > 1 with  $n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_r^{\alpha_r}$ , then

(1.3) 
$$\phi^*(n) = (p_1^{\alpha_1} - 1)(p_2^{\alpha_2} - 1)\cdots(p_r^{\alpha_r} - 1)$$

Noting that  $\phi^*(n) \mid n-1$  whenever n is a prime power, Subbarao [3] has asked whether nonprime powers n exist with this property and this is the unitary analogue of the Lehmer problem. If

(1.4) 
$$S_M^* = \{n : M\phi^*(n) = n - 1\}$$
 for  $M = 1, 2, 3, \dots,$ 

the problem seeks non-prime powers in  $S_M^* = \bigcup_{M>1} S_M^*$ .

For excellent information on the Lehmer problem, its generalizations and extensions, we refer readers to the book of J. Sandor and B. Crstici ([3, p. 212-215]).

Let Q denote the set of all square free numbers. Since  $\phi^*(n) = \phi(n)$  for  $n \in Q$ , it follows that  $S_M^* \cap Q = S_M$  for each M > 1 and therefore  $S^* \cap Q = S$ , showing  $S \subset S^*$  and hence a separate study of  $S^*$  is meaningful.

In a study of certain analogues of the Lehmer problem, Subbarao and Siva Rama Prasad [5] have proved, among other things, that if  $\omega(n) = r$  is the number of distinct prime factors of  $n \in S^*$  then

$$(1.5)\qquad\qquad\qquad\omega(n)\geq 11$$

and that

$$(1.6) n < (r-1)^{2^r-1}$$

The purpose of this paper is to prove Theorems A and B (see Section 3) which improve (1.5) and (1.6) respectively.

## 2. PRELIMINARIES

We state below the results proved in [4] which are needed for our purpose.

(2.1) If 
$$n \in S^*$$
, then n is odd and is not a powerful number

A number is said to be powerful if each prime dividing it is of multiplicity at least 2.

(2.2) If  $n \in S^*$  and p, q are primes such that p divides n and  $q^\beta \equiv 1 \pmod{p}$ ,

then  $q^{\beta}$  cannot be a unitary divisor of n.

(2.3) If 
$$n \in S^*$$
 and  $3|n$  then  $\omega(n) \ge 1850$ .

(2.4) If 
$$n \in S^*$$
,  $3 \nmid n$  and  $5 \mid n$  then  $\omega(n) \ge 11$ .

(2.5) If 
$$n \in S^*$$
,  $3 \nmid n$  and  $5 \nmid n$  then  $\omega(n) \ge 17$ .

(2.6) If  $n \in S^*$ , with  $2 < \omega(n) \le 16$  then  $n \in S_2^*$ ,  $3 \nmid n, 5 \mid n \text{ and } 7 \mid n$ .

Suppose  $n \in S_M^*$  for some M > 1. Then  $\frac{n}{\phi^*(n)} > M \ge 2$ , which gives

(2.7) 
$$2 < \frac{n}{\phi^*(n)} \text{ for all } n \in S^*.$$

Also if  $n \in S^*$  is of the form

(2.8) 
$$n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_r^{\alpha_r} \text{ with } p_1 < p_2 < \cdots < p_r,$$

then by (2.1) at least one  $\alpha_i = 1$ 

(2.9) ([5, Lemma 5.3]): If  $n \in S_M^*$  and  $n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_r^{\alpha_r}$ , with

$$p_1^{\alpha_1} < p_2^{\alpha_2} < \dots < p_r^{\alpha_r}$$
, then  $p_i^{\alpha_i} < (r-i+1) \prod_{j=1}^{i-1} p_j^{\alpha_j}$  for  $i = 2, 3, \dots, r$ .

(2.10) ([5, Lemma 5.3]): If  $n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_r^{\alpha_r}$ , with

$$p_1^{\alpha_1} < p_2^{\alpha_2} < \dots < p_r^{\alpha_r}$$
 is such that  $\frac{n}{\phi^*(n)} > 2$ , then  $p_1^{\alpha_1} < 2 + 2\left(\frac{r}{3}\right)$ .

### 3. MAIN RESULTS

**Theorem A.** If  $n \in S^*$  and 455 is not a unitary divisor of n then  $\omega(n) \ge 17$ .

*Proof.* (2.3) and (2.5) respectively prove the theorem in the cases 3|n and  $15 \nmid n$ .

Therefore we assume that  $3 \nmid n$  and  $5 \mid n$ .

Let n be of the form (2.8) with  $\omega(n) \leq 16$  then by (2.6),  $n \in S_2^*$ , 5|n and 7|n. That is  $p_1 = 5, p_2 = 7$  and so  $n = 5^{\alpha_1} 7^{\alpha_2} p_3^{\alpha_3} \cdots p_r^{\alpha_r}$ , where  $p_i \not\equiv 1 \pmod{5}$  and  $p_i \not\equiv 1 \pmod{7}$  for  $i \geq 3$ , in view of (2.2).

Suppose A is a set of primes (in increasing order) containing 5 and 7; and those primes p with  $p \not\equiv 1 \pmod{5}$  and  $p \not\equiv 1 \pmod{7}$ . Denote the  $i^{th}$  element of A by  $a_i$  so that  $a_1 = 5$ ,  $a_2 = 7$ ,  $a_3 = 13$ ,  $a_4 = 17$ ,  $a_5 = 19$ ,  $a_6 = 23$ ,  $a_7 = 37$ , ....

