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Abstract

In this paper, we introduce and study a new class of generalized nonlinear
mixed quasi-variational inequalities involving maximal η-monotone mapping.
Using the resolvent operator technique for maximal η-monotone mapping, we
prove the existence of solution for this kind of generalized nonlinear multi-valued
mixed quasi-variational inequalities without compactness and the convergence
of iterative sequences generated by the new algorithm. We also discuss the
convergence and stability of the iterative sequence generated by the perturbed
iterative algorithm for solving a class of generalized nonlinear mixed quasi-
variational inequalities.
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1. Introduction
In recent years, variational inequalities have been generalized and extended in
many different directions using novel and innovative techniques. These have
been used to study wider classes of unrelated problems arising in optimization
and control, economics and finance, transportation and electrical networks, op-
erations research and engineering sciences in a general and unified framework,
see [1] – [15], [18] – [27] and the references therein. An important and use-
ful generalization of variational inequality is called the variational inclusion.
It is well known that one of the most important and interesting problems in
the theory of variational inequalities is the development of an efficient and im-
plementable algorithm for solving variational inequalities. For the past years,
many numerical methods have been developed for solving various classes of
variational inequalities, such as the projection method and its variant forms,
linear approximation, descent, and Newton’s methods.

Recently, Huang and Fang [10] introduced a new class of maximalη-monotone
mappings and proved the Lipschitz continuity of the resolvent operator for max-
imal η-monotone mappings in Hilbert spaces. They also introduced and studied
a new class of generalized variational inclusions involving maximalη-monotone
mappings and constructed a new algorithm for solving this class of generalized
variational inclusions by using the resolvent operator technique for maximal
η-monotone mappings.

The main purpose of this paper is to introduce and study a new class of
generalized nonlinear mixed quasi-variational inequalities involving maximal
η-monotone mappings. Using the resolvent operator technique for maximal
η-monotone mappings, we prove the existence of a solution for this kind of
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generalized nonlinear multivalued mixed quasi-variational inequalities without
compactness and the convergence of iterative sequences generated by the new
algorithm. We also discuss the convergence and stability of the iterative se-
quence generated by the perturbed iterative algorithm for solving a class of
generalized nonlinear mixed quasi-variational inequalities. The results shown
in this paper improve and extend the previously known results in this area.
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2. Preliminaries
Let H be a real Hilbert space endowed with a norm‖·‖ and an inner product
〈·, ·〉, respectively. Let2H , CB(H), andH(·, ·) denote the family of all the
nonempty subsets ofH, the family of all the nonempty closed bounded subsets
of H, and the Hausdorff metric onCB(H), respectively. Letη, N : H ×
H → H be two single-valued mappings with two variables andg : H → H
be a single-valued mapping. LetS, T, G : H → CB(H) be three multivalued
mappings andM : H ×H → 2H be a multivalued mapping such that for each
t ∈ H, M(·, t) is maximalη-monotone withRan(g)

⋂
Dom M(·, t) 6= ∅. Now

we consider the following problem:
Find u ∈ H, x ∈ Su, y ∈ Tu, andz ∈ Gu such thatg(u) ∈ Dom(M(·, z))

and

(2.1) 0 ∈ N(x, y) + M(g(u), z)).

Problem (2.1) is called a generalized nonlinear multivalued mixed quasi-variational
inequality.

Some special cases of the problem (2.1):

(I) If η(x, y) = x − y for all x, y in H andG is the identity mapping, then
problem (2.1) reduces to findingu ∈ H, x ∈ Su, y ∈ Tu such that
g(u) ∈ Dom(M(·, u)) and

(2.2) 0 ∈ N(x, y) + M(g(u), u).

Problem (2.2) is called the multivalued quasi-variational inclusion, which
was studied by Noor [18] – [22].
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(II) If S, T are single-valued mappings andG is the identity mapping, then
problem (2.1) is equivalent to findingu ∈ H such thatg(u) ∈ Dom(M(·, u))
and

(2.3) 0 ∈ N(Su, Tu) + M(g(u), u)).

Problem (2.3) is called a generalized nonlinear mixed quasi-variational
inequality.

(III) If M(·, t) = ∂ϕ(·, t), whereϕ : H × H → R
⋃
{+∞} is a functional

such that for each fixedt in H, ϕ(·, t) : H → R
⋃
{+∞} is lower

semicontinuous andη-subdifferentiable onH, and ∂ϕ(·, t) denotes the
η-subdifferential ofϕ(·, t), then problem (2.1) reduces to the following
problem:

Findu ∈ H, x ∈ Su andy ∈ Tu such that

(2.4) 〈N(x, y), η(v, g(u))〉 ≥ ϕ(g(u), z)− ϕ(v, z)

for all v in H, which which appears to be a new one. Furthermore, if
N(x, y) = x− y for all x, y in H, S, T are single-valued mappings andG
is the identity mapping, then problem (2.4) reduces to the general quasi-
variational-like inclusion considered by Ding and Luo [3].

(IV) If S, T : H → H are single-valued mappings,g is an identity mapping,
N(x, y) = x− y for all x, y in H, andM(·, t) = ∂ϕ for all t in H, where
∂ϕ denotes theη-subdifferential of a proper convex lower semicontinuous
functionϕ : H → R

⋃
{+∞}, then problem (2.1) reduces to the following

problem:
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Findu ∈ H such that

(2.5) 〈Su− Tu, η(v, u)〉 ≥ ϕ(u)− ϕ(v)

for all v in H, which is called the strongly nonlinear variational-like inclu-
sion problem considered by Lee et al. [15].

(V) If G is an identity mapping,η(x, y) = x−y andM(·, t) = ∂ϕ for eacht ∈
H, whereϕ : H → R

⋃
{+∞} is a proper convex lower semicontinuous

function onH andg(H)
⋂

Dom(∂ϕ(·, t)) 6= ∅ for eacht ∈ H and∂ϕ(·, t)
denotes the subdifferential of functionϕ(·, t), then problem (2.1) reduces
to findingu ∈ H, x ∈ Su andy ∈ Tu such thatg(u) ∈ Dom(∂ϕ(·, t))
and

(2.6) 〈N(x, y), v − g(u)〉 ≥ ϕ(g(u))− ϕ(v)

for all v in H. Furthermore, ifN(x, y) = x − y for all x, y in H, and
g is an identity mapping, then the problem (2.6) is equivalent to the set-
valued nonlinear generalized variational inclusion considered by Huang
[6] and, in turn, includes the variational inclusions studied by Hassouni
and Moudafi [5] and Kazmi [14] as special cases.

For a suitable choice ofN, η,M, S, T,G, g, and for the spaceH, one can
obtain a number of known and new classes of variational inclusions, varia-
tional inequalities, and corresponding optimization problems from the general
set-valued variational inclusion problem (2.1). Furthermore, these types of
variational inclusions enable us to study many important problems arising in
the mathematical, physical, and engineering sciences in a general and unified
framework.
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Definition 2.1. Let T be a selfmap ofH, x0 ∈ H and letxn+1 = f(T, xn)
define an iteration procedure which yields a sequence of points{xn}∞n=0 in H.
Suppose that{x ∈ H : Tx = x} 6= ∅ and{xn}∞n=0 converges to a fixed point
x∗ of T . Let{yn} ⊂ H and letεn = ||yn+1 − f(T, yn)||. If lim

n→∞
εn = 0 implies

that lim
n→∞

yn = x∗, then the iteration procedure defined byxn+1 = f(T, xn) is

said to beT -stable or stable with respect toT .

Lemma 2.1 ([16]). Let{an}, {bn}, and{cn} be three sequences of nonnegative
numbers satisfying the following conditions: there existsn0 such that

an+1 ≤ (1− tn)an + bntn + cn,

for all n ≥ n0, wheretn ∈ [0, 1],
∑∞

n=0 tn = ∞, lim
n→∞

bn = 0 and
∑∞

n=0 cn <

∞. Then lim
n→∞

an = 0.