Now since

$$\frac{n}{\phi^*(n)} = \prod_{i=1}^r \frac{p_i^{\alpha_i}}{p_i^{\alpha_i}-1}$$

increases with r and  $r \le 16$ , we consider the case r = 16 and prove that the product on the right is < 2 in this case, which contradicts (2.7).

Therefore  $r \leq 16$  cannot hold, proving the theorem.

If r = 16 and  $p_3 \neq a_3$ , then  $p_i \ge a_{i+1}$  for  $i \ge 3$  so that, in view of the fact that x/(x-1) is decreasing, we get

$$\frac{n}{\phi^*(n)} = \frac{5^{\alpha_1}}{5^{\alpha_1} - 1} \cdot \frac{7^{\alpha_2}}{7^{\alpha_2} - 1} \cdot \prod_{i=3}^{16} \frac{p_i^{\alpha_i}}{p_i^{\alpha_i} - 1} < \frac{5}{4} \cdot \frac{7}{6} \prod_{i=3}^{16} \frac{a_{i+1}}{a_{i+1} - 1} < 2$$

Hence  $p_3 = a_3$ . Now since  $13^2 \equiv 1 \pmod{7}$  we get, by (2.2),  $2 \nmid \alpha_3$  and so  $n = 5^{\alpha_1} 7^{\alpha_2} 1 3^{\alpha_3} \cdots p_{16}^{\alpha_{16}}$ , where  $\alpha_3$  is odd. Further since 455 is not a unitary divisor of n, we must have  $\alpha_1 \alpha_2 \alpha_3 > 1$ .

If  $\alpha_1\alpha_2 = 1$  or  $\alpha_1\alpha_2 > 1$ , we get contradiction to (2.7). In fact in case  $\alpha_1\alpha_2 = 1$ , we must have  $\alpha_3 \ge 3$  so that

$$\frac{p_3^{\alpha_3}}{p_3^{\alpha_3} - 1} \le \frac{13^3}{13^3 - 1} = \frac{2197}{2196}$$

and therefore

$$\frac{n}{\phi^*(n)} < \frac{5}{4} \cdot \frac{7}{6} \cdot \frac{2197}{2196} \prod_{i=4}^{16} \frac{a_i}{a_i - 1} < 2$$

and in case  $\alpha_1\alpha_2 > 1$ , it is enough to consider the case  $\alpha_3 = 1$ , so that in this case

$$\frac{n}{\phi^*(n)} < \frac{5}{4} \cdot \frac{7}{6} \cdot \frac{13}{12} \prod_{i=4}^{16} \frac{a_i}{a_i - 1} < 2$$

Finally the case  $\alpha_1 > 1$ ,  $\alpha_2 > 1$ , and  $\alpha_3 > 1$  can be handled similarly.

**Theorem B.** If  $n \in S^*$  with  $\omega(n) = r$  and 455 does not divide n unitarily then  $n < (r - \frac{23}{10})^{2^r-1}$ . *Proof.* Let  $n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_r^{\alpha_r}$ , where  $p_1^{\alpha_1} < p_2^{\alpha_2} < \cdots < p_r^{\alpha_r}$ . By (2.10) and Theorem A, we have

(3.1) 
$$p_1^{\alpha_1} < 2 + 2\left(\frac{r}{3}\right) < r - \frac{18}{5}, \text{ for } r \ge 17.$$

Now by (2.9) and (3.1), we successively have

$$p_1^{\alpha_1} < r - \frac{18}{5} < \left(r - \frac{23}{10}\right)$$

$$p_2^{\alpha_2} < (r - 1) p_1^{\alpha_1} < (r - 1) \left(r - \frac{18}{5}\right) < \left(r - \frac{23}{10}\right)^2$$

$$p_3^{\alpha_3} < (r - 2) p_1^{\alpha_1} p_2^{\alpha_2} < \left(r - \frac{23}{10}\right)^{2^2}$$
...

 $p_r^{\alpha_r} < \left(r - \frac{23}{10}\right)^{2^{r-1}}.$ 

Multiplying all these inequalities we get,  $n < (r - \frac{23}{10})^{2^r-1}$ , proving the theorem.

#### REFERENCES

- [1] E. COHEN, Arithmetical functions associated with the unitary divisors of an integer, *Math. Zeitschr*, **74** (1960), 66–80.
- [2] D.H. LEHMER, On Euler's totient function, Bull. Amer. Math. Soc., 38 (1932), 745-751.
- [3] J. SÁNDOR AND B. CRSTICI, *Handbook of Number Theory II*, Kluwer Academic Publishers, Dordrecht/Boston/London, 2004.
- [4] M.V. SUBBARAO, On a problem concerning the Unitary totient function  $\phi^*(n)$ , *Not. Amer. Math. Soc.*, **18** (1971), 940.
- [5] M.V. SUBBARAO AND V. SIVA RAMA PRASAD, Some analogues of a Lehmer problem on the totient function, *Rocky Mountain J. of Math.*, **15**(2) (1985), 609–619.