Definition 2.2. A mappingg : H → H is said to be

(i) α-strongly monotone if there exists a constantα > 0 such that

〈g(u1)− g(u2), u1 − u2〉 ≥ α‖u1 − u2‖2,

for all ui ∈ H, i = 1, 2;

(ii) β-Lipschitz continuous if there exists a constantβ > 0 such that

‖g(u1)− g(u2)‖ ≤ β‖u1 − u2‖,

for all ui ∈ H, i = 1, 2.
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Definition 2.3. A multivalued mappingS : H → CB(H) is said to be

(i) H-Lipschitz continuous if there exists a constantγ > 0 such that

H(Su1, Su2) ≤ γ‖u1 − u2‖,

for all ui ∈ H, i = 1, 2;

(ii) strongly monotone with respect to the first argument ofN(·, ·) : H×H →
H, if there exists a constantµ > 0 such that

〈N(x1, ·)−N(x2, ·), u1 − u2〉 ≥ µ‖u1 − u2‖2,

for all xi ∈ Sui, ui ∈ H, i = 1, 2.

Definition 2.4. A mappingN(·, ·) : H × H → H is said to be Lipschitz con-
tinuous with respect to the first argument if there exists a constantν > 0 such
that

‖N(u1, ·)−N(u2, ·)‖ ≤ ν‖u1 − u2‖,
for all ui ∈ H, i = 1, 2.

In a similar way, we can define Lipschitz continuity ofN(·, ·) with respect
to the second argument.

Definition 2.5. Letη : H×H → H be a single-valued mapping. A multivalued
mappingM : H → 2H is said to be

(i) η-monotone if

〈x− y, η(u, v)〉 ≥ 0 for all u, v ∈ H, x ∈ Mu, y ∈ Mv;
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(ii) strictly η-monotone if

〈x− y, η(u, v)〉 ≥ 0 for all u, v ∈ H, x ∈ Mu, y ∈ Mv

and equality holds if and only ifu = v;

(iii) stronglyη-monotone if there exists a constantr > 0 such that

〈x− y, η(u, v)〉 ≥ r‖u− v‖2 for all u, v ∈ H, x ∈ Mu, y ∈ Mv;

(iv) maximalη-monotone ifM is η-monotone and(I + λM)(H) = H for any
λ > 0.

Remark 1.

1. If η(u, v) = u− v for all u, v in H, then (i)-(iv) of Definition2.5reduce to
the classical definitions of monotonicity, strict monotonicity, strong mono-
tonicity, and maximal monotonicity, respectively.

2. Huang and Fang gave one example of maximalη-monotone mapping in
[10].

Lemma 2.2 ([10]). Letη : H×H → H be strictly monotone andM : H → 2H

be a maximalη-monotone mapping. Then the following conclusions hold:

1. 〈x − y, η(u, v)〉 ≥ 0 for all (v, y) ∈ Graph(M) implies that(u, x) ∈
Graph(M), whereGraph(M) = {(u, x) ∈ H ×H : x ∈ Mu};

2. the inverse mapping(I + λM)−1 is single-valued for anyλ > 0.
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Based on Lemma2.2, we can define the resolvent operator for a maximal
η-monotone mappingM as follows:

(2.7) JM
ρ (z) = (I + ρM)−1(z) for all z ∈ H,

whereρ > 0 is a constant andη : H ×H → H is a strictly monotone mapping.

Lemma 2.3 ([10]). Let η : H × H → H be strongly monotone and Lipschtiz
continuous with constantsδ > 0 and τ > 0, respectively. LetM : H → 2H

be a maximalη-monotone mapping. Then the resolvent operatorJM
ρ for M is

Lipschitz continuous with constantτ/δ, i.e.,

‖JM
ρ (u)− JM

ρ (v)‖ ≤ τ

δ
‖u− v‖ for all u, v ∈ H.
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3. Iterative Algorithms
We first transfer problem (2.1) into a fixed point problem.

Lemma 3.1. For givenu ∈ H, x ∈ Su, y ∈ Tu, andz ∈ Gu, (u, x, y, z) is a
solution of the problem (2.1) if and only if

(3.1) g(u) = JM(·,z)
ρ (g(u)− ρN(x, y)),

whereJ
M(·,z)
ρ = (I + ρM(·, z))−1 andρ > 0 is a constant.

Proof. This directly follows from the definition ofJM(·,u)
ρ .

Remark 2. Equality (3.1) can be written as

u = (1− λ)u + λ[u− g(u) + JM(·,z)
ρ (g(u)− ρN(x, y))],

where0 < λ ≤ 1 is a parameter andρ > 0 is a constant. This fixed point
formulation enables us to suggest the following iterative algorithm for problem
(2.1) as follows:

Algorithm 1. Letη, N : H ×H → H, g : H → H be single-valued mappings
andS, T, G : H → CB(H) be multivalued mappings. LetM : H ×H → 2H

be such that for each fixedt ∈ H, M(·, t) : H → 2H is a maximalη-monotone
mapping satisfyingg(u) ∈ Dom(M(·, z)). For givenλ ∈ [0, 1], u0 ∈ H,
x0 ∈ Su0, y0 ∈ Tu0 andz0 ∈ Gu0, let

u1 = (1− λ)u0 + λ
[
u0 − g(u0) + JM(·,z0)

ρ (g(u0)− ρN(x0, y0))
]
.
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By Nadler [17], there existx1 ∈ Su1, y1 ∈ Tu1 andz1 ∈ Gu1 such that

‖x0 − x1‖ ≤ (1 + 1)H(Su0, Su1),

‖y0 − y1‖ ≤ (1 + 1)H(Tu0, Tu1),

‖z0 − z1‖ ≤ (1 + 1)H(Gu0, Gu1).

Let

u2 = (1− λ)u1 + λ
[
u1 − g(u1) + JM(·,z1)

ρ (g(u1)− ρN(x1, y1))
]
.

By induction, we can obtain sequences{un}, {xn}, {yn} and{zn} satisfying

(3.2)



un+1 = (1− λ)un

+λ
[
un − g(un) + J

M(·,zn)
ρ (g(un)− ρN(xn, yn))

]
,

xn ∈ Sun, ‖xn − xn+1‖ ≤ (1 + (1 + n)−1)H(Sun, Sun+1),
yn ∈ Tun, ‖yn − yn+1‖ ≤ (1 + (1 + n)−1)H(Tun, Tun+1),
zn ∈ gun, ‖zn − zn+1‖ ≤ (1 + (1 + n)−1)H(Gun, Gun+1),

for n = 1, 2, 3, . . . , where0 < λ ≤ 1 andρ > 0 are both constants.

Now we construct a new pertured iterative algorithm for solving the gener-
alized nonlinear mixed quasi-variational inequality (2.3) as follows:

Algorithm 2. Let η, N : H × H → H andS, T : H → H be single-valued
mappings. LetM : H ×H → 2H be such that for each fixedt ∈ H, M(·, t) :
H → 2H is a maximalη-monotone mapping satisfyingg(u) ∈ Dom(M(·, u)).
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For givenu0 ∈ H, the perturbed iterative sequence{un} is defined by

(3.3)


un+1 = (1− αn)un + αn[vn − g(vn)

+J
M(·,vn)
ρ (g(vn)− ρN(Svn, T vn))] + αnen,

vn = (1− βn)un + βn[un − g(un)

+J
M(·,un)
ρ (g(un)− ρN(Sun, Tun))] + βnfn,

for n = 0, 1, 2, . . . , where{en} and {fn} are two sequences of the elements
of H introduced to take into account possible inexact computation and the se-
quences{αn}, {βn} satisfy the following conditions:

0 ≤ αn, βn ≤ 1(n ≥ 0), and
∞∑

n=0

αn = ∞.

Let {yn} be any sequence inH and define{εn} by

(3.4)



εn =
∥∥∥yn+1 −

{
(1− αn)yn + αn

[
xn − g(xn)

+J
M(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen

}∥∥∥ ,

xn = (1− βn)yn + βn

[
yn − g(yn)

+J
M(·,yn)
ρ (g(yn)− ρN(Syn, T yn))

]
+ βnfn,

for n = 0, 1, 2, . . . .
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4. Main Results
In this section, we first prove the existence of a solution of problem (2.1) and
the convergence of an iterative sequence generated by Algorithm1.

Theorem 4.1. Let η : H × H → H be strongly monotone and Lipschitz con-
tinuous with constantsδ and τ , respectively. LetS, T, G : H → CB(H) be
H-Lipschitz continuous with constantsα, β, γ, respectively,g : H → H be
µ-Lipschitz continuous andν-strongly monotone. LetN : H × H → H be
Lipschitz continuous with respect to the first and second arguments with con-
stantsξ andζ, respectively, andS : H → CB(H) be strongly monotone with
respect to the first argument ofN(·, ·) with constantr. LetM : H ×H → 2H

be a multivalued mapping such that for each fixedt ∈ H, M(·, t) is maximal
η-monotone. Suppose that there exist constantsρ > 0 andκ > 0 such that for
eachx, y, z ∈ H,

(4.1)
∥∥JM(·,x)

ρ (z)− JM(·,y)
ρ (z)

∥∥ ≤ κ‖x− y‖,

and

(4.2)



∣∣∣ρ− τr−δ(1−h)ζβ
τ(ξ2α2−ζ2β2)

∣∣∣ <

√
[τr−δ(1−h)ζβ]2−(ξ2α2−ζ2β2)(τ2−δ2(1−h)2)

τ(ξ2α2−ζ2β2)
,

τr > δ(1− h)ζβ

+
√

(ξ2α2 − ζ2β2)(τ 2 − δ2(1− h)2), ξα > ζβ,

h = (1 + δτ−1)
√

1− 2ν + µ2

+κγ, ρτζβ < δ(1− h), h < 1.
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Then the iterative sequences{un}, {xn}, {yn} and{zn} generated by Algorithm
1 converge strongly tou∗, x∗, y∗ and z∗, respectively and(u∗, x∗, y∗, z∗) is a
solution of problem (2.1).

Proof. It follows from (3.2), (4.1) and Lemma2.3that

‖un+1 − un‖
=

∥∥(1− λ)(un − un−1) + λ
[
[un − un−1 − (g(un)− g(un−1))

+ JM(·,zn)
ρ (g(un)− ρN(xn, yn))

−JM(·,zn−1)
ρ (g(un−1)− ρN(xn−1, yn−1))

]∥∥
≤ (1− λ)‖un − un−1‖+ λ‖un − un−1 − (g(un+1)− g(un))‖

+ λ
∥∥JM(·,zn)

ρ (g(un)− ρN(xn, yn))

−JM(·,zn)
ρ (g(un−1)− ρN(xn−1, yn−1))

∥∥
+ λ

∥∥JM(·,zn)
ρ (g(un−1)− ρN(xn−1, yn−1))

−JM(·,zn−1)
ρ (g(un−1)− ρN(xn−1, yn−1))

∥∥
≤ (1− λ)‖un − un−1‖+ λ‖un − un−1 − (g(un)− g(un−1))‖

+ λ
τ

δ
‖g(un)− g(un−1)− ρ(N(xn, yn)−N(xn−1, yn−1))‖

+ λκ‖zn − zn−1‖
≤ (1− λ)‖un − un−1‖

+ λ
(
1 +

τ

δ

)
‖un − un−1 − (g(un)− g(un−1))‖
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+ λ
τ

δ
‖un − un−1 − ρ(N(xn, yn)−N(xn−1, yn))‖

+ λρ
τ

δ
‖N(xn−1, yn)−N(xn−1, yn−1)‖+ λκ‖zn − zn−1‖.(4.3)

Sinceg is strongly monotone and Lipschitz continuous, we obtain

‖un − un−1 − (g(un)− g(un−1))‖2

= ‖un − un−1‖2

− 2〈un − un−1, g(un)− g(un−1)〉+ ‖g(un)− g(un−1)‖2

≤ (1− 2ν + µ2)‖un − un−1‖2.(4.4)

SinceS is H-Lipschitz continuous and strongly monotone with respect to the
first argument ofN(·, ·) andN is Lipschitz continuous with respect to the first
argument, we have

‖un − un−1 − ρ(N(xn, yn)−N(xn−1, yn))‖2

= ‖un − un−1‖2 − 2ρ〈un − un−1, N(xn, yn)−N(xn−1, yn)〉
+ ρ2‖N(xn, yn)−N(xn−1, yn)‖2

≤ (1− 2ρr + ρ2ξ2(1 + n−1)2α2)‖un − un−1‖2.(4.5)

Further, sinceT, G areH-Lipschitz continuous andN is Lipschitz continuous
with respect to the second argument, we get

‖N(xn−1, yn)−N(xn−1, yn−1)‖ ≤ ζ‖yn − yn−1‖(4.6)

≤ ζβ(1 + n−1)‖un − un−1‖,
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(4.7) ‖zn − zn−1‖ ≤ γ(1 + n−1)‖un − un−1‖.

By (4.3) – (4.7), we obtain

‖un − un−1‖ ≤ (1− λ + λ(1 + τδ−1)
√

1− 2ν + µ2

+ λτδ−1
√

1− 2ρr + ρ2ξ2(1 + n−1)2α2

+ λρτδ−1ζβ(1 + n−1) + λκγ(1 + n−1)

= (1− λ + λhn + λtn(ρ))‖un − un−1‖
= θn‖un − un−1‖,(4.8)

where

hn = (1 + τδ−1)
√

1− 2ν + µ2 + κγ(1 + n−1),

tn(ρ) = τδ−1
√

1− 2ρr + ρ2ξ2(1 + n−1)2α2 + ρτδ−1ζβ(1 + n−1) and

θn = 1− λ + λhn + λtn(ρ).

Lettingθ = 1− λ + λh + λt(ρ), where

h = (1 + τδ−1)
√

1− 2ν + µ2 + κγ and

t(ρ) = τδ−1
√

1− 2ρr + ρ2ξ2α2 + ρτδ−1ζβ,

we have thathn → h, tn(ρ) → t(ρ) andθn → θ asn → ∞. It follows from
condition (4.2) that θ < 1. Henceθn < 1 for n sufficiently large. Therefore,
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(4.8) implies that{un} is a Cauchy sequence inH and so we can assume that
un → u∗ ∈ H asn →∞. By the Lipschitz continuity ofS, T andG we obtain

‖xn − xn−1‖ ≤ (1 + (1 + n)−1)H(Sun, Sun−1)

≤ α(1 + (1 + n)−1)‖un − un−1‖,
‖yn − yn−1‖ ≤ (1 + (1 + n)−1)H(Tun, Tun−1)

≤ β(1 + (1 + n)−1)‖un − un−1‖,
‖zn − zn−1‖ ≤ (1 + (1 + n)−1)H(Gun, Gun−1)

≤ γ(1 + (1 + n)−1)‖un − un−1‖.

It follows that{xn}, {yn} and{zn} are also Cauchy sequences inH. We can
assume thatxn → x∗, yn → y∗ and zn → z∗, respectively. Note that for
xn ∈ Sun, we have

d(x∗, Su∗) ≤ ‖x∗ − xn‖+ d(xn, Su∗)

≤ ‖x∗ − xn‖+H(Sun, Su∗)

≤ ‖x∗ − xn‖+ α‖un − u∗‖ → 0,

as n → ∞. Hence we must havex∗ ∈ Su∗. Similarly, we can show that
y∗ ∈ Tu∗ andz∗ ∈ Gu∗. From

un+1 = (1− λ)un + λ
[
un − g(un) + JM(·,zn)

ρ (g(un)− ρN(xn, yn))
]
,

it follows that
g(u∗) = JM(·,z∗)

ρ (g(u∗)− ρN(x∗, y∗)).

By Lemma3.1, (u∗, x∗, y∗, z∗) is a solution of problem (2.1). This completes
the proof.
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Remark 3. For an appropriate and suitable choice of the mappingsη, N, S,
T,G, g, M and the spaceH, we can obtain several known results in [1], [ 3],
[5] – [ 8], [ 14], [ 18] – [ 22], [ 24] – [ 26] as special cases of Theorem4.1.

Now we prove the convergence and stability of the iterative sequence gener-
ated by the Algorithm2.

Theorem 4.2. Let η : H × H → H be strongly monotone and Lipschitz con-
tinuous with constantsδ and τ , respectively. LetS, T : H → H be Lipschitz
continuous with constantsα, β, respectively,g : H → H beµ-Lipschitz contin-
uous andν-strongly monotone. LetN : H ×H → H be Lipschitz continuous
with respect to the first and second arguments with constantsξ and ζ, respec-
tively, andS : H → H be strongly monotone with respect to the first argument
of N(·, ·) with constantr. Let M : H × H → 2H be a multivalued mapping
such that for each fixedt ∈ H, M(·, t) is maximalη-monotone. Suppose that
there exist constantsρ > 0 andκ > 0 such that for eachx, y, z ∈ H,

(4.9)
∥∥JM(·,x)

ρ (z)− JM(·,y)
ρ (z)

∥∥ ≤ κ‖x− y‖,

and

(4.10)



∣∣∣ρ− τr−δ(1−h)ζβ
τ(ξ2α2−ζ2β2)

∣∣∣ <

√
[τr−δ(1−h)ζβ]2−(ξ2α2−ζ2β2)(τ2−δ2(1−h)2)

τ(ξ2α2−ζ2β2)
,

τr > δ(1− h)ζβ

+
√

(ξ2α2 − ζ2β2)(τ 2 − δ2(1− h)2), ξα > ζβ,

h = (1 + δτ−1)
√

1− 2ν + µ2 + κ,
ρτζβ < δ(1− h), h < 1.
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If lim
n→∞

‖en‖ = 0, lim
n→∞

‖fn‖ = 0, then

(I) The sequence{un} defined by Algorithm2converges strongly to the unique
solutionu∗ of problem (2.3).

(II) If
∑∞

n=0 εn < ∞, then lim
n→∞

yn = u∗.

(III) If lim
n→∞

yn = u∗, then lim
n→∞

εn = 0.

Proof. (I) It follows from Theorem4.1 that there existsu∗ ∈ H which is a
solution of problem (2.3) and so

(4.11) g(u∗) = JM(·,u∗)
ρ (g(u∗)− ρN(Su∗, Tu∗)).

From (4.9), (4.11) and Algorithm2, it follows that

‖un+1 − u∗‖

=
∥∥∥(1− αn)(un − u∗)− αn

[
vn − u∗ − (g(vn)− g(u∗))

+ JM(·,vn)
ρ (g(vn)− ρN(Svn, T vn))

− JM(·,u∗)
ρ (g(u∗)− ρN(Su∗, Tu∗))

]
+ αnen

∥∥∥
≤ (1− αn)‖un − u∗‖+ αn‖vn − u∗ − (g(vn)− g(u∗))‖+ αn‖en‖

+ αn

∥∥∥JM(·,vn)
ρ (g(vn)− ρN(Svn, T vn))

− JM(·,vn)
ρ (g(u∗)− ρN(Su∗, Tu∗))

∥∥∥
+ αn

∥∥JM(·,vn)
ρ (g(u∗)− ρN(Su∗, Tu∗))

http://jipam.vu.edu.au/
mailto:mmj1898@163.com
http://jipam.vu.edu.au/


Generalized Nonlinear Mixed
Quasi-Variational Inequalities

Involving Maximal η-Monotone
Mappings

Mao-Ming Jin

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 22 of 29

J. Ineq. Pure and Appl. Math. 7(3) Art. 114, 2006

http://jipam.vu.edu.au

−JM(·,u∗)
ρ (g(u∗)− ρN(Su∗, Tu∗))

∥∥
≤ (1− αn)‖un − u∗‖+ αn‖vn − u∗ − (g(vn)− g(u∗))‖+ αn‖en‖

+ αn
τ

δ
‖g(vn)− g(u∗)− ρ(N(Svn, T vn)−N(Su∗, Tu∗))‖

+ αnκ‖vn − u∗‖
≤ (1− αn)‖un − u∗‖

+ αn

(
1 +

τ

δ

)
‖un − u∗ − (g(vn)− g(u∗))‖+ αn‖en‖

+ αn
τ

δ
‖vn − u∗ − ρ(N(Svn, T vn)−N(Su∗, T vn))‖

+ αnρ
τ

δ
‖N(Su∗, T vn)−N(Su∗, Tu∗)‖+ αnκ‖vn − u∗‖.(4.12)

By the Lipschitz continuity ofN, S, T, g and the strong monotonicity ofS and
g, we obtain

(4.13) ‖vn − u∗ − (g(vn)− g(u∗))‖2 ≤ (1− 2ν + µ2)‖vn − u∗‖2,

(4.14) ‖vn − u∗ − ρ(N(Svn, T vn)−N(Su∗, T vn))‖2

≤ (1− 2ρr + ρ2ξ2α2)‖vn − u∗‖2,

(4.15) ‖N(Su∗, T vn)−N(Su∗, Tu∗))‖ ≤ ζβ‖vn − u∗‖.

It follows from (4.12) – (4.15) that

(4.16) ‖un+1 − u∗‖ ≤ (1− αn)‖un − u∗‖+ θαn‖vn − u∗‖+ αn‖en‖,
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where

θ = κ + (1 + τδ−1)
√

1− 2ν + µ2 + τδ−1
√

1− 2ρr + ρ2ξ2α2 + ρτδ−1ζβ.

Similarly, we have

(4.17) ‖vn − u∗‖ ≤ (1− βn)‖un − u∗‖+ θβn‖un − u∗‖+ βn‖fn‖.

From (4.16) and (4.17), we have

‖un+1 − u∗‖ ≤ [1− αn(1− θ)(1 + θβn)]‖un − u∗‖+ αnβnθ‖fn‖+ αn‖en‖

Condition (4.10) implies that0 < θ < 1, and so

(4.18) ‖un+1 − u∗‖ ≤ [1− αn(1− θ)]‖un − u∗‖+ αn(1− θ)dn,

wheredn = (βnθ‖fn‖+‖en‖)(1−θ)−1 → 0, asn →∞. It follows from (4.18)
and Lemma2.1thatun → u∗ asn →∞.

Now we prove thatu∗ is a unique solution of problem (2.3). In fact, if u is
also a solution of problem (2.3), then

g(u) = JM(·,u)
ρ (g(u)− ρN(Su, Tu)),

and, as the proof of (4.16), we have

‖u∗ − u‖ ≤ θ‖u∗ − u‖,

where0 < θ < 1 and sou∗ = u. This completes the proof of Conclusion (I).
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Next we prove Conclusion (II). Using (3.4) we obtain

‖yn+1 − u∗‖
≤

∥∥yn+1 −
{
(1− αn)yn + αn

[
xn − g(xn)

+ JM(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen

}∥∥
+

∥∥(1− αn)yn + αn

[
xn − g(xn)

+ JM(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen − u∗

∥∥
=

∥∥(1− αn)yn + αn

[
xn − g(xn)(4.19)

+ JM(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen − u∗

∥∥ + εn.

As the proof of inequality (4.18), we have

(4.20)
∥∥(1− αn)yn + αn

[
xn − g(xn)

+ JM(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen − u∗

∥∥
≤ (1− αn(1− θ))‖yn − u∗‖+ αn(1− θ)dn.

It follows from (4.19) and (4.20) that

(4.21) ‖yn+1 − u∗‖ ≤ (1− αn(1− θ))‖yn − u∗‖+ αn(1− θ)dn + εn.

Since
∑∞

n=0 εn < ∞, dn → 0, and
∑∞

n=0 αn < ∞. It follows that (4.21) and
Lemma2.1that lim

n→∞
yn = u∗.
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Now we prove Conclusion (III). Suppose thatlim
n→∞

yn = u∗. Then we have

εn =
∥∥yn+1 − (1− αn)yn + αn

[
xn

− g(xn) + JM(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen

∥∥
≤ ‖yn+1 − u∗‖+

∥∥(1− αn)yn + αn

[
xn

− g(xn) + JM(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen − u∗

∥∥
≤ ‖yn+1 − u∗‖+ (1− αn(1− θ))‖yn − u∗‖+ αn(1− θ)dn → 0

asn →∞. This completes the proof.
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